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• P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

Cubic Bezier Splines 
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• For Bézier curves, the  
    basis polynomials/vectors 
    are Bernstein polynomials 
 
• For cubic Bezier curve: 
    B1(t)=(1-t)³          B2(t)=3t(1-t)² 
    B3(t)=3t²(1-t) B4(t)=t³ 
    (careful with indices, many authors start at 0) 

• Defined for any degree 

Bernstein Polynomials 
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• Geometry: control points coordinates assembled 
into a matrix (P1, P2, …, Pn+1) 

• Power basis:  the monomials 1, t, t2, ... 
• Cubic Bézier: 

General Spline Formulation 
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Questions? 
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• What if we want to transform each point on the 
curve with a linear transformation M?  

Linear Transformations & Cubics 

P’(t)= M 
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• What if we want to transform each point on the 
curve with a linear transformation M? 
– Because everything is linear, it is the same as 

transforming only the control points 

Linear Transformations & Cubics 

P’(t)= M 

= M 
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• Homogeneous coordinates also work 
– Means you can translate, rotate, shear, etc. 
– Note though that you need to normalize P’ by 1/w’ 

Affine Transformations 

P’(t)= M 

= M 

1 1 1 1 

1 1 1 1 
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Questions? 
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• Differential Properties of Curves & Continuity 
• B-Splines 
• Surfaces 

– Tensor Product Splines 
– Subdivision Surfaces 
– Procedural Surfaces 
– Other  

The Plan for Today 
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Differential Properties of Curves 

• Motivation 
– Compute normal for surfaces 
– Compute velocity for animation  
– Analyze smoothness 

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• First derivative w.r.t. t 
• Can you compute this for Bezier curves? 

P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

• You know how to 
differentiate polynomials... 

Velocity 
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Velocity 

Sanity check: t=0; t=1 

• First derivative w.r.t. t 
• Can you compute this for Bezier curves? 

P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

• P’(t) = -3(1-t)2  P1  

 + [3(1-t) 2 -6t(1-t)] P2 

 + [6t(1-t)-3t 2]        P3 

 + 3t 2    P4 
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• Differentiation is a linear operation 
– (f+g)’=f’+g’ 
– (af)’=a f’ 

• This means that the derivative of the basis is 
enough to know the derivative of any spline.  

• Can be done with matrices 
– Trivial in monomial basis 
– But get lower-order polynomials 

Linearity? 
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• The tangent to the curve P(t) can be defined as  
T(t)=P’(t)/||P’(t)|| 
– normalized velocity, ||T(t)|| = 1 

• This provides us with one orientation for swept 
surfaces later 

Tangent Vector 
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Courtesy of Seth Teller.



• Derivative of unit tangent 
– K(t)=T’(t) 
– Magnitude ||K(t)|| is constant for a circle 
– Zero for a straight line 

• Always orthogonal to tangent, ie. 

Curvature Vector 
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• K is zero for a line, constant for circle 
– What constant? 1/r 

• 1/||K(t)|| is the radius of the circle that touches 
P(t) at t and has the same curvature as the curve 

Geometric Interpretation 
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• Normalized curvature: T’(t)/||T’(t)|| 

Curve Normal 
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Questions? 
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• C0 = continuous 
– The seam can be a sharp kink 

• G1 = geometric continuity 
– Tangents point to the same 

direction at the seam 
• C1 = parametric continuity 

– Tangents are the same at the 
seam, implies G1 

• C2 = curvature continuity 
– Tangents and their derivatives 

are the same 

Orders of Continuity 

C0 

G1 

C1 
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• G1 = geometric continuity 
– Tangents point to the same 

direction at the seam 
– good enough for modeling 

• C1 = parametric continuity 
– Tangents are the same at the 

seam, implies G1 
– often necessary for animation 

Orders of Continuity 

G1 

C1 
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Connecting Cubic Bézier Curves 

• How can we guarantee C0 continuity? 
• How can we guarantee G1 continuity?  
• How can we guarantee C1 continuity? 
• C2 and above gets difficult 
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Connecting Cubic Bézier Curves 
• Where is this curve 
– C0 continuous? 
– G1 continuous? 
– C1 continuous? 
• What’s the relationship 

between:  
– the # of control points, and 

the # of cubic Bézier 
subcurves? 
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Questions? 
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
Courtesy of Seth Teller.  
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
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Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
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6.837 – Durand  

Cubic B-Splines 

• ≥ 4 control points 
• Locally cubic 

– Cubics chained together, again. 
• Curve is not constrained to pass through any 

control points 
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Cubic B-Splines: Basis 

B1 B4 

B2 B3 

These sum to 1, too! 

A B-Spline curve is also 
bounded by the convex  
hull of its control points.  

30



B1 B4 

B2 B3 

3
1 

Cubic B-Splines: Basis 
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B1 B4 

B2 B3 

3
2 

Cubic B-Splines: Basis 
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Cubic B-Splines 

• Local control (windowing) 
• Automatically C2, and no need to match tangents! 

Courtesy of Seth Teller.  Used with permission. 
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B-Spline Curve Control Points 

Default B-Spline B-Spline with 
derivative 

discontinuity 

B-Spline which passes 
through  

end points 
Repeat interior control 

point Repeat end points 
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Bézier ≠ B-Spline 

Bézier B-Spline 

But both are cubics, so one can be converted into the other! 
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Converting between Bézier & BSpline 

 
• Simple with the basis matrices! 

– Note that this only works for 
a single segment of 4 
control points 

• P(t) = G B1 T(t) = 
G B1 (B2-1B2) T(t)= 
(G B1 B2-1) B2 T(t) 

• G B1 B2-1 are the control points 
for the segment in new basis. 

36



MIT EECS 6.837, Popović 

Converting between Bézier & B-Spline 

original 
control 

points as 
Bézier 

original 
control 
points as 
B-Spline 

new Bézier 
control 

points to 
match     

B-Spline 

new 
BSpline 
control 
points to 
match  
Bézier 
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• Rational cubics 
– Use homogeneous coordinates, just add w ! 

• Provides an extra weight parameter to control points 
 

• NURBS:  Non-Uniform Rational B-Spline 
– non-uniform = different spacing between the 

blending functions, a.k.a. “knots” 
– rational = ratio of cubic polynomials 

(instead of just cubic) 
• implemented by adding the homogeneous coordinate w into 

the control points. 

NURBS (Generalized B-Splines) 
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Questions? 
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• Triangle meshes 
– Surface analogue of polylines, this is what GPUs 

draw 
• Tensor Product Splines 

– Surface analogue of spline curves 
• Subdivision surfaces 

•   Implicit surfaces, e.g. f(x,y,z)=0 
• Procedural 

– e.g. surfaces of revolution, generalized cylinder 
• From volume data (medical images, etc.) 

Representing Surfaces 
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• What you’ve used so far in Assignment 0 
• Triangle represented by 3 vertices 
• Pro: simple, can be rendered directly 
• Cons: not smooth, needs many triangles to 

approximate smooth surfaces (tessellation) 
 

Triangle Meshes 

This image is in the public domain. Source: Wikimedia Commons.
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http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png


• P(t) =  (1-t)³  P1 
  + 3t(1-t)² P2  
  + 3t²(1-t)  P3 
  + t³  P4  

Smooth Surfaces? 

What’s the 
dimensionality of a 

curve? 1D! 
 

What about a 
surface? 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4  

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4  

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4   

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u) = (1-u)³  P1 
  + 3u(1-u)² P2  
  + 3u²(1-u) P3 
  + u³  P4   

 

How to Build Them? Here’s an Idea 

(Note! We relabeled 
t to u) 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 
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• P(u, v) =  (1-u)³  P1(v) 
  + 3u(1-u)²       P2(v)  
  + 3u²(1-u)  P3(v) 
  + u³  P4(v)  

• Let’s make 
the Pis move along 
curves! 

Here’s an Idea 

v=0 v=1 v=1/3 
v=2/3 

A 2D surface patch! 
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• In the previous, Pis were just some curves 
• What if we make them Bézier curves? 

Tensor Product Bézier Patches 
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• In the previous, Pis were just some curves 
• What if we make them Bézier curves? 
• Each u=const. and v=const.                             

curve is a Bézier curve! 
• Note that the boundary                                  

control points (except                                   
corners) are NOT                                     
interpolated! 

Tensor Product Bézier Patches 

v=0 v=1 v=2/3 
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Tensor Product Bézier Patches 

A bicubic Bézier 

surface 
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Tensor Product Bézier Patches 

The “Control Mesh” 
16 control points 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 

P1,1 P1,2 
P1,3 

P1,4 

P2,1 P2,2 
P2,3 

P2,4 

P3,1 

P3,2 

P3,3 
P3,4 

P4,1 
P4,2 

P4,3 
P4,4 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 
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• P(u,v) =   B1(u) * P1(v) 
  + B2(u) * P2(v)  
  + B3(u) * P3(v) 
  + B4(u) * P4(v) 

• Pi(v) =    B1(v) * Pi,1 
      +      B2(v) * Pi,2 
       +      B3(v) * Pi,3 
      +      B4(v) * Pi,4 

 

Bicubics, Tensor Product 

16 control points Pi,j 
16 2D basis functions Bi,j 
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• Parametric surface P(u,v) is a bicubic polynomial 
of two variables u & v 

• Defined by 4x4=16 control points P1,1, P1,2.... 
P4,4 

• Interpolates 4 corners, approximates others 
• Basis are product of two Bernstein polynomials: 

B1(u)B1(v); B1(u)B2(v);... B4(u)B4(v) 
 

Recap: Tensor Bézier Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 60
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Questions? 
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• P(u,v) is a 3D point specified by u, v 

• The partial derivatives                 and                are 
3D vectors 
• Both are tangent to surface at P 

 

Tangents and Normals for Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• P(u,v) is a 3D point specified by u, v 

• The partial derivatives                 and                are 
3D vectors 
• Both are tangent to surface at P 
• Normal is perpendicular to both, i.e., 

 
 

n is usually not 

unit, so must 

normalize! 

Tangents and Normals for Patches 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 63
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Questions? 
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• Cubic Bézier in matrix notation 

Recap: Matrix Notation for Curves 

point on curve 
(2x1 vector) 

“Geometry matrix” 
of control points P1..P4 

(2 x 4) 

“Spline matrix” 
(Bernstein) 

Canonical 
“power basis” 
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Hardcore: Matrix Notation for Patches 

x coordinate of 
surface at (u,v) 

Row vector of 
basis functions (u) 

Column vector of 
basis functions (v) 

4x4 matrix of x coordinates 
of the control points 

• Not required, 
but convenient! 
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• Curves: 
 
 
• Surfaces: 
 
 
 
• T = power basis 

B = spline matrix 
G = geometry matrix 

Hardcore: Matrix Notation for Patches 

A separate 4x4 geometry 
matrix for x, y, z 
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• You can stack the Gx, Gy, Gz matrices into a 
geometry tensor of control points 
– I.e., Gki,j = the kth coordinate of control point Pi,j 
– A cube of numbers! 

 
 
• “Definitely not required, but nice! 

– See http://en.wikipedia.org/wiki/Multilinear_algebra 

Super Hardcore: Tensor Notation 

68
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Tensor Product B-Spline Patches 
• Bézier and B-Spline curves are both cubics 

– Can change between representations using matrices 
 

• Consequently, you can build tensor product 
surface patches out of B-Splines just as well 
– Still 4x4 control points for each patch 
– 2D basis functions are pairwise 

products of B-Spline basis functions 
– Yes, simple! 

© Addison-Wesley. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/. 69
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• Pros 
– Smooth  
– Defined by reasonably small set of points 

• Cons 
– Harder to render (usually converted to triangles) 
– Tricky to ensure continuity at patch boundaries 

• Extensions 
– Rational splines: Splines in homogeneous coordinates 
– NURBS: Non-Uniform Rational B-Splines 

• Like curves: ratio of polynomials, non-uniform location of 
control points, etc. 

Tensor Product Spline Patches 
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6.837 – Durand  

Utah Teapot: Tensor Bézier Splines 

• Designed by Martin Newell 

Image courtesy of Dhatfield on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Not all surfaces are smooth... 

Cool: Displacement Mapping 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Not all surfaces are smooth... 
• “Paint” displacements on a smooth surface 

– For example, in the direction of normal 
• Tessellate smooth patch into fine grid, 

then add displacement D(u,v) to vertices 
• Heavily used in movies, more and more in games 

Cool: Displacement Mapping 

© Addison-Wesley. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 73
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Displacement Mapping Example 

Smooth base surface Displaced Surface 
This image is in the public domain. Source: Wikimedia Commons.

74

http://commons.wikimedia.org/wiki/File:Displacement_Mapping.jpg


Questions? 
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6.837 – Durand  

Subdivision Surfaces 

• Start with polygonal mesh 
• Subdivide into larger number of polygons, 

smooth result after each subdivision 
– Lots of ways to do this. 

• The limit surface is smooth! 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 

79



Corner Cutting 
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 
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Corner Cutting 

∞ 
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Corner Cutting 
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Corner Cutting 

It turns out corner cutting 

(Chaikin’s Algorithm) 

produces a quadratic B-

Spline curve! (Magic!) 
86



Corner Cutting 

(Well, not totally unexpected, 

remember de Casteljau) 
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• Idea: cut corners to smooth 
• Add points and compute  

weighted average of neighbors 
• Same for surfaces 

– Special case for irregular vertices  
• vertex with more or less than 6 neighbors in a triangle mesh 

Subdivision Curves and Surfaces 
W

ar
re

n 
et

 a
l. 

 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

88

http://ocw.mit.edu/help/faq-fair-use/


• Advantages 
– Arbitrary topology 
– Smooth at boundaries 
– Level of detail, scalable 
– Simple representation 
– Numerical stability, well-behaved meshes 
– Code simplicity 

• Little disadvantage: 
– Procedural definition 
– Not parametric 
– Tricky at special vertices 

W
ar

re
n 

et
 a

l. 
 

Subdivision Curves and Surfaces 

© IEEE. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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• Catmull-Clark 
– Quads and triangles 
– Generalizes bicubics to 

arbitrary topology! 
• Loop, Butterfly 

– Triangles 
• Doo-Sabin, sqrt(3), biquartic... 

– and a whole host of others 
• Used everywhere in movie and game modeling! 
• See http://www.cs.nyu.edu/~dzorin/sig00course/ 

Flavors of Subdivision Surfaces 

Image courtesy of Romainbehar on Wikimedia Commons.
License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Subdivision + Displacement 

Original rough mesh Original mesh with  
subdivision 

Original mesh with 
subdivision and 
displacement 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Questions? 
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Specialized Procedural Definitions 

• Surfaces of 
revolution 
– Rotate given 2D 

profile curve 
• Generalized 

cylinders 
– Given 2D profile and 

3D curve, sweep the 
profile along the 3D 
curve 

• Assignment 1! 
93



Surface of Revolution 

v 

s(u,v)=R(v)q(u) 

where R is a matrix, 
q a vector, 
and s is a point on 
the surface 

s(u,v) 

• 2D curve q(u) provides one dimension 
– Note: works also with 3D curve 

• Rotation R(v) provides 2nd dimension 
 

94



• Trace out surface by moving a  
profile curve along a trajectory. 
– profile curve q(u) provides one dim 
– trajectory c(u) provides the other 

• Surface of revolution can be seen  
as a special case where trajectory  
is a circle 

General Swept Surfaces 

where M is a matrix that depends on the trajectory c 

q 

c 

s 

s(u,v)=M(c(v))q(u) 
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• How do we get M? 
– Translation is easy, given by c(v) 

– What about orientation? 
• Orientation options: 

– Align profile curve with an axis. 
– Better: Align profile curve with 

frame that “follows” the curve 

General Swept Surfaces 

where M is a matrix that depends on the trajectory c 

s(u,v)=M(c(v))q(u) 

q 

c 

s 
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• Frame defined by 1st 
(tangent), 2nd and 3rd  
derivatives of a 3D curve 

• Looks like a good idea 
for swept surfaces... 

Frames on Curves: Frenet Frame 

Image courtesy of Kristian Molhave on Wikimedia Commons. License: CC-
BY-SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Normal flips! 
• Bad to define a smooth swept surface 

Frenet: Problem at Inflection! 

An inflection is a point 

where curvature changes 

sign 
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• Build triplet of vectors 
– include tangent (it is reliable) 
– orthonormal 
– coherent over the curve 

• Idea:  
– use cross product to create orthogonal vectors 
– exploit discretization of curve  
– use previous frame to bootstrap orientation 
– See Assignment 1 instructions! 

Smooth Frames on Curves 
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• Need partial derivatives w.r.t. 
both u and v 

 

– Remember to normalize! 

• One given by tangent of profile 
curve, the other by tangent of                             
trajectory 

Normals for Swept Surfaces 

where M is a matrix that depends on the trajectory c 

s(u,v)=M(c(v))q(u) 

q 

c 

s 
s s 
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Questions? 
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Implicit Surfaces 

• Surface defined implicitly by a function 

This image is in the public domain. Source: Wikimedia Commons.
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http://commons.wikimedia.org/wiki/File:Heart3D.png


• Pros:  
– Efficient check whether  point is inside 
– Efficient Boolean operations 
– Can handle weird topology for animation 
– Easy to do sketchy modeling 

• Cons: 
– Does not allow us to easily generate a  
point on the surface 

Implicit Surfaces 

Image courtesy of Anders Sandberg on Wikimedia Commons. License: CC-BY-
SA. This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
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http://ocw.mit.edu/help/faq-fair-use/
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Point Set Surfaces 

• Given only a noisy 3D point cloud (no 
connectivity), can you define a reasonable surface 
using only the points? 
– Laser range scans only give you points, 

so this is potentially useful 

From Point Set Surfaces, (Alexa et al. 2001).

© IEEE. All rights reserved. This content is excluded from our Creative Commons

license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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http://ocw.mit.edu/help/faq-fair-use/


Point Set Surfaces 
Alexa et al. 2001 

From Point Set Surfaces, used 
with permission from ACM, Inc 

© IEEE. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 106

http://ocw.mit.edu/help/faq-fair-use/
http://www.cs.tau.ac.il/~dcor/online_papers/papers/points_set_vis01.pdf


• Modern take on implicit surfaces 
• Cool math: Moving Least Squares (MLS), 

partitions of unity, etc. 
 

 

 

 

 
• Not required in this class, but nice to know. 

Point Set Surfaces 
O

htake et al. 2003

From Multi-Level Partition 
of Unity Implicits

© ACM, Inc.  All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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http://ocw.mit.edu/help/faq-fair-use/
http://doi.acm.org/10.1145/882262.882293
asin33
Line
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0
9 

6.837 – Durand  

That’s All for Today 

• Further reading 
– Buss, Chapters 7 & 8 

 

• Subvision curves and surfaces 
– http://www.cs.nyu.edu/~dzorin/sig00course/ 
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