
C H A P T E R 17

Model-free Policy Search

17.1 INTRODUCTION

In chapter 12, we talked about policy search as a nonlinear optimization problem, and
discussed efficient ways to calculate the gradient of the long-term cost: � T

Jα(x0) = g(x, πα(x, t))dt, s.t. x(0) = x0.
0

Assuming Jα(x0) is smooth over w, we derived updates of the form: � �T
∂Jα

Δα = −η .
∂α x0,α

But it may not always be possible, or practical, to compute the gradients exactly.
A standard technique for estimating the gradients, in lieu of analytical gradient in­

formation, is the method of finite differences[67]. The finite differences approach to esti­
mating the gradient involves making the same small perturbation, � to the input parameters
in every dimension independently, and using:

∂Jα Jα+�i (x0) − Jα(x0)≈ ,
∂αi �

where �i is the column vector with � in the ith row, and zeros everywhere else. Finite
difference methods can be computationally very expensive, requiring n + 1 evaluations of
the function for every gradient step, where n is the length of the input vector.

In this chapter we will develop stochastic gradient descent algorithms which can,
in expectation, descend a policy gradient with considerably less evaluations than those
required for finite differences. In addition, we will develop methods that are robust to
stochasticity in the function evaluation, which is inevitable if one is trying to descend a
policy gradient on a real robot. This allows for the exciting possibility of optimizing a
control policy for a system without requiring any model of the plant.

17.2 STOCHASTIC GRADIENT DESCENT

Requirements and guarantees. For a formal treatment, see Bertsekas.

17.3 THE WEIGHT PERTUBATION ALGORITHM

Instead of sampling each dimension independently, consider making a single small random
change, β, to the parameter vector, α. Assuming that the function is locally smooth, we
can approximate the result of this experiment using a Taylor expansion:

∂Jα(x0)
Jα+β (x0) ≈ Jα(x0) + β.

∂α

c 103� Russ Tedrake, 2009

104 Chapter 17 Model-free Policy Search

FIGURE 17.1 Stochastic gradient descent of a quadratic cost function. See problem 1 for
details.

Now consider the update of the form:

Δα = −η[Jα+β (x0) − Jα(x0)]β.

Since Jα+β − Jα is (approximately) the dot product between ∂Jα
and β, the sign of this ∂α

term ensures that Δα is always within 90 degrees of true gradient descent.
Furthermore, on average, the update is in the direction of the true gradient:

T∂J
Δα ≈− ηββT

∂α � � ∂J T

E [Δα] ≈− ηE ββT

∂α

If we select each element of β independently from a distribution with zero mean and vari­
ance σ2 , or E [βi] = 0, E [βiβj] = σ2 δij , then we have β β

T∂J
E [Δα] ≈ −ησ2 .β ∂α

Note that the distribution fαi (αi) need not be Gaussian, but it is the variance of the distri­
bution which determines the scaling on the gradient. Bringing the σ2 into the update, we β
have the weight perturbation algorithm:

Δα = − η [Jα+β (x0) − Jα(x0)]β (17.1)
σ2

β

� Russ Tedrake, 2009 c

��� ��� ��� ��� � .

� �

� ��� ���

Section 17.3 The Weight Pertubation Algorithm 105

17.3.1 Performance of Weight Perturbation

The simplicity of the weight perturbation update makes it tempting to apply it to problems
of arbitrary complexity. But a major concern for the algorithm is its performance - although
we have shown that the update is in the direction of the true gradient on average, it may
still require a prohibitive number of computations to obtain a local minima.

In this section, we will investigate the performance of the weight perturbation algo­
rithm by investigating its signal-to-noise ratio (SNR). The SNR is the ratio of the power in
the signal (here desired update in the direction of the true gradient) and the power in the

T
noise (the remaining component of the update, so that Δα = −η ∂J +noise)1

∂α

T −η ∂J
∂α

2

SNR = �
E

2T
Δα + η ∂J

∂α

In the special case of the unbiased update, the equation reduces to:

E [Δα]T
E [Δα]

SNR = .
E [(Δα)T (Δα)] − E [Δα]T

E [Δα]

For the weight perturbation update we have:

�2N

∂α ∂α ∂αii=1

T∂J ∂J ∂J
E [Δα]T

E [Δα] = η2 = η2 ,

1SNR could alternatively be defined as the ratio of the power of the component of the update in the direction
of the signal and the component orthogonal to the signal (does not penalize the magnitudes of the updates):

T∂J
E[a2] � , where v = ∂α

∂J
∂α

T
, a = Δα · v.

|Δα − av|2E

This form is probably a better definition, but is more difficult to work with.

c� Russ Tedrake, 2009

�� �
�� �

� �

106 Chapter 17 Model-free Policy Search

� � η2 �2
E (Δα)T (Δα) = E Jα+β − Jα βT β

σ4
β �2

η2 ∂J ≈ E β βT β
σ4 ∂α β ⎡� �⎛ ⎞� �⎤
η2 � � �∂J ∂J

= E ⎣ βi ⎝ βj ⎠ β2 ⎦
kσ4 ∂αi ∂αjβ i j k ⎡ ⎤

η2 � � �∂J ∂J
= E ⎣ β2⎦βi βj kσ4 ∂αi ∂αjβ i j k

η2 � ∂J ∂J � �
= E βiβj β

2
kσ4 ∂αi ∂αjβ i,j,k ⎧
 ⎪0 �
i = j⎨

E βiβj β
2 = σ4 i = j �= kk β⎪⎩

µ4(β) i = j = k � �2 � �2� η2 �∂J µ4(z) ∂J
=η2(N − 1) +

∂αi σβ
4 ∂αii i

where µn(z) is the nth central moment of z:

µn(z) = E [(z − E [z])n] .

Putting it all together, we have:

1
SNR = .

N − 2 + µ4(βi)
σ4

β

EXAMPLE 17.1 Signal-to-noise ratio for additive Gaussian noise

For βi drawn from a Gaussian distribution, we have µ1 = 0, µ2 = σβ
2 , µ3 = 0, µ4 = 3σβ

4 ,
simplifying the above expression to:

1
SNR = .

N + 1

EXAMPLE 17.2 Signal-to-noise ratio for additive uniform noise

aFor βi drawn from a uniform distribution over [-a,a], we have µ1 = 0, µ2 =
2

= σβ
2 , µ3 = 3

a 9 σ40, µ4 =
4

= β , simplifying the above to: 5 5

1
SNR = .

N − 1
5

� Russ Tedrake, 2009 c

� �

Section 17.3 The Weight Pertubation Algorithm 107

Performance calculations using the SNR can be used to design the parameters of the
algorithm in practice. For example, based on these results it is apparent that noise added
through a uniform distribution yields better gradient estimates than the Gaussian noise case
for very small N , but that these differences are neglibile for large N .

Similar calculations can yield insight into picking the size of the additive noise
(scaled by σβ). The calculations in this section seem to imply that larger σβ can only
reduce the variance, overcoming errors or noise in the baseline estimator, ̃b; this is a short­
coming of our first-order Taylor expansion. If the cost function is not linear in the parame­
ters, then an examination of higher-order terms reveals that large σβ can increase the SNR.
The derivation with a second-order Taylor expansion is left for an exercise (Problem 3).

17.3.2 Weight Perturbation with an Estimated Baseline

The weight perturbation update above requires us to evaluate the function J twice for every
update of the parameters. This is low compared to the method of finite differences, but let
us see if we can do better. What if, instead of evaluating the function twice per update
[Jα+β and Jα], we replace the evaluation of Jα with an estimator, b = Ĵ(α), obtained
from previous trials? In other words, consider an update of the form:

Δα = − η [Jα+β − b]β (17.2)
σ2

β

The estimator can take any of a number of forms, but perhaps the simplest is based on the
update (after the nth trial):

b[n + 1] = γJ [n] + (1 − γ)b[n], b[0] = 0, 0 ≤ γ ≤ 1,

where γ parameterizes the moving average. Let’s compute the expected value of the up­
date, using the same Taylor expansion that we used above:

E[Δα] = −
η

E [Jα +
∂J

β − b]β
σ2 ∂α β

η � � ∂J T

= −
σ2 E [Jα − b] E [β] + E ββT

∂α β

T∂J
= − η

∂α

In other words, the baseline does not effect our basic result - that the expected update is
in the direction of the gradient. Note that this computation works for any baseline esti­
mator which is uncorrelated with β, as it should be if the estimator is a function of the
performance in previous trials.

Although using an estimated baseline doesn’t effect the average update, it can have
a dramatic effect on the performance of the algorithm. Although it is left as an exercise for
the reader (see Problem 2), the results are...

As we will see in a later section, if the evalution of J is stochastic, then the up­
date with a baseline estimator can actually outperform an update using straight function
evaluations.

c� Russ Tedrake, 2009

�

�

� �

108 Chapter 17 Model-free Policy Search

17.4 THE REINFORCE ALGORITHM

The weight perturbation algorithm used only additive noise in the parameters. It also as­
sumed that this noise was small and that J was smoothly differientable. More generally,
we can minimize the expected value of a scalar deterministic function y(z), where z is a
vector random variable which depends on α through the conditional probability density
function fz|α(z|α). Note that z = α + β, is a special case of this general form. Consider
the gradient of the expected value of y:

+∞∂ ∂
E [y] = y(z) fz|α(z|α)dz

∂α ∂α −∞
+∞ ∂

= y(z)fz|α(z|α) ln fz|α(z|α)dz
∂α −∞ � �T

∂
=E y(z) ln fz|α(z|α) ,

∂α

∂where the second line used the identity ln(z) = 1 . Therefore, the update for the REIN­∂z z
FORCE algorithm is:

� �T∂Δα = −η [y(x) − b] ln fx|α(x|α) (17.3)∂α

which will have the property that

∂
E [Δα] = −η E [y] .

∂α
This derivation generalizes our weight perturbation algorithm, removing the assumption
on small β and allowing more general forms for fx|α(x|α). The caveat is that the update
is only well-defined for probability densities which are smoothly differentiable in α.

EXAMPLE 17.3 REINFORCE with additive Gaussian noise

When x = α + β, β ∈ N(0, σ2), we have

1 −(x−α)T (x−α)

fx|α(x|α) = e 2σ2

(2πσ2)N

−(x − α)T (x − α)
ln fx|α(x|α) = + terms that don’t depend on α

2σ2

∂ 1 1
ln fx|α(x|α) = (α − x)T = βT .

∂α σ2 σ2

Therefore, the update
η

Δα = − y(α + β)β
σ2

will perform gradient descent (in expectation). Since

E [y(α)β] = y(α)E [β] = 0,

the update from Equation 17.1 will also perform stochastic gradient descent on y.

c� Russ Tedrake, 2009

� �

� �

� �

�

�

�

Section 17.5 Episodic REINFORCE 109

17.4.1 Optimizing a stochastic function

To generalize our weight perturbation results, now consider the case where y is not a de­
terministic function of x, but rather is described by the joint density function:

fy,x|α(y, x|α) = fy|x(y|x)fx|α(x|α).

Repeating the recipe above, we have:

+∞ +∞∂ ∂
E [y] = y(x)fy|x(y|x) fx|α(x, α)dxdy

∂α ∂α −∞ −∞
+∞ +∞ ∂

= y(x)fy|x(y|x)fx|α(x|α) ln fx|α(x|α)dxdy
∂α −∞ −∞ � �T

∂
=E y(x) ln fx|α(x|α) ,

∂α

Therefore, the weight perturbation algorithm derived still achieves stochastic gradient de­
scent despite stochasticity in y.

17.4.2 Adding noise to the outputs

17.5 EPISODIC REINFORCE

Evaluating our control system many times per trial. Can we do better by performing mul­
tiple perturbation “tests” during a single trial? Stochastic processes are harder (but not im­
possible) to define in continuous time, and our control systems are (mostly) implemented
on digital machines, so let’s discretize time.

N

Eα = g(x[n], u[n]),
n=0

subject to

u[n] = πα(x[n], n), x[n + 1] = f(x[n], u[n], n), x[0] = x0.

To match our previous derivation, let us rewrite this as

Eα(x̄, ū) = g(x[n], u[n]), and Pα(x̄, ū)

where x̄ = {x0, x1, ...xN } and ū = {u0, u1, ...uN }. The first task is to compute
∂ log Pα(x̄, ū).∂α

End up with a rule of the form

N

Δw = −η g(x, u)e(k),
n=0

where � �T

e(0) = 0, e(k + 1) =
∂

log Pα(x(k)) + e(k).
∂α

c� Russ Tedrake, 2009

� �

110 Chapter 17 Model-free Policy Search

17.6 INFINITE-HORIZON REINFORCE

17.7 LTI REINFORCE

17.8 BETTER BASELINES WITH IMPORTANCE SAMPLING

PROBLEMS

17.1. (MATLAB) Weight perturbation on a quadratic cost.

In this problem we will optimize a cost quadratic cost function using weight perturba­
tion.

T T y(α) =
1
α Aα, with A = A

2

(a)	 Simulate the weight perturbation algorithm for A = I2×2. Plot the values of
α at each iteration of the algorithm on top of the cost function, y. Your results
should resemble figure 17.1, which was made with these parameters. Try using
additive Gaussian noise, and additive uniform noise. How does the performance of
convergence depend on η? on σ2 ?β

(b)	 (Signal-to-noise ratio.) Estimate the signal-to-noise ratio of your weight pertuba­
tion update by holding α fixed and computing Δα for as many trials as are required
for your SNR statistics to converge. Using A = IN×N , make a plot of the SNR
for Gaussian and uniform additive noise as a function of N . Compare these plots
with the theoretical predictions.

17.2. Weight perturbation performance with a baseline estimator.

17.3. Weight perturbation - optimal noise calculations.

Use a second-order Taylor expansion...

∂J 1
y(α + β) = y(α) + β + βT hβ,

∂α 2

where h is the Hermitian of the function evaluated at α: ⎡ ⎤
∂2 y ∂2 y· · · ∂α1∂α1 ∂α1∂αN⎢⎢⎣

⎥⎥⎦T∂ ∂J
h = =

∂α ∂α
.

∂2 y ∂2 y· · · ∂αN ∂α1 ∂αN ∂αN

You may assume that the distribution on βi is symmetric about the mean, which zeros
all odd central-moments starting at µ3(βi) = 0.

c� Russ Tedrake, 2009

MIT OpenCourseWare
http://ocw.mit.edu

6.832 Underactuated Robotics
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

