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• Anything on your mind 
concerning Assignment 0? 

• Any questions about the course? 
 
• Assignment 1 (Curves & Surfaces)  
• Linear algebra review session 
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Before We Begin 



• Smooth curves in 2D 
– Useful in their own right 
– Provides basis for surface 

editing 
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Today 

This image is in the public domain
Source:Wikimedia Commons

http://commons.wikimedia.org/wiki/File:Dragon_Vector_Art.svg


• Polylines 
– Sequence of vertices connected 

by straight line segments 
– Useful, but not for smooth curves 
– This is the representation 

that usually gets drawn in the end 
(a curve is converted into a polyline) 

• Smooth curves 

– How do we specify them? 
– A little harder (but not too much) 
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Modeling 1D Curves in 2D 



• A type of smooth curve 
in 2D/3D 

• Many different uses 
– 2D illustration (e.g., Adobe Illustrator) 
– Fonts (e.g., PostScript, TrueType) 
– 3D modeling 
– Animation: trajectories 

• In general: interpolation 
and approximation 
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Splines 

ACM © 1987 “Principles of 
traditional animation applied to 3D 

computer animation” 

© ACM. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Demo 
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How Many Dimensions? 
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How Many Dimensions? 

This curve lies on the 2D plane, 

but is itself 1D. 
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How Many Dimensions? 

This curve lies on 

the 2D plane, 

but is itself 1D. 

You can just as well 

define 1D curves in 

3D space. 
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Two Definitions of a Curve 

• A continuous 1D set of points in 2D (or 3D) 
• A mapping from an interval S onto the plane  

– That is, P(t) is the point of the curve at parameter t 
 

 
 
• Big differences 

– It is easy to generate points on the curve from the 2nd 
– The second definition can describe trajectories, the 

speed at which we move on the curve 



• User specifies control points 

• We will interpolate the control points 
by a smooth curve 
– The curve is completely 

determined by the control points. 
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General Principle of Splines 
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Physical Splines 
See http://en.w

ikipedia.org/w
iki/Flat_spline 

Courtesy of The Antique Boat Museum.

http://en.wikipedia.org/wiki/Flat_spline
http://en.wikipedia.org/wiki/Flat_spline
asin33
Line
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Two Application Scenarios   

• Approximation/interpolation 
– We have “data points”, how can we interpolate? 
– Important in many applications 

 
• User interface/modeling 

– What is an easy way to specify      
a smooth curve? 
– Our main perspective today. 

Image courtesy of SaphireS on Wikimedia Commons. License: CC-BY-
SA. This content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:Blender3D_UVTexTut2.png
http://ocw.mit.edu/help/faq-fair-use/
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Questions? 



• Specified by a few control points 
– Good for UI 
– Good for storage 

 

• Results in a smooth parametric curve P(t) 
– Just means that we specify x(t) and y(t) 
– In practice: low-order polynomials, chained together 
– Convenient for animation, where t is time 
– Convenient for tessellation because we can discretize 

t and approximate the curve with a polyline 
15 

Splines 
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6.837 – Durand 

Tessellation 

• It is easy to rasterize mathematical line segments 
into pixels 
– OpenGL and the graphics hardware can do it for you 

• But polynomials and other parametric functions 
are harder  

Image courtesy of Phrood on Wikimedia Commons. License: CC-BY-SA.This content is excluded from our
Creative Commons license. For moreinformation, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:Rastervrp.png
http://ocw.mit.edu/help/faq-fair-use/
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Tessellation 

t0 

t1 
t2 

tn 

 

To display P(t),  

discretize it at discrete ts  
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Tessellation 

t0 

t1 
t2 

tn 

It’s clear that adding 

more points will get 

us closer to the 

curve. 
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Tessellation 

t0 

t1 
t2 

tn 

It’s clear that adding 

more points will get 

us closer to the 

curve. 



• Interpolation 
– Goes through all specified points 
– Sounds more logical 

 

• Approximation 
– Does not go through all points 
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Interpolation vs. Approximation 

Interpolation 

Approximation 



• Interpolation 
– Goes through all specified points 
– Sounds more logical 
– But can be more unstable 

• Approximation 
– Does not go through all points 
– Turns out to be convenient 

 

• We will do something  
in between. 
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Interpolation vs. Approximation 

Interpolation 

Approximation 
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Questions? 



• User specifies 4 control points P1 ... P4 
• Curve goes through (interpolates) the ends P1, P4 
• Approximates the two other ones 
• Cubic polynomial 
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Cubic Bézier Curve 



24 

Cubic Bézier Curve 
That is, 

• P(t) =  (1-t)³  P1 
  + 3t(1-t)²     P2  
  + 3t²(1-t)      P3 
  + t³          P4  
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Cubic Bézier Curve 

Verify what happens  
for t=0 and t=1 

• P(t) =  (1-t)³  P1 
  + 3t(1-t)²     P2  
  + 3t²(1-t)      P3 
  + t³          P4  



• 4 control points 
• Curve passes through first & last control point 
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Cubic Bézier Curve 

Courtesy of Seth Teller. 
Used with permission. 



• 4 control points 
• Curve passes through first & last control point 
• Curve is tangent at P1 to (P1-P2) and at P4 to (P4-P3) 
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Cubic Bézier Curve 

A Bézier curve is 
bounded by the 

convex hull of its 
control points.  
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Questions? 



• Explanation 1: 
– Magic! 

• Explanation 2:  
– These are smart weights that describe the influence of 

each control point 
• Explanation 3: 

– It is a linear combination of basis polynomials. 
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Why Does the Formula Work? 



• P(t) is a weighted 
combination of the 4 
control points with 
weights: 
– B1(t)=(1-t)³ 
– B2(t)=3t(1-t)² 
– B3(t)=3t²(1-t) 
– B4(t)=t³ 

• First, P1 is the most 
influential point, 
then P2, P3, and P4 
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Weights  
P(t) =  (1-t)³  P1 
 + 3t(1-t)²   P2  
 + 3t²(1-t)  P3 
 + t³  P4  



• P2 and P3 never have full 
influence 
– Not interpolated! 
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Weights 
P(t) =  (1-t)³  P1 
 + 3t(1-t)²   P2  
 + 3t²(1-t)  P3 
 + t³  P4  
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Questions? 



• Explanation 1: 
– Magic! 

• Explanation 2:  
– These are smart weights that describe the influence of 

each control point 
• Explanation 3: 

– It is a linear combination of basis polynomials. 

– The opposite perspective:  

control points are the weights of polynomials!!! 
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Why Does the Formula Work? 



• Understand relationships between types of splines 
– Conversion 

• Express what happens when a spline curve is 
transformed by an affine transform  
(rotation, translation, etc.)  

• Cool simple example of non-trivial vector space 
• Important to understand for advanced methods 

such as finite elements 
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Why Study Splines as Vector Space? 



• In 3D, each vector has three components x, y, z 

• But geometrically, each vector is actually the sum 
 
 
• i, j, k  are basis vectors 
 
• Vector addition: just add components 
• Scalar multiplication: just multiply components 
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Usual Vector Spaces 

i 

j 

k 



• Polynomials 
• Can be added: just add the coefficients 
 
 
 
• Can be multiplied by a scalar: multiply the 

coefficients 

36 

Polynomials as a Vector Space 



• Polynomials 
 
 
 
 
• In the polynomial vector space, {1, t, ..., tn} are 

the basis vectors, a0, a1, ..., an are the 
components 
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Polynomials as a Vector Space 
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Questions? 



 
 
• Closed under addition & scalar multiplication 

– Means the result is still a cubic polynomial (verify!) 
• Cubic polynomials also compose a vector space 

– A 4D subspace of the full space of polynomials 
• The x and y coordinates of cubic Bézier curves 

belong to this subspace as functions of t. 
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Subset of Polynomials: Cubic 



More precisely: 
What’s a basis? 
 

• A set of “atomic” vectors 
– Called basis vectors 

– Linear combinations of basis vectors span the space 
• i.e. any cubic polynomial is a sum of those basis cubics 

• Linearly independent 
– Means that no basis vector can be obtained from the 

others by linear combination 
• Example: i, j, i+j is not a basis (missing k direction!) 
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Basis for Cubic Polynomials 

i 

j 

k In 3D 



 

 

 

• Any cubic polynomial is a 
linear combination of these: 

a0+a1t+a2t2+a3t3 = a0*1+a1*t+a2*t2+a3*t3 

 

• They are linearly independent 
– Means you cannot write any of the four monomials as 

a linear combination of the others. (You can try.) 
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Canonical Basis for Cubics 

1 
t 
t2 
t3 



• For example: 
– {1,  1+t,  1+t+t2, 1+t-t2+t3} 
– {t3,  t3+t2,  t3+t,  t3+1} 

 
 
• These can all be obtained from 

by linear combination 
• Infinite number of possibilities, just like you have 

an infinite number of bases to span R2 
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Different Basis  
2D examples 



• For example: 
1,  1+t,  1+t+t², 1+t-t²+t³ 

t³,  t³+t²,  t³+t,  t³+1 
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Matrix-Vector Notation 

Change-of-basis 
matrix 

“Canonical” 
monomial 

basis 

These 

relationships 

hold for each 

value of t 



• For example: 
1,  1+t,  1+t+t2, 1+t-t2+t3 

t3,  t3+t2,  t3+t,  t3+1 
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Matrix-Vector Notation 

Change-of-basis 
matrix 

“Canonical” 
monomial 

basis 

Not any matrix will do! 

If it’s singular, the basis 

set will be linearly 

dependent, i.e., 

redundant and 

incomplete. 



• For Bézier curves, the  
    basis polynomials/vectors 
    are Bernstein polynomials 
 
• For cubic Bezier curve: 
    B1(t)=(1-t)³ B2(t)=3t(1-t)² 
    B3(t)=3t²(1-t) B4(t)=t³ 
    (careful with indices, many authors start at 0) 

• Defined for any degree 
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Bernstein Polynomials 
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Properties of Bernstein Polynomials 

•          for all  0    t     1 

• Sum to 1 for every t 
– called partition of unity 

• These two together are the 
reason why Bézier curves  
lie within convex hull 

• B1(0) =1 
– Bezier curve interpolates P1 

• B4(1) =1 
– Bezier curve interpolates P4 



• P(t) = P1B1(t) + P2B2(t) + P3B3(t) + P4B4(t) 
– Pi are 2D points (xi, yi) 

• P(t) is a linear combination of the control points 
with weights equal to Bernstein polynomials at t 

• But at the same time, the control points  
(P1, P2, P3, P4) are the “coordinates” of the 
curve in the Bernstein basis 
– In this sense, specifying a Bézier curve with control 

points is exactly like specifying a 2D point with its x 
and y coordinates. 
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Bézier Curves in Bernstein Basis 



• The plane where the curve lies, a 2D vector space  
• The space of cubic polynomials, a 4D space 
• Don’t be confused! 
• The 2D control points can be replaced by 3D 

points – this yields space curves. 
– The math stays the same, just add z(t). 

• The cubic basis can be extended to higher-order 
polynomials 
– Higher-dimensional vector space 
– More control points 
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Two Different Vector Spaces!!! 
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Questions? 



• How do we go from Bernstein basis  
to the canonical monomial basis  
1, t, t², t³ and back? 

– With a matrix! 
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Change of Basis 

New basis vectors 

• B1(t)=(1-t)³ 
• B2(t)=3t(1-t)² 
• B3(t)=3t²(1-t) 
• B4(t)=t³ 
 



Cubic Bernstein: 
• B1(t)=(1-t)³ 
• B2(t)=3t(1-t)² 
• B3(t)=3t²(1-t) 
• B4(t)=t³ 
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How You Get the Matrix 
Expand these out 

and collect powers of t. 
The coefficients are the entries 

in the matrix B! 



 
 
• Given B1...B4, how to get back 

to canonical 1, t, t², t³ ? 
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Change of Basis, Other Direction 



 
 
• Given B1...B4, how to get back 

to canonical 1, t, t², t³ ? 
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Change of Basis, Other Direction 

That’s right, with the inverse matrix! 



• Cubic polynomials form a 4D vector space. 
• Bernstein basis is canonical for Bézier. 

– Can be seen as influence function of data points 
– Or data points are coordinates of the curve in the 

Bernstein basis 
• We can change between basis with matrices. 
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Recap 
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Questions? 
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More Matrix-Vector Notation 

matrix of 
control points (2 x 4) 

Bernstein polynomials 
(4x1 vector) 

point on curve 
(2x1 vector) 
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Flashback 
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Cubic Bézier in Matrix Notation 

point on curve 
(2x1 vector) 

“Geometry matrix” 
of control points P1..P4 

(2 x 4) 

“Spline matrix” 
(Bernstein) 

Canonical 
monomial basis 



• Geometry: control points coordinates assembled 
into a matrix (P1, P2, …, Pn+1) 

• Spline matrix: defines the type of spline 
– Bernstein for Bézier  

• Power basis:  the monomials (1, t, ..., tn) 
• Advantage of general formulation 

– Compact expression 
– Easy to convert between types of splines 
– Dimensionality (plane or space) does not really matter 
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General Spline Formulation 
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Questions? 



• What if you want more control? 
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A Cubic Only Gets You So Far 



• > 4 control points 
• Bernstein Polynomials as the basis functions 

– For polynomial of order n, the ith basis function is  
 
 
 
• Every control point affects the entire curve  

– Not simply a local effect  
– More difficult to control for modeling 

• You will not need this in this class 
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Higher-Order Bézier Curves 

Courtesy of Seth Teller.  Used with 
permission. 



• Can we split a Bezier curve in the middle into 
two Bézier curves? 
– This is useful for adding detail  
– It avoids using nasty higher-order curves 
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Subdivision of a Bezier Curve 

? 



• Can we split a Bezier curve in the middle into 
two Bézier curves? 
– The resulting curves are again a cubic 

(Why? A cubic in t is also a cubic in 2t) 
– Hence it must be representable using the Bernstein 

basis. So yes, we can! 
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Subdivision of a Bezier Curve 

? 

t=1 t=0.5 t=0 

t2=2t-0.5 t1=2t 

cubic 



• Take the middle point of each of the 3 segments 
• Construct the two segments joining them 
• Take the middle of those two new segments 
• Join them  
• Take the middle point P’’’ 
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De Casteljau Construction 

P’1 

P’2 

P’’1 

P’’’ P’3 
P’’2 



• The two new curves are defined by 
– P1, P’1, P’’1, and P’’’ 
– P’’’, P’’2, P’3, and P4 

• Together they exactly replicate the original 
curve! 
– Originally 4 control points, now 7 (more control) 
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Result of Split in Middle 

P’1 

P’2 

P’’1 

P’’’ P’3 
P’’2 

P4 
P1 



• Do we actually get the middle point? 
• B1(t)=(1-t)³ 
• B2(t)=3t(1-t)² 
• B3(t)=3t²(1-t) 
• B4(t)=t³ 
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Sanity Check 

✔ 

P’1 

P’2 

P’’1 

P’’’ P’3 
P’’2 



• Actually works to construct a point at any t, not just 
0.5 

• Just subdivide the segments with ratio (1-t), t 
(not in the middle) 
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De Casteljau Construction 

t 

t 

t t 
t 

t 



• Bezier curves: piecewise polynomials 
• Bernstein polynomials 
• Linear combination of basis functions 

– Basis: control points  weights: polynomials 
– Basis: polynomials  weights: control points  

• Subdivision by de Casteljau algorithm 
• All linear, matrix algebra 
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Recap 



• Bezier curves: piecewise polynomials 
• Bernstein polynomials 
• Linear combination of basis functions 

– Basis: control points  weights: polynomials 
– Basis: polynomials  weights: control points  

• Subdivision by de Casteljau algorithm 
• All linear, matrix algebra 
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Recap 



vectorportal.com 

That’s All for Today, Folks 

• Further reading 
– Buss, Chapters 7 and 8 

 

– Fun stuff to know about function/vector spaces 
• http://en.wikipedia.org/wiki/Vector_space 
• http://en.wikipedia.org/wiki/Functional_analysis 
• http://en.wikipedia.org/wiki/Function_space 

 

• Inkscape is an open source vector drawing 
program for Mac/Windows. Try it out! 
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http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Functional_analysis
http://en.wikipedia.org/wiki/Function_space
http://www.inkscape.org/
http://www.vectorportal.com/
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