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• Pixar Animation Studios, 1986 
• Director: John Lasseter 
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Luxo Jr. 

Image of Pixar's Luxo Jr. removed due to copyright restrictions -- please see
http://www.computerhistory.org/atchm/pixars-luxo-jr/ for further details.

http://www.computerhistory.org/atchm/pixars-luxo-jr/


• Overview of computer graphics 
• Administrivia 
• Overview of the semester 
• Overview of assignments 
• Intro to OpenGL & assignment 0 
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Plan 
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What are the applications of graphics? 
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Movies/special effects 

Images removed due to copyright restrictions.
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More than you would expect 
 

 

Video clip removed due to copyright restrictions -- please
see http://vimeo.com/9553622 for further details.

http://vimeo.com/9553622
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Video Games 

Images removed due to copyright restrictions.
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Simulation 

Images removed due to copyright restrictions.
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CAD-CAM & Design 

Images removed due to copyright restrictions.
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Architecture 

Images removed due to copyright restrictions.
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Video removed due to copyright restrictions --  please see "The Light of Mies van der Rohe"
for further details, available at http://graphics.ucsd.edu/~henrik/animations/.

http://graphics.ucsd.edu/~henrik/animations/
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Virtual Reality 

Images removed due to copyright restrictions.
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Visualization 

Images removed due to copyright restrictions.
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Medical Imaging 

Images removed due to copyright restrictions.
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Education 

Image removed due to copyright restrictions.
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Geographic Info Systems & GPS 

Image removed due to copyright restrictions.
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Any display 
• Computers go through OpenGL and DirectX to 

display anything 
• 2D graphics, Illustrator, Flash, Fonts 
 

Image removed due to copyright restrictions.



• And why? 
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What do you expect to learn? 



• Fundamentals of computer graphics algorithms 
– Will give a pretty good idea of how to implement lots 

of the things just shown 
• We will concentrate on 3D, 

not 2D illustration or image processing 
• Basics of real-time rendering 

and graphics hardware 
• Basic OpenGL 

– Not the focus, though: Means, not the end. 
• You will get C++ programming experience 
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What you will learn in 6.837 



• OpenGL and DirectX hacks 
– Most become obsolete every 18 months anyway! 
– Does not really matter either: Graphics is becoming all 

software again (OpenCL, Larrabee, etc.) 
• Software packages 

– CAD-CAM, 3D Studio MAX, Maya 
– Photoshop and other painting tools 

• Artistic skills 
• Game design 
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What you will NOT learn in 6.837 



• Lots of simple linear algebra 
– Get it right, it will help you a lot! 

• Some more advanced concepts 
– Homogeneous coordinates 
– Ordinary differential equations (ODEs) 

and their numerical solution 
– Sampling, antialiasing (some gentle Fourier analysis) 
– Monte-Carlo integration 

• Always in a concrete and visual context 
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How much Math? 



• Many of the mathematical and algorithmic tools 
are useful in other engineering and scientific 
context 

• Linear algebra 
• Splines 
• Differential equations 
• Monte-Carlo integration 
• … 
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Beyond computer graphics 
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Questions? 



• Overview of computer graphics 
• Administrivia 

• Overview of the semester 
• Overview of assignments 
• Intro to OpenGL & assignment 0 
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Plan 



• Instructor 
– Wojciech Matusik 
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Team 



• Course website 
– Announcements 
– Slides (posted soon after each lecture) 
– Assignments, both instructions and turn-in 

• Message Board 
• Staff Email 

– Reaches all of us, preferred method of communication 
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Administrivia: Website, Staff Email 
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Administrivia: Grading Policy 
• Assignments: 75% 

– Two-week programming assignments 
– Must be completed individually 
– No final project 

• Quiz: 10% 
– in class  

• Final Exam: 10% 
– TBA during finals week 

• Participation: 5% 
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Administrivia: Prerequisites 
• Not strictly enforced 
• All assignments are in C++ 

– Optional review/introductory session 

 
• Calculus, Linear Algebra 

– Solving equations, derivatives, integral 
– vectors, matrices, basis, solving systems of equations 
– Optional review/introductory session 
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Administrivia: Assignments 
• Turn in code and executable (Linux) 
• Always turn in a README file 

– Describe problems, explain partially-working code 
Say how long the assignment took 

• Coding style important 
– Some assignments are cumulative 

• Collaboration policy: 
– You can chat, but code on your own 
– Acknowledge your collaboration! (in readme file) 

• Late policy: 
– The deadline is absolute: 0 if not on time 

– Due Wednesday @ 8pm 
– Extensions only considered if requested 1 week before due date 
– Medical problems must be documented 
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The deadline is absolute 
• I mean it.  
• I do regularly give 0 for, 

–  an assignment turned in half an hour late 
– turning in the wrong file 

•  Submit early, even before you might be fully 
done 



• You can chat, but code on your own 
(we use automated plagiarism detection 
software!) 

• Use Piazza message board 
• Help others on Piazza message board (will help 

your grade!) 
• Acknowledge your collaboration (in README) 
• Talk to each other, get a community going 

– Graphics is fun! 
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Collaboration policy 



• The assignments are a lot of work. Really. 

– Start early! 
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Administrivia: Assignments 
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Assignments 
0: Warm up (mesh display with OpenGL) 
1: Curves & surfaces 
2: Hierarchical modeling, skinning 
3: Physically-based simulation 
4: Ray casting 
5: Ray tracing 
 
(more in later slides) 



• No textbook is required 
• Recommendations 

– 3D Computer Graphics (Watt) 
– 3D Computer Graphics: A Mathematical 

Introduction with OpenGL (Buss) 
• There is a free online version available 

from Books24x7 
– Real-Time Rendering, 3rd ed. (Akenine-

Möller, Haines, Hoffman) 
– Fundamentals of Computer Graphics, 3rd 

ed. (Shirley, Marschner) 
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Textbooks 

http://www.amazon.com/Computer-Graphics-3rd-Alan-Watt/dp/0201398559/ref=sr_1_1?ie=UTF8&s=books&qid=1250789241&sr=1-1
http://www.cambridge.org/us/academic/subjects/computer-science/computer-graphics-image-processing-and-robotics/3d-computer-graphics-mathematical-introduction-opengl
http://www.cambridge.org/us/academic/subjects/computer-science/computer-graphics-image-processing-and-robotics/3d-computer-graphics-mathematical-introduction-opengl
http://libraries.mit.edu/get/books24x7
http://www.amazon.com/Real-Time-Rendering-Third-Tomas-Akenine-Moller/dp/1568814240/ref=sr_1_3?ie=UTF8&s=books&qid=1250789523&sr=1-3
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690
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Questions? 



• Overview of computer graphics 
• Administrivia 
• Overview of the semester 

• Overview of assignments 
• Intro to OpenGL & assignment 0 
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Plan 
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How do you make this picture? 
• Modeling 

– Geometry 
– Materials 
– Lights 

• Animation 
– Make it move 

• Rendering 
– I.e., draw the picture! 
– Lighting, shadows, textures... 

S
em

ester 

© Remedy Enterainment. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Questions? 
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Overview of the Semester 
• Modeling, Transformations 
• Animation, Color 
• Ray Casting / Ray Tracing 
• The Graphics Pipeline 
• Textures, Shadows 
• Sampling, Global Illumination 
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Transformations 
• Yep, good old linear algebra 
• Homogeneous coordinates 

– (Adding dimensions to make life harder) 
• Perspective 
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Modeling 
• Curves and surfaces 
• Subdivision surfaces 
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Animation: Keyframing 

ACM © 1987 “Principles of traditional animation 
applied to 3D computer animation” 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


Character Animation: Skinning 
• Animate simple “skeleton” 
• Attach “skin” to skeleton 

– Skin deforms smoothly with skeleton  
• Used everywhere (games, movies) 
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Image removed due to 
copyright restrictions. 

Ilya Baran 
© Ilya Baran. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Particle system (PDE) 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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“Physics” (ODEs) 
• Fire, smoke 
• Cloth 

 
• Quotes because 

we do “visual 
simulation” 

© David E. Breen. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Color 
saturation 

hue 

Courtesy of Victor Ostromoukhov.
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Ray Casting 
• For every pixel  

construct a ray from the eye  
– For every object in the scene 

• Find intersection with the ray  
• Keep if closest 



48

Ray Tracing 
• Shade (interaction of light and material) 
• Secondary rays (shadows, reflection, refraction) 
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Ray Tracing 
• Original Ray-traced 

image by Whitted 
 
 
 
 

• Image computed using 
the Dali ray tracer by 
Henrik Wann Jensen 

• Environment map by 
Paul Debevec 

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Henrik Wann Jensen. Used with permission.

http://ocw.mit.edu/help/faq-fair-use/
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Textures and Shading 

Courtesy of Jeremy Birn.
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Sampling & Antialiasing 

✔ ✖ 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Shadows 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Traditional Ray Tracing 

Courtesy of Henrik Wann Jensen. Used with permission.



54
 

Global Illumination 

Courtesy of Henrik Wann Jensen. Used with permission.
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The Graphics Pipeline 
Ray Casting 
 
For each pixel 

For each object 

 Send pixels to scene 

Rendering Pipeline 
 
For each triangle 

   For each projected pixel 

     Project scene to pixels 
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The Graphics Pipeline 
• Transformations 

 
• Clipping 

 
• Rasterization 

 
• Visibility 
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Questions? 



• Overview of computer graphics 
• Administrivia 
• Overview of the semester 
• Overview of assignments 

• Intro to OpenGL & assignment 0 
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Plan 
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Assignment 1: curves & surfaces 

Bezier curves Surfaces of revolution 

Sweep surfaces 
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Assignment 2: hierarchical modeling 

• Animate character skeleton  
as tree of transformations 
 
 
 

• Skinning: smooth surface deformation 



61

Assignment 3: physics 
• Simulate cloth as a mass-spring network 

– ODE integration 
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Assignment 4: ray casting 
• Cast rays from the viewpoint 
• Intersect with scene primitives 



• Shadows, reflection, refraction 
 

• + flexible extension 
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Assignment 5: ray tracing 
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Questions? 



• Overview of computer graphics 
• Administrivia 
• Overview of the semester 
• Overview of assignments 
• Intro to OpenGL & assignment 0 
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Plan 



• OpenGL is an API that allows you to send 
commands to the graphics card to draw 2D or 3D 
scenes 

• At the beginning of the semester, we will use 
OpenGL as a black box to display 3D content 

• Later, we will see what is under the hood 
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Simple 3D with OpenGL 
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Assignment 0 
• Read a file with triangle mesh data 

– Including mesh normals 
• Display it using OpenGL 

– Colors, simple movement 
 

• Due next Wednesday! 



Simple 3D with OpenGL 
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• Scene represented as 
triangles 
– A triangle is a set of 3 vertices 
– A vertex is a set of 3 floating 

point numbers (x, y, z) 

• We will use OpenGL to send 
this to the graphics card 
(GPU) 
– The GPU will do its magic to 

display the scene from the 
current viewpoint (Later, we 
will get to see how this 
happens) 



• You need to tell OpenGL 
– The geometry of the object 

• Vertex positions 
• Vertex normals 
• 3 x vertex makes a triangle! 

– Camera parameters 
• Field of view, aspect ratio, (depth range) 
• The “projection matrix” 

How to Draw? 
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Object coordinates 
World coordinates 
View coordinates 

Image coordinates 

Modelview 

Projection 
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Questions? 



• Initialize  

– (get graphics context, etc.) 

• For each frame 

– Manage UI 

– Set appropriate viewpoint 

– Set light source directions 

– For each triangle  

 For i=0 to 2 

 Send vertex data 
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OpenGL high-level pseudocode 
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OpenGL Example: Viewing 
// Current matrix affects objects positions 

glMatrixMode( GL_MODELVIEW ); 

// Initialize to the identity 

glLoadIdentity();               

// Position the camera at [0,0,5], looking at 

// [0,0,0], with [0,1,0] as the up direction. 

gluLookAt(0.0, 0.0, 5.0, 

          0.0, 0.0, 0.0, 

          0.0, 1.0, 0.0); 

// Rotate by -20 degrees about [0,1,0] 

glRotated(-20.0, 0.0, 1.0, 0.0); 

     

// Draw a teapot. 

glutSolidTeapot(1.0); 



• What information do we need at each vertex? 
– Coordinates (3 floats) 
– Color (optional, 3 floats) 
– Normal information (optional, 3 floats) 
– Transparency (optional, 1 float) 
– More to come (texture information, shininess) 
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Vertex data 



• To compute color as a function of light direction 
• Simplest: Diffuse or Lambert model 

– Intensity = dot product (normal, light direction) 

74 

Why normals? 

Surface 

Normal 

Light direction 

Light 
source 
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OpenGL Code 
glBegin(GL_TRIANGLES); //what follows describes triangles 

glColor3d (1,1,0); //red, green and blue components=>(yellow)  

glNormal3d (0, 0, 1); //normal pointing up 

glVertex3d (2,3,3); //3D position x, y, z 

glColor3d (1,0,0); 

glNormal3d (0, 0, 1);  

glVertex3d (5,3,3);  

glColor3d (1,0,1); 

glNormal3d (0, 0, 1);  

glVertex3d (3,6,3);  

glEnd();  
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OpenGL high-level pseudocode 
• Initialize  

– (get graphics context, etc.) 

• For each frame 

– Manage UI 

– Set appropriate viewpoint 

– Set light source directions 

– For each triangle  

 For i=0 to 2 

 Send vertex data 
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OpenGL is a state machine 
• Each command changes the state 

– But glVertex also “pushes” data 

• For example, glColor3f changes the current color.  
– The color remains valid until we call glColorxx again 
– Use it before each vertex to get per-vertex color.  

• Other state to manage lighting and other 
rendering aspects 

• Can make it hard to debug 
• (Note: This is conceptually simple, but not quite how you write 

efficient code these days.) 
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Assignment 0 
• Read a file with triangle mesh data 

– Including mesh normals 
• Display it using OpenGL 

– Colors, simple movement 
 

• Due next Wednesday! 



• Shadows 
• Shininess 
• Texture 
• Etc.  

 
• Be patient, you will have plenty enough 
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What is missing? 



• Vertices are 3-vectors 
• Normals are 3-vectors 

– Orthogonal to surface tangent plane 
– Cross product 

• Colors are 3-vectors 
• Diffuse shading is a dot product 
• A non-bending object moving in a scene 

undergoes a rigid transformation 
• Changing the viewpoint is a linear transformation 

of the scene coordinate 
• Brush up in the review session! 
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Linear Algebra is Everywhere 



• Very interdisciplinary 
– Within CS: systems, compilers, 

languages, computer architecture, 
algorithms, numerical techniques 

– Math, physics, art, perception, 
architecture, manufacturing 

• Helps you understand why the 
world looks the way it does 

• You can “see” the result 
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What Makes Graphics Fun? 

visualparadox.com 

Image removed due to copyright restrictions. 
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