
6.837 – Durand

Welcome to
6.837 Computer Graphics

Wojciech Matusik

MIT CSAIL

Picture: Alexis Rufatt
Image courtesy of Nicolas Desprez on Wikipedia. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://en.wikipedia.org/wiki/File:Atractor_Poisson_Saturne.jpg

• Pixar Animation Studios, 1986
• Director: John Lasseter

2

Luxo Jr.

Image of Pixar's Luxo Jr. removed due to copyright restrictions -- please see
http://www.computerhistory.org/atchm/pixars-luxo-jr/ for further details.

http://www.computerhistory.org/atchm/pixars-luxo-jr/

• Overview of computer graphics
• Administrivia
• Overview of the semester
• Overview of assignments
• Intro to OpenGL & assignment 0

3

Plan

4

What are the applications of graphics?

5

Movies/special effects

Images removed due to copyright restrictions.

6

More than you would expect

Video clip removed due to copyright restrictions -- please
see http://vimeo.com/9553622 for further details.

http://vimeo.com/9553622

7

Video Games

Images removed due to copyright restrictions.

8

Simulation

Images removed due to copyright restrictions.

9

CAD-CAM & Design

Images removed due to copyright restrictions.

10

Architecture

Images removed due to copyright restrictions.

11

Video removed due to copyright restrictions -- please see "The Light of Mies van der Rohe"
for further details, available at http://graphics.ucsd.edu/~henrik/animations/.

http://graphics.ucsd.edu/~henrik/animations/

12

Virtual Reality

Images removed due to copyright restrictions.

13

Visualization

Images removed due to copyright restrictions.

14

Medical Imaging

Images removed due to copyright restrictions.

15

Education

Image removed due to copyright restrictions.

16

Geographic Info Systems & GPS

Image removed due to copyright restrictions.

17

Any display
• Computers go through OpenGL and DirectX to

display anything
• 2D graphics, Illustrator, Flash, Fonts

Image removed due to copyright restrictions.

• And why?

18

What do you expect to learn?

• Fundamentals of computer graphics algorithms
– Will give a pretty good idea of how to implement lots

of the things just shown
• We will concentrate on 3D,

not 2D illustration or image processing
• Basics of real-time rendering

and graphics hardware
• Basic OpenGL

– Not the focus, though: Means, not the end.
• You will get C++ programming experience

19

What you will learn in 6.837

• OpenGL and DirectX hacks
– Most become obsolete every 18 months anyway!
– Does not really matter either: Graphics is becoming all

software again (OpenCL, Larrabee, etc.)
• Software packages

– CAD-CAM, 3D Studio MAX, Maya
– Photoshop and other painting tools

• Artistic skills
• Game design

20

What you will NOT learn in 6.837

• Lots of simple linear algebra
– Get it right, it will help you a lot!

• Some more advanced concepts
– Homogeneous coordinates
– Ordinary differential equations (ODEs)

and their numerical solution
– Sampling, antialiasing (some gentle Fourier analysis)
– Monte-Carlo integration

• Always in a concrete and visual context

21

How much Math?

• Many of the mathematical and algorithmic tools
are useful in other engineering and scientific
context

• Linear algebra
• Splines
• Differential equations
• Monte-Carlo integration
• …

22

Beyond computer graphics

23

Questions?

• Overview of computer graphics
• Administrivia

• Overview of the semester
• Overview of assignments
• Intro to OpenGL & assignment 0

24

Plan

• Instructor
– Wojciech Matusik

25

Team

• Course website
– Announcements
– Slides (posted soon after each lecture)
– Assignments, both instructions and turn-in

• Message Board
• Staff Email

– Reaches all of us, preferred method of communication

26

Administrivia: Website, Staff Email

27

Administrivia: Grading Policy
• Assignments: 75%

– Two-week programming assignments
– Must be completed individually
– No final project

• Quiz: 10%
– in class

• Final Exam: 10%
– TBA during finals week

• Participation: 5%

28

Administrivia: Prerequisites
• Not strictly enforced
• All assignments are in C++

– Optional review/introductory session

• Calculus, Linear Algebra

– Solving equations, derivatives, integral
– vectors, matrices, basis, solving systems of equations
– Optional review/introductory session

29

Administrivia: Assignments
• Turn in code and executable (Linux)
• Always turn in a README file

– Describe problems, explain partially-working code
Say how long the assignment took

• Coding style important
– Some assignments are cumulative

• Collaboration policy:
– You can chat, but code on your own
– Acknowledge your collaboration! (in readme file)

• Late policy:
– The deadline is absolute: 0 if not on time

– Due Wednesday @ 8pm
– Extensions only considered if requested 1 week before due date
– Medical problems must be documented

30

The deadline is absolute
• I mean it.
• I do regularly give 0 for,

– an assignment turned in half an hour late
– turning in the wrong file

• Submit early, even before you might be fully
done

• You can chat, but code on your own
(we use automated plagiarism detection
software!)

• Use Piazza message board
• Help others on Piazza message board (will help

your grade!)
• Acknowledge your collaboration (in README)
• Talk to each other, get a community going

– Graphics is fun!

31

Collaboration policy

• The assignments are a lot of work. Really.

– Start early!

32

Administrivia: Assignments

33

Assignments
0: Warm up (mesh display with OpenGL)
1: Curves & surfaces
2: Hierarchical modeling, skinning
3: Physically-based simulation
4: Ray casting
5: Ray tracing

(more in later slides)

• No textbook is required
• Recommendations

– 3D Computer Graphics (Watt)
– 3D Computer Graphics: A Mathematical

Introduction with OpenGL (Buss)
• There is a free online version available

from Books24x7
– Real-Time Rendering, 3rd ed. (Akenine-

Möller, Haines, Hoffman)
– Fundamentals of Computer Graphics, 3rd

ed. (Shirley, Marschner)

34

Textbooks

http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=sr_1_1?ie=UTF8&s=books&qid=1250789241&sr=1-1
http://www.cambridge.org/us/academic/subjects/computer-science/computer-graphics-image-processing-and-robotics/3d-computer-graphics-mathematical-introduction-opengl
http://www.cambridge.org/us/academic/subjects/computer-science/computer-graphics-image-processing-and-robotics/3d-computer-graphics-mathematical-introduction-opengl
http://libraries.mit.edu/get/books24x7
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_3?ie=UTF8&s=books&qid=1250789523&sr=1-3
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690

35

Questions?

• Overview of computer graphics
• Administrivia
• Overview of the semester

• Overview of assignments
• Intro to OpenGL & assignment 0

36

Plan

37

How do you make this picture?
• Modeling

– Geometry
– Materials
– Lights

• Animation
– Make it move

• Rendering
– I.e., draw the picture!
– Lighting, shadows, textures...

S
em

ester

© Remedy Enterainment. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

38

Questions?

39

Overview of the Semester
• Modeling, Transformations
• Animation, Color
• Ray Casting / Ray Tracing
• The Graphics Pipeline
• Textures, Shadows
• Sampling, Global Illumination

40

Transformations
• Yep, good old linear algebra
• Homogeneous coordinates

– (Adding dimensions to make life harder)
• Perspective

41

Modeling
• Curves and surfaces
• Subdivision surfaces

42

Animation: Keyframing

ACM © 1987 “Principles of traditional animation
applied to 3D computer animation”

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Character Animation: Skinning
• Animate simple “skeleton”
• Attach “skin” to skeleton

– Skin deforms smoothly with skeleton
• Used everywhere (games, movies)

43

Image removed due to
copyright restrictions.

Ilya Baran
© Ilya Baran. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

44

Particle system (PDE)

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

45

“Physics” (ODEs)
• Fire, smoke
• Cloth

• Quotes because

we do “visual
simulation”

© David E. Breen. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

46

Color
saturation

hue

Courtesy of Victor Ostromoukhov.

47

Ray Casting
• For every pixel

construct a ray from the eye
– For every object in the scene

• Find intersection with the ray
• Keep if closest

48

Ray Tracing
• Shade (interaction of light and material)
• Secondary rays (shadows, reflection, refraction)

49

Ray Tracing
• Original Ray-traced

image by Whitted

• Image computed using
the Dali ray tracer by
Henrik Wann Jensen

• Environment map by
Paul Debevec

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Henrik Wann Jensen. Used with permission.

http://ocw.mit.edu/help/faq-fair-use/

50

Textures and Shading

Courtesy of Jeremy Birn.

51

Sampling & Antialiasing

✔ ✖

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

52

Shadows

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

53

Traditional Ray Tracing

Courtesy of Henrik Wann Jensen. Used with permission.

54

Global Illumination

Courtesy of Henrik Wann Jensen. Used with permission.

55

The Graphics Pipeline
Ray Casting

For each pixel

For each object

 Send pixels to scene

Rendering Pipeline

For each triangle

 For each projected pixel

 Project scene to pixels

56

The Graphics Pipeline
• Transformations

• Clipping

• Rasterization

• Visibility

57

Questions?

• Overview of computer graphics
• Administrivia
• Overview of the semester
• Overview of assignments

• Intro to OpenGL & assignment 0

58

Plan

59

Assignment 1: curves & surfaces

Bezier curves Surfaces of revolution

Sweep surfaces

60

Assignment 2: hierarchical modeling

• Animate character skeleton
as tree of transformations

• Skinning: smooth surface deformation

61

Assignment 3: physics
• Simulate cloth as a mass-spring network

– ODE integration

62

Assignment 4: ray casting
• Cast rays from the viewpoint
• Intersect with scene primitives

• Shadows, reflection, refraction

• + flexible extension

63

Assignment 5: ray tracing

64

Questions?

• Overview of computer graphics
• Administrivia
• Overview of the semester
• Overview of assignments
• Intro to OpenGL & assignment 0

65

Plan

• OpenGL is an API that allows you to send
commands to the graphics card to draw 2D or 3D
scenes

• At the beginning of the semester, we will use
OpenGL as a black box to display 3D content

• Later, we will see what is under the hood

66

Simple 3D with OpenGL

67

Assignment 0
• Read a file with triangle mesh data

– Including mesh normals
• Display it using OpenGL

– Colors, simple movement

• Due next Wednesday!

Simple 3D with OpenGL

68

• Scene represented as
triangles
– A triangle is a set of 3 vertices
– A vertex is a set of 3 floating

point numbers (x, y, z)

• We will use OpenGL to send
this to the graphics card
(GPU)
– The GPU will do its magic to

display the scene from the
current viewpoint (Later, we
will get to see how this
happens)

• You need to tell OpenGL
– The geometry of the object

• Vertex positions
• Vertex normals
• 3 x vertex makes a triangle!

– Camera parameters
• Field of view, aspect ratio, (depth range)
• The “projection matrix”

How to Draw?

69

Object coordinates
World coordinates
View coordinates

Image coordinates

Modelview

Projection

70

Questions?

• Initialize

– (get graphics context, etc.)

• For each frame

– Manage UI

– Set appropriate viewpoint

– Set light source directions

– For each triangle

 For i=0 to 2

 Send vertex data

71

OpenGL high-level pseudocode

72

OpenGL Example: Viewing
// Current matrix affects objects positions

glMatrixMode(GL_MODELVIEW);

// Initialize to the identity

glLoadIdentity();

// Position the camera at [0,0,5], looking at

// [0,0,0], with [0,1,0] as the up direction.

gluLookAt(0.0, 0.0, 5.0,

 0.0, 0.0, 0.0,

 0.0, 1.0, 0.0);

// Rotate by -20 degrees about [0,1,0]

glRotated(-20.0, 0.0, 1.0, 0.0);

// Draw a teapot.

glutSolidTeapot(1.0);

• What information do we need at each vertex?
– Coordinates (3 floats)
– Color (optional, 3 floats)
– Normal information (optional, 3 floats)
– Transparency (optional, 1 float)
– More to come (texture information, shininess)

73

Vertex data

• To compute color as a function of light direction
• Simplest: Diffuse or Lambert model

– Intensity = dot product (normal, light direction)

74

Why normals?

Surface

Normal

Light direction

Light
source

75

OpenGL Code
glBegin(GL_TRIANGLES); //what follows describes triangles

glColor3d (1,1,0); //red, green and blue components=>(yellow)

glNormal3d (0, 0, 1); //normal pointing up

glVertex3d (2,3,3); //3D position x, y, z

glColor3d (1,0,0);

glNormal3d (0, 0, 1);

glVertex3d (5,3,3);

glColor3d (1,0,1);

glNormal3d (0, 0, 1);

glVertex3d (3,6,3);

glEnd();

76

OpenGL high-level pseudocode
• Initialize

– (get graphics context, etc.)

• For each frame

– Manage UI

– Set appropriate viewpoint

– Set light source directions

– For each triangle

 For i=0 to 2

 Send vertex data

77

OpenGL is a state machine
• Each command changes the state

– But glVertex also “pushes” data

• For example, glColor3f changes the current color.
– The color remains valid until we call glColorxx again
– Use it before each vertex to get per-vertex color.

• Other state to manage lighting and other
rendering aspects

• Can make it hard to debug
• (Note: This is conceptually simple, but not quite how you write

efficient code these days.)

78

Assignment 0
• Read a file with triangle mesh data

– Including mesh normals
• Display it using OpenGL

– Colors, simple movement

• Due next Wednesday!

• Shadows
• Shininess
• Texture
• Etc.

• Be patient, you will have plenty enough

79

What is missing?

• Vertices are 3-vectors
• Normals are 3-vectors

– Orthogonal to surface tangent plane
– Cross product

• Colors are 3-vectors
• Diffuse shading is a dot product
• A non-bending object moving in a scene

undergoes a rigid transformation
• Changing the viewpoint is a linear transformation

of the scene coordinate
• Brush up in the review session!

80

Linear Algebra is Everywhere

• Very interdisciplinary
– Within CS: systems, compilers,

languages, computer architecture,
algorithms, numerical techniques

– Math, physics, art, perception,
architecture, manufacturing

• Helps you understand why the
world looks the way it does

• You can “see” the result

81

What Makes Graphics Fun?

visualparadox.com

Image removed due to copyright restrictions.

MIT OpenCourseWare
http://ocw.mit.edu

 6.837 Computer Graphics
 Fall 2012

 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Lec00.pdf
	Pages from Lec00

