

1

6.837: Computer Graphics Fall 2012

Programming Assignment 5: Ray Tracing

In this assignment, you will greatly improve the rendering capabilities of your ray caster by adding several
new features. First, you will improve the shading model by recursively generating rays to create reflections
and shadows. Second, you’ll add procedural solid texturing. Finally, Implement supersampling to fix aliasing
problems.

The remainder of this document is organized as follows:

1. Getting Started

2. Summary of Requirements

3. Starter Code

4. Implementation Notes

5. Test Cases

6. Hints

7. Extra Credit

8. Submission Instructions

Getting Started

This assignment used to be several one week assignments. Please start as early as possible.

An updated parser, sample solution, and new scene files for this project are included in the assignment
distribution. Run the sample solution a5soln as follows:

./a5soln -input scene10 vase.txt -size 300 300 -output 10.bmp -shadows

This will generate an image named 10.bmp.

Also try this:

./a5soln -input scene10 vase.txt -size 300 300
-output 10.bmp -shadows -jitter -filter

We’ll describe the rest of the command-line parameters later. When your program is complete, you will
be able to render this scene as well as well as the other test cases given below.

1

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

2 Summary of Requirements

As mentioned above you’ll be adding several new features to your ray caster to improve its realism and
performance.

New features

• Recursive ray tracing for shadowing and reflections.

• Procedural solid textures.

• Supersampling for antialiasing.

We go into more detail about these features below in the implementation notes.

Your code will be tested using a script on all the test cases below. Make sure that your program handles
the exact same arguments as the examples below. For your convenience, you can assume that “-jitter”,
“-shadows” and “-filter” are always given. That is you can ignore these arguments and always run your
ray-tracer with these features enabled.

3 Starter Code

For this assignment, part of the starter code is your own from Assignment 4. We updated some files and
you need to merge your code with these updated files. Before start merging, make sure you have a back up
copy of your code in case you damage your own files by accident during the merge. Now copy all files from
the new starter code to your own code and overwrite everything. Of course, you are always free to change
what we give you, as long as it compiles on Athena.

There’s a new scene parser to handle new material types. If you had to modify SceneParser.cpp/hpp
for assignment four, remember to make the same modifications to the new scene parser we provide for you.
Also, there is updated Mesh.cpp/hpp to accelerate intersection test speed. To help build procedural shaders,
we provide you with some procedural noise routines. Finally, we give you a new Material class to handle
new materials. Please replace your own Material with the new one.

SceneParser::getBackgroundColor(Vector3f dir) now takes the ray direction as an argument. Please
update your main loop accordingly.

4 Implementation Notes

4.1 Recursive Rays

After merging, you will add some global illumination effects to your ray caster. Because you cast secondary
rays to account for shadows, reflection and refraction , you can now call it a ray tracer. You will encapsulate
the high-level computation in a RayTracer class that will be responsible for sending rays and recursively
computing colors along them.

2

To compute cast shadows, you will send rays from the visible point to each light source. If an intersection
is reported, the visible point is in shadow and the contribution from that light source is ignored. Note that
shadow rays must be sent to all light sources. To add reflection (and refraction) effects, you need to send
secondary rays in the mirror (and transmitted) directions, as explained in lecture. Refer to the document
http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf for more details. The computation is recursive
to account for multiple reflections (and or refractions).

1. Make sure your Material classes store refraction index, which are necessary for recursive ray tracing.

2. Create a new class	 RayTracer that computes the radiance (color) along a ray. Update your main
function to use this class for the rays through each pixel. This class encapsulates the computation of
radiance (color) along rays. It stores a pointer to an instance of SceneParser for access to the geometry
and light sources. Your constructor should have these arguments (and maybe others, depending on
how you handle command line arguments):

RayTracer(SceneParser* s, int max bounces, ...);

where max bounces is the maximum number of bounces (recursion depth) a light ray has.

The main method of this class is traceRay that, given a ray, computes the color seen from the origin
along the direction. This computation is recursive for reflected (or transparent) materials. We therefore
need a max bounces to prevent infinite recursion. The maximum recursion depth which is passed as a
command line arguments to the program with

-bounces max bounces.

Try that with the solution. traceRay takes the current number of bounces (recursion depth) as one of
its parameters.

Vector3f traceRay(Ray& ray, float tmin, int bounces, Hit& hit) const;

3. Now is a good time to make sure you did not break any prior functionality by testing against scenes
from the last assignment as well as the new scenes. You can do this by setting max bounces=0. Check
that you get the same results except that the specular component is removed.

4. (Optional) Add support for the new command line arguments:	 -shadows, which indicates that shadow
rays are to be cast, and -bounces, which control the depth of recursion in your ray tracer.

5. Implement cast shadows by sending rays toward each light source to test whether the line segment
joining the intersection point and the light source intersects an object. If there is an intersection, then
discard the contribution of that light source. Recall that you must displace the ray origin slightly away
from the surface, or equivalently set tmin to some E.

6. Implement mirror reflections for reflective materials by sending a ray from the current intersection
point in the mirror direction. For this, we suggest you write a function:

Vector3f mirrorDirection(const Vector3f& normal, const Vector3f& incoming);

Trace the secondary ray with a recursive call to traceRay using modified recursion depth. Make sure
that traceRay checks the appropriate stopping conditions. Add the color seen by the reflected ray
times the reflection color to the color computed for the current ray. If a ray didn’t hit anything, simply
return the background by SceneParser::getBackgroundColor(dir).

7. Simple refraction. Cast refraction rays for transparent materials (if Material::refractionIndex>0).
Air has refraction Index 1. You can assume you always start in air. The starter code keeps track
of current refraction index as an additional argument to traceRay. This will not work properly for
transparent objects that are inside other transparent objects. Choose your own implementation if you
would like. We suggest you write a function:

3

http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf

bool transmittedDirection(const Vector3f& normal, const Vector3f& incoming, float index n,
float index nt,Vector3f & transmitted);

index n and nt are refraction indices of the current object and the object the ray is going into. Refer
to http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf for a complete explanation.

Let d be the direction of the incoming light ray, N be the normal. Note that if the ray is currently
inside the object, d · N will be positive.

Let n and nt be the refraction indices of the two mediums. The refracted direction t is
n(d − N(d · N)) n2(1 − (d · N)2)

t = − N 1 − .2nt nt

First, you need to decide whether there is refraction or not and return false if there is no refraction
(total reflection). This is done by checking that the quantity under the square root is positive.

Then, if there is refraction, you should use the same traceRay function to get a color of the recursive
ray.

Finally, you need to blend the reflection color and refraction color using Schlick’s approximation to
Fresnel’s equation. We are going to compute a weight R for the reflection color and use 1 − R for
refraction color.

R is given by

nt − n

R = R0 + (1 − R0)(1 − c)5, R0 = ()2 .
nt + n

abs(d · N), n ≤ nt
c = .

abs(t · N), n > nt

4.2 Perlin Noise

Next you’ll build materials using Perlin Noise, which lets you to add controllable irregularities to your
procedural textures. Here’s what Ken Perlin says about his invention (http://www.noisemachine.com/
talk1/):

Noise appears random, but isn’t really. If it were really random, then you’d get a different result every
time you call it. Instead, it’s “pseudo-random”—it gives the appearance of randomness. Its appearance
is similar to what you’d get if you took a big block of random values and blurred it (ie: convolved with a
Gaussian kernel). Although that would be quite expensive to compute.

So we’ll use his more efficient (and recently improved) implemenation of noise (http://mrl.nyu.edu/
~perlin/noise/) translated to C++ in PerlinNoise.{h,cpp}.

PerlinNoise::octaveNoise is implemented for you. It computes

N(x, y, z) = noise(x, y, z) + noise(2x, 2y, 2z)/2 + noise(4x, 4y, 4z)/4 + . . . ,

where (x, y, z) is simply the global coordinate.

Ken Perlin’s original paper and his online notes have many cool examples of procedural textures that can
be built from the noise function. You will implement a simple Marble material. This material uses the sin
function to get bands of color that represent the veins of marble. These bands are perturbed by the noise
function as follows:

4

http://www.cs.utah.edu/~shirley/books/fcg2/rt.pdf
http://www.noisemachine.com/talk1/
http://www.noisemachine.com/talk1/
http://mrl.nyu.edu/~perlin/noise/
http://mrl.nyu.edu/~perlin/noise/

M(x, y, z) = sin(ωx + aN(x, y, z))

Fill in the class Noise which calls the function PerlinNoise::octaveNoise with proper arguments to
obtain N(x, y, z). Then compute M(x, y, z). The value of M(x, y, z) will be a floating point number that
you should clamp and use to interpolate between the two contained colors. Here’s the constructor for Noise:

Noise(int octaves , const Vector3f & color1, const Vector3f & color2, float frequency,
float amplitude);

where frequency is w and amplitude is a in the equation above.

Try different parameter settings to understand the variety of appearances you can get. Remember that
this is not a physical simulation of marble, but a procedural texture attempting to imitate our observations.

4.3 Anti-aliasing

Next, you will add some simple anti-aliasing to your ray tracer. You will use supersampling and filtering to
alleviate jaggies and Moire patterns.

1. Jittered Sampling.

For each pixel, instead of getting a color with one ray, we can sample multiple rays perturbed randomly.
You are required to subdivide a pixel into 3 × 3 sub-grids. This is equivalent to rendering an image
with 3x resolution. Then, for each pixel at (i, j) in the high resolution image, instead of generating a
ray just using (i, j), generate two random numbers ri, rj in range [−0.5, 0.5] to get (i + ri, j + rj).

2. Gaussian blur.	 http://en.wikipedia.org/wiki/Gaussian_blur In the solution, we use the kernel
K = (0.1201, 0.2339, 0.2931, 0.2339, 0.1201). First blur the image horizontally and then blur the blurred
image vertically.

To blur an image horizontally Each pixel color I '(i, j) in the new image is computed as a weighed sum
of pixels in the original image.

I '(i, j) = I(i, j − 2)K(0) + I(i, j − 1)K(1) + I(i, j)K(2) + I(i, j + 1)K(3) + I '(i, j + 2)K(4).

Note that you probably want to allocate a new image to do the blurring to avoid bugs. If (i, j − 2) is
out of image boundary, for example, simply use (i, 0) and so on.

3. Down-sampling. To get from the high-resolution image back to the original specified resolution, average
each 3 × 3 neighborhood of pixels to get back 1 pixel.

4. (Optional) Handle commandline arguments:

• -jittered Enable jittered sampling.

• -filter Enable Gaussian smoothing and down-sampling.

If you choose to ignore these arguments, your program should always enable these two steps.

5

http://en.wikipedia.org/wiki/Gaussian_blur

5 Test Cases

Your assignment will be graded by running a script that runs these new examples below. Make sure your
ray tracer produces similar output.

./a5 -input scene06 bunny 1k.txt -size 300 300 -output 6.bmp
-shadows -bounces 4 -jitter -filter

./a5 -input scene10 sphere.txt -size 300 300 -output 10.bmp
-shadows -bounces 4 -jitter -filter

./a5 -input scene11 cube.txt -size 300 300 -output 11.bmp
-shadows -bounces 4 -jitter -filter

./a5 -input scene12 vase.txt -size 300 300 -output 12.bmp
-shadows -bounces 4 -jitter -filter

6

6 Hints

•	 You do not need to declare all methods in a class virtual, only the ones which subclasses will override.

•	 Print as much information as you need for debugging. When you get weird results, don’t hesitate to
use simple cases, and do the calculations manually to verify your results. Perhaps instead of casting
all the rays needed to create an image, just cast a single ray (and its subsequent recursive rays).

•	 Modify the test scenes to reduce complexity for debugging: remove objects, remove light sources, change
the parameters of the materials so that you can view the contributions of the different components,
etc.

•	 To avoid a segmentation fault, make sure you don’t try to access samples in pixels beyond the image
width and height. Pixels on the boundary will have a cropped support area.

7 Extra Credit

Most of these extensions require that you modify the parser to take into account the extra specification
required by your technique. Make sure that you create (and turn in) appropriate input scenes to show off
your extension.

7.1 Easy

•	 Create a wood material or other procedural material that uses Perlin Noise.

•	 Add more interesting lights to your scenes, e.g. a spotlight with angular falloff.

•	 Render with depth of field (if you didn’t do this last time).

7.2 Medium

•	 Bump mapping (If you didn’t do last time): look up the normals for your surface in a height field
image or an normal map. This needs the derivation of a tangent frame. There many such free images
and models online.

•	 Bidirectional Texture Functions (BTFs): make your texture lookups depend on the viewing angle.
There are datasets available for this online.

•	 Load or create more interesting complex scenes. You can download more models and scenes that are
freely available online.

•	 Add area light sources and Monte-Carlo integration of soft shadows.

•	 Render glossy surfaces.

•	 Render interesting BRDF such as milled surface.

•	 Distribution ray tracing of indirect lighting (very slow). Cast tons of random secondary rays to sample
the hemisphere around the visible point. It is advised to stop after one bounce. Sample uniform or
according to the cosine term (careful, it’s not trivial to sample the hemisphere uniformly).

7

http://cg.cs.uni-bonn.de/en/projects/btfdbb/download/

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

•	 Uniform Grids. Create a 3D grid and “rasterize” your object into it. Then, you march each ray through
the grid stopping only when you hit an occupied voxel. Difficult to debug.

•	 Simulate dispersion (and rainbows). The rainbow is difficult, as is the Newton prism demo.

•	 Make a little animation (10 sec at 24fps will suffice). E.g, if you implemented depth of field, show what
happens when you change camera focal distance. Move lights and objects around.

•	 Add motion blur to moving objects in your animation.

7.3 Hard

•	 Photon mapping with kd-tree acceleration to render caustics.

•	 Irradiance caching.

•	 Subsurface scattering. Render some milk, jade etc.

•	 Path tracing with importance sampling, path termination with Russian Roulette, etc.

•	 Raytracing through a volume. Given a regular grid encoding the density of a participating medium
such as fog, step through the grid to simulate attenuation due to fog. Send rays towards the light
source and take into account shadowing by other objects as well as attenuation due to the medium.
This will give you nice shafts of light.

•	 Animate some water pouring into a tank or smoke rising.

8 Submission Instructions

You are to write a README.txt (or optionally a PDF) that answers the following questions:

•	 How do you compile your code? Provide instructions for Athena Linux. You will not need to provide
instructions on how to run your code, because it must run with the exact command line given earlier
in this document.

•	 Did you collaborate with anyone in the class? If so, let us know who you talked to and what sort of
help you gave or received.

•	 Were there any references (books, papers, websites, etc.) that you found particularly helpful for
completing your assignment? Please provide a list.

•	 Are there any known problems with your code? If so, please provide a list and, if possible, describe
what you think the cause is and how you might fix them if you had more time or motivation. This
is very important, as we’re much more likely to assign partial credit if you help us understand what’s
going on.

•	 Did you do any of the extra credit? If so, let us know how to use the additional features. If there was
a substantial amount of work involved, describe how you did it.

•	 Got any comments about this assignment that you’d like to share?

8

Submit your assignment online. Please submit a single archive (.zip or
.tar.gz) containing:

• Your source code.

• A compiled executable named a5.

• Any additional files that are necessary.

• The README file.

9

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Getting Started
	Summary of Requirements
	Starter Code
	Implementation Notes
	Recursive Rays
	Perlin Noise
	Anti-aliasing

	Test Cases
	Hints
	Extra Credit
	Easy
	Medium
	Hard

	Submission Instructions

