
C H A P T E R 5 

Walking 

Practical legged locomotion is one of the fundamental unsolved problems in robotics. 
Many challenges are in mechanical design - a walking robot must carry all of it’s actuators 
and power, making it difficult to carry ideal force/torque - controlled actuators. But many 
of the unsolved problems are because walking robots are underactuated control systems. 

In this chapter we’ll introduce some of the simple models of walking robots, the 
control problems that result, and a very brief summary of some of the control solutions 
described in the literature. Compared to the robots that we have studied so far, our inves­
tigations of legged locomotion will require additional tools for thinking about limit cycle 
dynamics and dealing with impacts. 

5.1 LIMIT CYCLES 

A limit cycle is an asymptotically stable or unstable periodic orbit1. One of the simplest 
models of limit cycle behavior is the Van der Pol oscillator. Let’s examine that first... 

EXAMPLE 5.1 Van der Pol Oscillator 

q̈ + µ(q 2 − 1) ̇q + q = 0 

One can think of this system as almost a simple spring-mass-damper system, except that 
it has nonlinear damping. In particular, the velocity term dissipates energy when |q| > 1, 
and adds energy when |q| < 1. Therefore, it is not terribly surprising to see that the system 
settles into a stable oscillation from almost any initial conditions (the exception is the state 
q = 0, q̇ = 0). This can be seem nicely in the phase portrait in Figure 5.1(left). 
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FIGURE 5.1 System trajectories of the Van der Pol oscillator with µ = .2. (Left) phase 
portrait. (Right) time domain. 

1marginally-stable orbits, such as the closed-orbits of the undamped simple pendulum, are typically not called 
limit cycles. 
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Section 5.2 Poincaré Maps 43 

However, if we plot system trajectories in the time domain, then a slightly different 
picture emerges (see Figure 5.1(right)). Although the phase portrait clearly reveals that all 
trajectories converge to the same orbit, the time domain plot reveals that these trajectories 
do not necessarily synchronize in time. 

The Van der Pol oscillator clearly demonstrates what we would think of as a stable 
limit cycle, but also exposes the subtlety in defining this limit cycle stability. Neighboring 
trajectories do not necessarily converge on a stable limit cycle. In contrast, defining the 
stability of a particular trajectory (parameterized by time) is relatively easy. 

Let’s make a few quick points about the existence of closed-orbits. If we can define a 
closed region of phase space which does not contain any fixed points, then it must contain 
a closed-orbit[83]. By closed, I mean that any trajectory which enters the region will stay 
in the region (this is the Poincare-Bendixson Theorem). It’s also interesting to note that 
gradient potential fields (e.g. Lyapunov functions) cannot have a closed-orbit[83], and 
consquently Lyapunov analysis cannot be applied to limit cycle stability without some 
modification. 

5.2 POINCAR ́E MAPS 

One definition for the stability of a limit cycle uses the method of Poincaré. Let’s consider 
an n dimensional dynamical system, ẋ = f(x). Define an n − 1 dimensional surface of 
section, S. We will also require that S is tranverse to the flow (i.e., all trajectories starting 
on S flow through S, not parallel to it). The Poincaré map (or return map) is a mapping 
from S to itself: 

xp[n + 1] = P(xp[n]), 

where xp[n] is the state of the system at the nth crossing of the surface of section. Note 
that we will use the notation xp to distinguish the state of the discrete-time system from 
the continuous time system; they are related by xp[n] = x(tc[n]), where tc[n] is the time 
of the nth crossing of S. 

EXAMPLE 5.2 Return map for the Van der Pol Oscillator 

Since the full system is two dimensional, the return map dynamics are one dimensional. 
One dimensional maps, like one dimensional flows, are amenable to graphical analysis. To 
define a Poincare section for the Van der Pol oscillator, let S be the line segment where 
q̇ = 0, q > 0. 

If P(xp) exists for all xp, then this method turns the stability analysis for a limit cycle 
into the stability analysis of a fixed point on a discrete map. In practice it is often difficult 
or impossible to find P analytically, but it can be obtained quite reasonably numerically. 
Once P is obtained, we can infer local limit cycle stability with an eigenvalue analysis. 
There will always be a single eigenvalue of 1 - corresponding to perturbations along the 
limit cycle which do not change the state of first return. The limit cycle is considered 
locally exponentially stable if all remaining eigenvalues, λi, have magnitude less than one, 
|λi| < 1. 

In fact, it is often possible to infer more global stability properties of the return map 
by examining, P. [44] describes some of the stability properties known for unimodal maps. 
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FIGURE 5.2 (Left) Phase plot with the surface of section, S drawn with a black dashed 
line. (Right) The resulting Poincare first-return map (blue), and the line of slope one (red). 

A particularly graphical method for understanding the dynamics of a one-
dimensional iterated map is with the staircase method. Sketch the Poincare map and also 
the line of slope one. Fixed points are the crossings with the unity line. Asymptotically sta­
ble if |λ| < 1. Unlike one dimensional flows, one dimensional maps can have oscillations 
(happens whenever λ < 0). 

[insert staircase diagram of van der Pol oscillator return map here] 

5.3 THE BALLISTIC WALKER 

One of the earliest models of walking was proposed by McMahon[59], who argued that hu­
mans use a mostly ballistic (passive) gait. COM trajectory looks like a pendulum (roughly 
walking by vaulting). EMG activity in stance legs is high, but EMG in swing leg is very 
low, except for very beginning and end of swing. Proposed a three-link ”ballistic walker” 
model, which models a single swing phase (but not transitions to the next swing nor sta­
bility). Interestingly, in recent years the field has developed a considerably deeper appre­
ciation for the role of compliance during walking; simple walking-by-vaulting models are 
starting to fall out of favor. 

McGeer[55] followed up with a series of walking machines, called “passive dynamic 
walkers”. The walking machine by Collins and Ruina[26] is the most impressive passive 
walker to date. 

5.4 THE RIMLESS WHEEL 

The most elementary model of passive dynamic walking, first used in the context of walk­
ing by [55], is the rimless wheel. This simplified system has rigid legs and only a point 
mass at the hip as illustrated in Figure 5.3. To further simplify the analysis, we make the 
following modeling assumptions: 

•	 Collisions with ground are inelastic and impulsive (only angular momentum is con­
served around the point of collision). 

•	 The stance foot acts as a pin joint and does not slip. 

•	 The transfer of support at the time of contact is instantaneous (no double support 
phase). 
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FIGURE 5.3 The rimless wheel. The orientation of the stance leg, θ, is measured clockwise 
from the vertical axis. 

• 0 ≤ γ < π , 0 < α < π , l > 0.2 2 

Note that the coordinate system used here is slightly different than for the simple pendulum 
(θ = 0 is at the top, and the sign of θ has changed). 

The most comprehensive analysis of the rimless wheel was done by [24]. 

5.4.1 Stance Dynamics 

The dynamics of the system when one leg is on the ground are given by 

¨ θ = 
g 

sin(θ). 
l 

If we assume that the system is started in a configuration directly after a transfer of support 
(θ(0+) = γ − α), then forward walking occurs when the system has an initial velocity, 
θ̇(0+) > ω1, where 

ω1 = 2 
g 

[1 − cos (γ − α)]. 
l 

ω1 is the threshold at which the system has enough kinetic energy to vault the mass over 
the stance leg and take a step. This threshold is zero for γ = α and does not exist for 
γ > α. The next foot touches down when θ(t) = γ + α, at which point the conversion of 
potential energy into kinetic energy yields the velocity 

θ̇(t
g−) = θ̇2(0+) + 4 sin α sin γ. 
l 

t− denotes the time immediately before the collision. 

5.4.2 Foot Collision 

The angular momentum around the point of collision at time t just before the next foot 
collides with the ground is 

L(t−) = −ml2θ̇(t−) cos(2α). 
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46 Chapter 5 Walking 

The angular momentum at the same point immediately after the collision is 

L(t+) = −ml2θ̇(t+). 

Assuming angular momentum is conserved, this collision causes an instantaneous loss of 
velocity: 

θ̇(t+) = θ̇(t−) cos(2α). 

The deterministic dynamics of the rimless wheel produce a stable limit cycle solu­
tion with a continuous phase punctuated by a discrete collision, as shown in Figure 5.4. 
The red dot on this graph represents the initial conditions, and this limit cycle actually 
moves counter-clockwise in phase space because for this trial the velocities were always 
negative. The collision represents as instantaneous change of velocity, and a transfer of the 
coordinate system to the new point of contact. 
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FIGURE 5.4 Phase portrait trajectories of the rimless wheel (m = 1, l = 1, g = 9.8, α = 
π/8, γ = 0.08). 

5.4.3 Return Map 

We can now derive the angular velocity at the beginning of each stance phase as a func­
tion of the angular velocity of the previous stance phase. First, we will handle the case 
where γ ≤ α and θ̇+ > ω1. The “step-to-step return map”, factoring losses from a single n 
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Section 5.4 The Rimless Wheel 47 

collision, the resulting map is: 

θ̇+ = cos(2α) (θ̇n 
+)2 + 4 

g 
sin α sin γ.n+1 l 

where the θ̇+ indicates the velocity just after the energy loss at impact has occurred. 
Using the same analysis for the remaining cases, we can complete the return map. 

The threshold for taking a step in the opposite direction is 

ω2 = − 2 
g 
[1 − cos(α + γ)]. 

l 

For ω2 < θ̇+ < ω1, we haven 
θ̇+ = −θ̇+ cos(2α).n+1 n 

Finally, for θ̇+ < ω2, we haven 

θ̇+ (θ̇+ g
= − cos(2α) n )2 − 4 sin α sin γ.n+1 l 

Notice that the return map is undefined for θ̇ 
n = {ω1, ω2}, because from these 

configurations, the wheel will end up in the (unstable) equilibrium point where θ = 0 and 
θ̇ = 0, and will therefore never return to the map. 

This return map blends smoothly into the case where γ > α. In this regime, ⎧ ⎪⎪⎨cos(2α) (θ̇n 
+)2 + 4 g sin α sin γ, 0 ≤ θ̇+ 

l n 

θ̇+ −θ̇+= n+1 n cos(2α), 

− cos(2α) (θ̇n 
+)2 − 4 g sin α sin γ, θ̇+ ≤ w2l n 

ω2 < θ̇+ 
n < 0 . ⎪⎪⎩ 

Notice that the formerly undefined points at {ω1, ω2} are now well-defined transitions with 
ω1 = 0, because it is kinematically impossible to have the wheel statically balancing on a 
single leg. 

5.4.4 Fixed Points and Stability 

For a fixed point, we require that θ̇+ = θ̇+ = ω∗ . Our system has two possible fixedn+1 n 
points, depending on the parameters: 

ω ∗ = 0, ω ∗ = cot(2α) 4 
g 

sin α sin γ.stand roll l 

The limit cycle plotted in Figure 5.4 illustrates a state-space trajectory in the vicinity of 
the rolling fixed point. ω∗ is a fixed point whenever γ < α. ω∗ is a fixed pointstand roll 
whenever ω∗ > ω1. It is interesting to view these bifurcations in terms of γ. For small roll 
γ, ωstand is the only fixed point, because energy lost from collisions with the ground is not 
compensated for by gravity. As we increase γ, we obtain a stable rolling solution, where 
the collisions with the ground exactly balance the conversion of gravitational potential 
to kinetic energy. As we increase γ further to γ > α, it becomes impossible for the 
center of mass of the wheel to be inside the support polygon, making standing an unstable 
configuration. 
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FIGURE 5.5 Limit cycle trajectory of the rimless wheel (m = 1, l = 1, g = 9.8, α = 
π/8, γ = 0.15). All hatched regions converge to the rolling fixed point, ω∗ ; the white roll

regions converge to zero velocity (ω∗ ).stand

5.5 THE COMPASS GAIT 

The rimless wheel models only the dynamics of the stance leg, and simply assumes that 
there will always be a swing leg in position at the time of collision. To remove this assump­
tion, we take away all but two of the spokes, and place a pin joint at the hip. To model 
the dynamics of swing, we add point masses to each of the legs. For actuation, we first 
consider the case where there is a torque source at the hip - resulting in swing dynamics 
equivalent to an Acrobot (although in a different coordinate frame). 
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FIGURE 5.6 The compass gait 
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Section 5.6 The Kneed Walker 49 

In addition to the modeling assumptions used for the rimless wheel, we also assume 
that the swing leg retracts in order to clear the ground without disturbing the position of the 
mass of that leg. This model, known as the compass gait, is well studied in the literature 
using numerical methods [36, 81], but relatively little is known about it analytically. 

The state of this robot can be described by 4 variables: θst, θsw, θ̇ 
st, and θ̇ 

sw. The 
abbreviation st is shorthand for the stance leg and sw for the swing leg. Using q = 
[θsw, θst]T and u = τ , we can write the dynamics as 

H(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, 

with 

mb2 − mlb cos(θst − θsw)
H = 2−mlb cos(θst − θsw) (mh + m)l2 + ma

0 mlb sin(θst − θswC =
)θ̇ 

st 

mlb sin(θst − θsw)θ̇ 
sw 0 

mbg sin(θsw)
G = ,−(mhl + ma + ml)g sin(θst) 

1
B = −1 

and l = a + b. These equations come straight out of [37]. 
The foot collision is an instantaneous change of velocity governed by the conserva­

tion of angular momentum around the point of impact: 

+ −Q+(α)q̇ = Q−(α)q̇ , 

where 

−mab − mab + (mhl2 + 2mal) cos(2α)
Q−(α) = 0 − mab 

mb(b − l cos(2α)) ml(l − b cos(2α) + ma2 + mhl2 
Q+(α) = 

mb2 − mbl cos(2α) 

θsw −θstand α = 2 . 
Numerical integration of these equations reveals a stable limit cycle, plotted in Fig­

ure 5.7. The cycle is composed of a swing phase (top) and a stance phase (bottom), punc­
tuated by two instantaneous changes in velocity which correspond to the ground collisions. 
The dependence of this limit cycle on the system parameters has been studied extensively 
in [37]. 

The basin of attraction of the stable limit cycle is a narrow band of states surrounding 
the steady state trajectory. Although the simplicity of this model makes it analytically 
attractive, this lack of stability makes it difficult to implement on a physical device. 

5.6 THE KNEED WALKER 

To achieve a more anthropomorphic gait, as well as to acquire better foot clearance and 
ability to walk on rough terrain, we want to model a walker that includes knee[41]. For 
this, we model each leg as two links with a point mass each. 
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FIGURE 5.7 Limit cycle trajectory of the compass gait. (m = 5kg,mh = 10kg,a = b = 
0.5m,φ = 0.03deg. x(0) = [0, 0, 2, −0.4]T ). θlP itch is the pitch angle of the left leg, 
which is recovered from θst and θsw in the simulation with some simple book-keeping. 
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FIGURE 5.8 The Kneed Walker 

At the beginning of each step, the system is modeled as a three-link pendulum, like 
the ballistic walker[59, 58, 81]. The stance leg is the one in front, and it is the first link of 
a pendulum, with two point masses. The swing leg has two links, with the joint between 
them unconstrained until knee-strike. Given appropriate mass distributions and initial con­
ditions, the swing leg bends the knee and swings forward. When the swing leg straightens 
out (the lower and upper length are aligned), knee-strike occurs. The knee-strike is mod­
eled as a discrete inelastic collision, conserving angular momentum and changing veloci­
ties instantaneously. 
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Section 5.6 The Kneed Walker 51 

After this collision, the knee is locked and we switch to the compass gait model with 
a different mass distribution. In other words, the system becomes a two-link pendulum. 
Again, the heel-strike is modeled as an inelastic collision. After the collision, the legs 
switch instantaneously. After heel-strike then, we switch back to the ballistic walker’s 
three-link pendulum dynamics. This describes a full step cycle of the kneed walker, which 
is shown in Figure 5.9. 

2-link dynamics

3-link dynamics

Knee-strike Heel-strike

FIGURE 5.9 Limit cycle trajectory for kneed walker 

By switching between the dynamics of the continuous three-link and two-link pendu­
lums with the two discrete collision events, we characterize a full point-feed kneed walker 
walking cycle. After finding appropriate parameters for masses and link lengths, a stable 
gait is found. As with the compass gait’s limit cycle, there is a swing phase (top) and a 
stance phase (bottom). In addition to the two heel-strikes, there are two more instanta­
neous velocity changes from the knee-strikes as marked in Figure 5.10. This limit cycle is 
traversed clockwise. 
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5.7 NUMERICAL ANALYSIS 

A note on integrating hybrid systems and/or evaluating return maps. The dynamics are 
often very sensitive to the switching plane. Often a good idea to back up integration to 
attempt to find collisions and transitions very accurately. MATLAB can handle this nicely 
with zero-crossings in the ODE solvers. 

5.7.1 Finding Limit Cycles 

You can find asymptotically stable limit cycles by integrating forward the ODE (until 
t → ∞), as long as you can guess an initial condition inside the basin of attraction. This 
convergence rate will depend on the convergence rate around the fixed point and could be 
inefficient for complex systems, and guessing initial conditions is difficult for systems like 
the compass gait. This method won’t work for finding unstable limit cycles. 

Remember that a fixed point on the Poincare map: 

xp[n + 1] = P(xp[n]), 

is simply a zero-crossing of the (vector-valued) function 

P(xp[n]) − xp[n + 1]. 

Therefore, an efficient way to obtain the fixed points numerically is to use an algorithm 
which finds the zero-crossings by a Newton method[16, 67]2. These methods can be dra­
matically more efficient if one can efficiently estimate the gradient of the Poincare map. 

Gradients of the Poincare map. 
The Poincare map is defined by integrating the continuous dynamics, � −t [n+1]c − + +x(t [n + 1]) = x(t [n]) + f(x(t))dt, x(t [n]) = xp[n]c c c 

+tc [n] 

then applying the (discrete) impact dynamics 

+ −xp[n + 1] = x(t [n + 1]) = F(x(t [n + 1])),c c 

where tc[k] is the time of the kth collision, and t− indicates just prior to the collision c 
and t+ is just after the collision. In order to estimate the gradients of the Poincare map, c
 
dxp[n+1]
 , we must take a little care in handling the effects of initial conditions on the time dxp[n] 

(and therefore the state) of collision (using the chain rule). Linearizing about a trajectory 
x0(t), xp0 [n] with impacts at tc0 [n], we have: 

dxp[n + 1] ∂F(x) ∂x(t) dtc[n + 1] 
= + f(x)

dxp[n] ∂x ∂xp[n] dxp[n] − −t=t [n+1],x=x0(t [n+1])c0 c0 

The switching dynamics are defined by the zeros of scalar collision function, φ(t, x). Al­
though these dynamics are time-varying in general (e.g., moving obstacles), for the rimless 

2I hand it to SNOPT as a constraint. 
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Section 5.7 Numerical Analysis 53 

wheel the collision function can be as simple as φ(x) = sgn(θ̇)(θ − γ) − α. This collision 
[n+1]function allows us to compute dtc :dxp[n] 

−dφ(tc[n + 1], x(t [n + 1]) ∂φ(t, x) dx(t) ∂x(t) dtc[n + 1] ∂φ(t, x) dtc[n + 1] c = 0 = + + 
dxp[n] ∂x dxp[n] ∂t dxp[n] ∂t dxp[n] − −t=t [n+1],x=x(t [n+1])c0 c0⎡ ⎤ 

∂φ(t,x) ∂x(t)
dtc[n + 1] ⎣ ∂x ∂xp[n] ⎦= − 

∂φ(t,x) + ∂φ(t,x)dxp[n] f(x)∂t ∂x − −t=t [n+1],x=x(t [n+1])c0 c0 

∂x(t)The final step, computing ∂xp[n] , can be done with a standard gradient calcu­
−t=t [n+1]c0 

lation - see section 12.3.2 for the update. 

EXAMPLE 5.3 Fixed points of the rimless wheel 

Bifurcation diagram (as a function of slope) from computational search. Show that it agrees 
with analytical solution. 

EXAMPLE 5.4 Fixed points of the compass gait 

Bifurcation diagram (as a function of slope) - computational only. 

5.7.2 Local Stability of Limit Cycle 

In practice, the local stability analysis of a limit cycle is done by taking the derivatives 
around the fixed point of the return map. Again, this is often accomplished using numerical 
derivatives. Perturb the system in one direction at a time, evaluate the map and build the 
matrix ... From Goswami [37]. The eigenvalues of the derivative matrix of the Poincaré 
map, λi are called the characteristic or Floquet multipliers[83]. 

∂P 
x ∗ + δ1 = P(x ∗ + δ0) ≈ P(x ∗) + δ0. 

∂x x ∗ 

∂P 
δ1 ≈ δ0. 

∂x x ∗ 

A fixed point is stable if the n − 1 non-trivial eigenvalues of this matrix are |λi| < 1. 
Trivial multipliers vs. Non-trivial multipliers. Expect one trivial multiplier of 0, or 

1 (which reveal the dynamics of a perturbation along the limit cycle orbit). 
∂PA standard numerical recipe for estimating is to perturb the system by a very ∂x 

small amount at least n times, once in each of the state variables, and watching the re­
sponse. Be careful - your perturbation should be big enough to not get into integration 
errors, but small enough that it stays in the ”linear regime”. A good way to verify your 
results is to perturb the system in other directions, and other magnitudes, in an attempt to 
recover the same eigenvalues. In general, the matrix ∂P can be reconstructed from any ∂x 
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number of sampled trajectories by solving the equation ⎡ ⎤ ⎡ ⎤ 
| | | |

2
0 

1
0

2
1 

1
1

|
δm 
1 

|
δm 
0 

∂P⎣ ⎦ = ⎣ ⎦δ δ δ δ· · · · · · 
∂x ∗| | | | | |x 

in a least-squares sense, where δi
 

power!).
 
Lyapunov exponent. There is at least one quantifier of limit cycle (or trajectories, 

in general) stability that does not depend on the return map. Like a contraction mapping ­
perturb original trajectory in each direction, bound recovery by some exponential[83]. 

�δ(t)� < �δ(0)e At�. 

The eigenvalues of A are the Lyapunov exponents. Note that for a stable limit cycle, 
the largest Lyapunov exponent will be 1 (like the trivial floquet multiplier), and it is the 

0

remaining exponents that we will use to evaluate stability. 

PROBLEMS 

5.1. (CHALLENGE) Closed-form solution for the rimless wheel. 

We have a closed-form expression for the return map, but can you find a solution for the 
entire return map dynamics? Given θ̇[0], directly compute θ̇[n] for any n. This would 
involve solving the quadratic difference equation. 

5.2. (CHALLENGE) Deadbeat control of the compass gait. 

Find a hip torque policy that produces a (locally) deadbeat controller. 

is the i-th perturbation (not a perturbation raised to a 
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