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Cubic Bezier Splines

« P(t)=(1-t)> PI
+  3t(1-t)* P2
+  3t%(1-t) P3
+ P4



Bernstein Polynomials

 For Bézier curves,the 1 —— o

basis polynomials/vectors
are Bernstein polynomials

 For cubic Bezier curve:
Bi(t)=(1-t)’ Ba(t)=3t(1-t)?
B3(t)=3t(1-t) Ba(t)=t

(careful with indices, many authors start at 0)

* Defined for any degree



General Spline Formulation

Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)

« Geometry: control points coordinates assembled
into a matrix (P1, P2, ..., Pn+1)

 Power basis: the monomials 1, #, 12, ...
e Cubic Bezier:
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Questions?




Linear Transformations & Cubics

 What if we want to transform each point on the
curve with a linear transformation M?
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Linear Transformations & Cubics

 What if we want to transform each point on the
curve with a linear transformation M?
— Because everything is linear, it 1s the same as

transforming only the control points
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Affine Transformations

 Homogeneous coordinates also work
— Means you can translate, rotate, shear, etc.
— Note though that you need to normalize P’ by 1/w’
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Questions?




The Plan for Today

 Differential Properties of Curves & Continuity
* B-Splines
* Surfaces

— Tensor Product Splines

— Subdivision Surfaces

— Procedural Surfaces
— Other

10



Differential Properties of Curves

* Motivation
— Compute normal for surfaces
— Compute velocity for animation

— Analyze smoothness

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/fag-fair-use/.
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http://en.wikipedia.org/wiki/File:Frenet-Serret_moving_frame1.png/
http://ocw.mit.edu/help/faq-fair-use/

Velocity

e First derivative w.r.t. ¢

* Can you compute this for Bezier curves?
P(t)= (1-t)* PI P,

+ 3t(1-t)*> P2 P,
+ 3t2(1-t) P3 P, /\/L
+t P4
* You know how to
differentiate polynomials...
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Velocity

* First derivative w.r.t. ¢
* Can you compute this for Bezier curves?

P(t)= (1-t)® PI P,
+ 3t(1-t)? P2 P,
+ 3t3(1-t) P3 P, /\/;':1
+t P4 Y .
- P’(H)= -3(1-t)2 P1 * Ps

Sanity check: t=0; t=1

+ [3(1-t) 2 -6t(1-t)] P2
+ [6t(1-t)-3t 2] P3
+ 3t2 P4
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Linearity?

 Differentiation 1s a linear operation
— (f+g)’=f"+g’
— (af)y’=a t’

* This means that the derivative of the basis 1s
enough to know the derivative of any spline.

e Can be done with matrices
— Trivial in monomial basis

— But get lower-order polynomials
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Tangent Vector

» The tangent to the curve P(t) can be defined as
T(O)=P"(t)/|[P"(1)]]
— normalized velocity, || T(t)|| = 1

* This provides us with one orientation for swept
surfaces later

Courtesy of Seth Teller.
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Curvature Vector

* Derivative of unit tangent
— K(t)=T"(t)
— Magnitude ||K(t)|| 1s constant for a circle
— Zero for a straight line

« Always orthogonal to tangent, ie. K -7 = (

Low curvature

o T(H)
K{t)
.

K(t) T(t)
(t)

High curvature
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Geometric Interpretation

* K 1s zero for a line, constant for circle
— What constant? 1/r

 1/||K(t)|| 1s the radius of the circle that touches
P(t) at # and has the same curvature as the curve

K(t)

— =1
r=1/K )
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Curve Normal

« Normalized curvature: T’ (t)/||T’(t)|]

Low curvature

o T
/Imm\
T(t)
/\$ High curvature
N(E)

N(t)
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Questions?
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Orders of Continuity

* CO = continuous CO
— The seam can be a sharp kink

* G1 = geometric continuity

— Tangents point to the same
direction at the seam G1
—_—

* Cl = parametric continuity

— Tangents are the same at the

seam, implies G1
* C2 = curvature continuity q/(H

— Tangents and their derivatives
are the same

20



Orders of Continuity

* G1 = geometric continuity

— Tangents point to the same
direction at the seam

— good enough for modeling

* Cl = parametric continuity

— Tangents are the same at the
seam, implies G1
— often necessary for animation

21



Connecting Cubic Bézier Curves

 How can we guarantee CO continuity?
 How can we guarantee G1 continuity?

 How can we guarantee C1 continuity?
C2 and above gets difficult



Connecting Cubic Bezier Curves

" Curve Editor

Where is this curve
CO continuous?
G1 continuous?

C1 continuous?

What’s the relationship
between:

the # of control points, and
the # of cubic Bézier
subcurves?

23



Questions?
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Cubic B-Splines

*P2

* >4 control points ,
P,

* Locally cubic t=0
— Cubics chained together, again.

& Pg

Courtesy of Seth Teller.

) . P7
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Cubic B-Splines

@P-
# *
’ *

* >4 control points

P,

» Locally cubic o
— Cubics chained together, again.

& Pg

Courtesy of Seth Teller.

) . P7
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Cubic B-Splines

@P-
¥ *
*

* >4 control points ,
P,

* Locally cubic t=0
— Cubics chained together, again.

& Pg

Courtesy of Seth Teller.

) . P7
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Cubic B-Splines

*P2

* >4 control points ,
P,

* Locally cubic t=0
— Cubics chained together, again.

OP;

Courtesy of Seth Teller.

) . P7
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Cubic B-Splines

*P2

* >4 control points |
P,

* Locally cubic t=0

— Cubics chained together, again. or

Courtesy of Seth Teller.

* Curve 1s not constrained to pass through any
control points
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Cubic B-Splines: Basis

A
These sum to 1, too!
»P> 17
;-r 11“ qu 5.{6 -
g /-'\\—’ . e B? B3
P1 lIJI' 1.‘ ‘*# t — -l
o N .
=0 IT P:!,
A B-Spline curve is also 2/8 -
bounded by the convex 1/6 Bl B4
hull of its control points.
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Cubic B-Splines: Basis
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Cubic B-Splines: Basis

A
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Cubic B-Splines

* Local control (windowing)
* Automatically C2, and no need to match tangents!

~P2
# .
-f' ".‘ P.q,
Jl; /\ i’
P'I i "‘ ‘i' t:
o ""t '-l-
t=0 s P, o+ P7
A
T g 1
5/6 516 |
e | Bi-2 Bi-1 g L Bi-2 Bi.i | Bis Bi.i | Bis Bi.i | Bis Bi_1
3/6 306
2/6 2/6
1/6 Bi_s Bio 16 < Bj_a Bi_o Bi_s Bio Bis Bi-o Bi_a Bio
|
[
1 0 i—q 10 izg 10 i=6 0 i=7

Courtesy of Seth Teller. Used with permission.




B-Spline Curve Control Points

Default B-Spline

B-Spline with
derivative
discontinuity

Repeat interior control
point

B-Spline which passes
through
end points

Repeat end points

34



Bézier # B-Spline

"~ 'Curve Editor " ‘Curve Editor

Bézier B-Spline

But both are cubics, so one can be converted into the other!




Converting between Bézier & BSpline

Q(t) = GBT(t) = Geometry G - Spline Basis B - Power Basis T(t)

* Simple with the basis matrices!

— Note that this only works for
a single segment of 4
control points

« P)=GBI1 T(t) =
G B1 (B2-1B2) T(t)=
(G B1 B2-1) B2 T(tBg_spiine =
G Bl B2-1 are the control point
for the segment 1n new basis.

BBezz’efr —

n o —

(1

0
0
\0
/1

1

\ 0

36



Converting between Bézier & B-Spline

original
control
points as
Bézier

new Bézier
control
points to
match

B-Spline

new
BSpline
control
points to
match
Bézier

original
control
points as

B-Spline

37



NURBS (Generalized B-Splines)

e Rational cubics

— Use homogeneous coordinates, just add w !

* Provides an extra weight parameter to control points

« NURBS: Non-Uniform Rational B-Spline

— non-uniform = different spacing between the
blending functions, a.k.a. “knots”

— rational = ratio of cubic polynomials
(instead of just cubic)

« implemented by adding the homogeneous coordinate w into
the control points.

38



Questions?
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Representing Surfaces

Triangle meshes

— Surface analogue of polylines, this 1s what GPUs
draw

Tensor Product Splines

— Surface analogue of spline curves
Subdivision surfaces

Implicit surfaces, e.g. f(x,y,z)=0
Procedural

— ¢.g. surfaces of revolution, generalized cylinder

From volume data (medical images, etc.)

40



Triangle Meshes

What you’ve used so far in Assignment 0
Triangle represented by 3 vertices

Pro: simple, can be rendered directly
Cons: not smooth, needs many triangles to

This image is in the public domain. Source: Wikimedia Commons.
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http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png

Smooth Surfaces?

. P(t)=(1-t)* PI

+ 3t(1-t)> P2 ~ What's the
+3t(1-t) P3 dimensionality of a
4+ t3 P4 CU.I’VG? ID'
*P2 What about a
Ps  surface?
Py t=1
i=0

42



How to Build Them? Here’s an Idea

* P(w)=(1-uy* PI (Note! We relabeled
+ 311(1-11)2 P2 t to U)

+  3u?(1-u) P3
+ P4

43



How to Build Them? Here’s an Idea

* P(w)=(1-uy* PI (Note! We relabeled
+ 311(1-11)2 P2 t to U)

+  3u?(1-u) P3
+ P4
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How to Build Them? Here’s an Idea

* P(w)=(1-uy* PI (Note! We relabeled
+ 311(1-11)2 P2 t to U)

+  3u?(1-u) P3
+ P4
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How to Build Them? Here’s an Idea

* P(w)=(1-uy* PI (Note! We relabeled
tto U)

+  3u(l-u)* P2
+  3u?(1-u) P3
+ P4

46



Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!

47



Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!
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Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!

49



Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!

50



Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!
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Here's an ldea

* P(u,v)= (1-u* Pl(v)
+ 3u(l-u)* P2(v)
+  3u*(1-u) P3(v)
+ P4(v)
* Let’s make

the P1s move along
curves!

A 2D surface patch!

52



Tensor Product Béezier Patches

In the previous, Pis were just some curves
What if we make them Bézier curves?

53



Tensor Product Béezier Patches

In the previous, Pis were just some curves
What if we make them Bézier curves?
Each u=const. and v=const.

curve 1s a Bézier curve!
Note that the boundary
control points (except
corners) are NOT
interpolated!

54



Tensor Product Béezier Patches

A bicubic Bézier
surface

55



Tensor Product Bezier Patches

The “Control Mesh”
16 control points




Bicubics, Tensor Product

* P(u,v)= Bl(u) *P1(v)
+  B2(u) * P2(v)
+  B3(u) * P3(v)
+  B4(u) * P4(v)
 Pi(v)= BIl(v)* P11
+  B2(v) * P1,2
+  B3(v) * P1,3
+  B4(v) * P1,4

57



Bicubics, Tensor Product

* P(u,v)= Bl(u) *P1(v)
+  B2(u) * P2(v)

+  B3(u) * P3(v)

+  B4(u) * P4(v)
 Pi(v)= BIl(v)* P11

+  B2(v) * P1,2

+  B3(v) *P1,3

+  B4(v) * P1,4




16 control points P1,
16 2D basis functions Bi,)




Recap: Tensor Bezier Patches

Parametric surface P(u,v) 1s a bicubic polynomial
of two variables u & v

Defined by 4x4=16 control points P1,1, P1,2....
P4.4

Interpolates 4 corners, approximates others

Basis are product of two Bernstein polynomials:
Bl(u)B1(v); Bl(©)B2(v);... B4(u#)B4(v)

[LIE FI

s ) — —
— — — — — —
—

=~ -
L
~\~

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Questions?
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Tangents and Normals for Patches

P(u,v) 1s a 3D point specified by u, v
The partial derivatives OP/Ou and OP/0v are

3D vectors
Both are tangent to surface at P

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Tangents and Normals for Patches

P(u,v) 1s a 3D point specified by u, v
The partial derivatives OP/Ou and OP/0v are

3D vectors
Both are tangent to surface at P
Normal 1s perpendicular to both, 1.e.,

n = (0P/0u) x (0P/0v)

— e

~~

55557 n is usually not
unit, so must
normalize!

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Questions?
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Recap: Matrix Notation for Curves

e Cubic Bézier in matrix notation

point on curve

(2x1 vector) .
Canonical

P(t) = (;Eg) = “power basis”

-3 3 —1\ 1
1 T2 T3 X4 3 —6 3 t
Yy Y2 Yz Y4
“Geometry matrix”

0 3 -3 t2
o 0 1 ) t3
of control points P1..P4 “Spline ma.trix”
(2 x 4) (Bernstein)

o OO =

65



Hardcore: Matrix Notation for Patches

* Not required, P (’UJg ’U) — )
but convenient! 4 4
| Y Bi(u) | Pi;B;(v)
X coordinate of 1 —1
surface at (u,V) |/ -
Column vector of
£
P (’Uﬂj ’U) — basis functions (V)
€T €T
1,1 - - 1,4 Bi(v)
(B1(w),...,Bs(u)) : : :
T T
Row vector of 4,1 . T _4:4 B4 (U)
basis functions (1) 4x4 matrix of X coordinates

of the control points
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Hardcore: Matrix Notation for Patches

e Curves:
P(t)= G BT(t)
e Surfaces:

P (u,v) =T(u)" B' G* BT (v)

1

A separate 4x4 geometry

- matrix for X, y, z
* T = power basis Y

B = spline matrix
G = geometry matrix

67



Super Hardcore: Tensor Notation

* You can stack the Gx, Gy, Gz matrices 1nto a
geometry tensor of control points

— L.e., Gki,j = the kth coordinate of control point Pi,]
— A cube of numbers!

P*(u,v) = T"(u) B; ij B’ T™(v)

* “Definitely not required, but nice!
— See http://en.wikipedia.org/wiki/Multilinear algebra

68


http://en.wikipedia.org/wiki/Multilinear_algebra

Tensor Product B-Spline Patches

» Be¢zier and B-Spline curves are both cubics

— Can change between representations using matrices

* Consequently, you can build tensor product
surface patches out of B-Splines just as well

— Still 4x4 control points for each patch
— 2D basis functions are pairwise
. . . ity
products of B-Spline basis functions .
. 7AW
— Yes, simple! @ /{*\\ e
o "‘\ P4
!-. e‘f K‘:F .;’f ;

© Addison-Wesley. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/. 69
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Tensor Product Spline Patches

* Pros
— Smooth
— Defined by reasonably small set of points

* Cons
— Harder to render (usually converted to triangles)
— Tricky to ensure continuity at patch boundaries
« Extensions

— Rational splines: Splines in homogeneous coordinates
— NURBS: Non-Uniform Rational B-Splines

 Like curves: ratio of polynomials, non-uniform location of
control points, etc.

70



Utah Teapot: Tensor Bezier Splines

* Designed by Martin Newell

Image courtesy of Dhatfield on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

6.837 — Durand
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http://en.wikipedia.org/wiki/File:Utah_teapot_simple_2.png

Cool: Displacement Mapping

 Not all surfaces are smooth...

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Cool: Displacement Mapping

Not all surfaces are smooth...
“Paint” displacements on a smooth surface
— For example, 1n the direction of normal

Tessellate smooth patch into fine grid,
then add displacement D(u,v) to vertices

Heavily used in movies, more and more in games

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Displacement Mapping Example

—.—.>

This image is in the public domain. Source: Wikimedia Commons.



http://commons.wikimedia.org/wiki/File:Displacement_Mapping.jpg

Questions?
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Subdivision Surfaces

 Start with polygonal mesh

* Subdivide into larger number of polygons,
smooth result after each subdivision

— Lots of ways to do this.
e The Iimit surface 1s smooth!

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

6.837 — Durand
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Corner Cutting




Corner Cutting

1:3
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Corner Cutting




Corner Cutting
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Corner Cutting
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Corner Cutting

[



Corner Cutting

[



Corner Cutting
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Corner Cutting

The "limit" curve

/ A control point

The control
polygon

h
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Corner Cutting

The "limit" curve

It turns out corner cutting
(Chaikin’s Algorithm)
produces a quadratic B-
Spline curve! (Magic!)

/ A control point

The control
polygon

h
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Corner Cutting

The "limit" curve / A control p{}int

The control
polygon

h

(Well, not totally unexpected,
remember de Casteljau)

87



Subdivision Curves and Surfaces

e Idea: cut corners to smooth

* Add points and compute
weighted average of neighbors
* Same for surfaces

— Special case for irregular vertices
« vertex with more or less than 6 neighbors 1n a triangle mesh

Warren et al.

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Subdivision Curves and Surfaces

» Advantages
— Arbitrary topology
— Smooth at boundaries

© IEEE. All rights reserved. This content is excluded from

—_ Level Of detail, Scalable our Creative Commons license. For more information, see

http://ocw.mit.edu/help/fag-fair-use/.

— Simple representation
— Numerical stability, well-behaved meshes
— Code simplicity
 Little disadvantage:
— Procedural definition
— Not parametric

— Tricky at special vertices

Warren et al.
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Flavors of Subdivision Surfaces

+ Catmull-Clark . i)

— Quads and triangles

T
il
o

s 1]

— Generalizes bicubics to
arbitrary topology!

* Loop, Butterfly

Image courtesy of Romainbehar on Wikimedia Commons.
License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see

- Triangles http://ocw.mit.edu/help/faqg-fair-use/.

* Doo-Sabin, sqrt(3), biquartic...
— and a whole host of others

* Used everywhere in movie and game modeling!
» See http://www.cs.nyu.edu/~dzorin/s1ig00course/
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http://commons.wikimedia.org/wiki/File:Catmull-Clark_subdivision_of_a_cube.svg#file
http://www.cs.nyu.edu/~dzorin/sig00course/

Subdivision + Displacement

Original rough mesh Original mesh with Origi.ne.ll.mesh with
subdivision subdivision and
displacement

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Questions?
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Specialized Procedural Definitions

e Surfaces of
revolution

— Rotate given 2D
profile curve

* Generalized
cylinders

— Given 2D profile and
3D curve, sweep the
profile along the 3D
curve

* Assignment 1!
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Surface of Revolution

* 2D curve q(u) provides one dimension

— Note: works also with 3D curve

» Rotation R(V) provides 2nd dimension

<V
4 _
i s(u,v)=R(v)q(u)
q(u) . .
- where R is a matrix,
s(uvie _: 0 a vector,

and S 1s a point on
the surface
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General Swept Surfaces

» Trace out surface by moving a
profile curve along a trajectory.
— profile curve q(u) provides one dim
— trajectory ¢(u) provides the other

e Surface of revolution can be seen
as a special case where trajectory
1s a circle

s(u,v)=M(c(v))q(u)

where M is a matrix that depends on the trajectory ¢
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General Swept Surfaces

 How do we get M?
— Translation 1s easy, given by c¢(v)
— What about orientation?

 QOrientation options:

— Align profile curve with an axis.

— Better: Align profile curve with
frame that “follows” the curve

s(u,v)=M(c(v))q(u)

where M is a matrix that depends on the trajectory ¢
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Frames on Curves: Frenet Frame

* Frame defined by 1st
(tangent), 2nd and 3rd
derivatives of a 3D curve

* Looks like a good 1dea
for swept surfaces...

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

97


http://en.wikipedia.org/wiki/File:Frenet-Serret_moving_frame1.png/
http://ocw.mit.edu/help/faq-fair-use/

Frenet: Problem at Inflection!

* Normal flips!
» Bad to define a smooth swept surface

An inflection is a point
where curvature changes

/
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Smooth Frames on Curves

* Build triplet of vectors
— include tangent (it 1s reliable)
— orthonormal

— coherent over the curve

e Idea:

— use cross product to create orthogonal vectors

— exploit discretization of curve
— use previous frame to bootstrap orientation
— See Assignment 1 instructions!
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Normals for Swept Surfaces

* Need partial derivatives w.r.t.
both # and v

n = (0.8/0u) x (0.8/0v)

— Remember to normalize!

* One given by tangent of profile
curve, the other by tangent of
trajectory

s(u,v)=M(c(v))q(u)

where M is a matrix that depends on the trajectory ¢
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Questions?
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Implicit Surfaces

* Surface defined implicitly by a function

f(x,y, 2z) =0 (on surface) [ 2 9 L 1} o BEE

f(x,y, z) < 0 (inside) o

f(x,y, z) >0 (outside)

. f(x,y) =0 on curve

f(x,y) <0 inside

This image is in the public domain. Source: Wikimedia Commons.

f(x,y) > 0 outside
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http://commons.wikimedia.org/wiki/File:Heart3D.png

Implicit Surfaces

* Pros:
— Efficient check whether point is inside
— Efficient Boolean operations
— Can handle weird topology for animation
— Easy to do sketchy modeling

e Cons:

— Does not allow us to easily generate a

point on the surface \\/

Image courtesy of Anders Sandberg on Wikimedia Commons. License: CC-BY-
SA. This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/fag-fair-use/.

103


http://commons.wikimedia.org/wiki/File:Scherk%27s_second_surface.png
http://ocw.mit.edu/help/faq-fair-use/

Questions?
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Point Set Surfaces

* (G1ven only a noisy 3D point cloud (no
connectivity), can you define a reasonable surface
using only the points?

— Laser range scans only give you points,
so this 1s potentially useful =

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.

From Point Set Surfaces, (Alexa et al. 2001).
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http://ocw.mit.edu/help/faq-fair-use/

. From Point Set Surfaces, used
O I n e u a Ce S with permission from ACM, Inc

Alexa et al. 2001

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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http://ocw.mit.edu/help/faq-fair-use/
http://www.cs.tau.ac.il/~dcor/online_papers/papers/points_set_vis01.pdf

Point Set Surfaces

* Modern take on implicit surfaces

* Cool math: Moving Least Squares (MLY),
partitions of unity, etc.

£00¢ 'Te 19 3¥BIYO

© ACM, Inc. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

* Not required 1n this class, but nice to know.
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http://ocw.mit.edu/help/faq-fair-use/
http://doi.acm.org/10.1145/882262.882293
asin33
Line


Questions?
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That's All for Today

Further reading
Buss, Chapters 7 & 8

Subvision curves and surfaces


http://www.cs.nyu.edu/~dzorin/sig00course/
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