CHAPTER A

Robotics Preliminaries

A.1 DERIVING THE EQUATIONS OF MOTION (AN EXAMPLE)

The equations of motion for a standard robot can be derived using the method of Lagrange.
Using T as the total kinetic energy of the system, and U as the total potential energy of the
system, L =T — U, and @), as the generalized force corresponding to ¢;, the Lagrangian
dynamic equations are:

d oL 0L

dtdg; 9

= Q.

If you are not comfortable with these equations, then any good book chapter on rigid body
mechanics can bring you up to speed'; for now you can take them as a handle that you can
crank to generate equations of motion.

EXAMPLE A.1 Simple Double Pendulum

FIGURE A.1 Simple Double Pendulum

Consider the system in Figure A.1 with torque actuation at both joints, and all of
the mass concentrated in two points (for simplicity). Using q = [0, 602]7, and x1, x5 to

ITry [27] for a very practical guide to robot kinematics/dynamics, [35] for a hard-core dynamics text or [85]
for a classical dynamics text which is a nice read
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denote the locations of m, mo, respectively, the kinematics of this system are:

X1 = |:1181 :| s XQ:X1+ |:l281+2 :|
—11(31

%1 = [Zlqlcl] . %o =%+ [12(‘11 + dz)cHz]

L1151 l2(41 + 42)s142

Note that s; is shorthand for sin(q1), ¢142 is shorthand for cos(q; + g2), etc. From this
we can easily write the kinetic and potential energy:

1. . . .
T :fxlelxl + fXQngxQ

2 2
1 . 1 . . L. .
:§(m1 + mz)l%(ﬁ + *mzlg(fh + Q2)2 + malilagi (41 + ¢2)c2

2
U =migy1 + magys = —(m1 + ma)glici — maglaciiz
Taking the partial derivatives g—;, %’ and S‘% ((% terms are always zero), then %g—;,

and plugging them into the Lagrangian, reveals the equations of motion:

(m1 +ma)l3d1 + mal3 Gy + G2) + malila(2G: + G2)ea
— mal1l2(2¢1 + §2)dasa + (m1 + m2)ligs1 + maglasite =7
mal3 (G + G2) + malilagica + maliladi so + maglasi o = T

Numerically integrating (and animating) these equations in MATLAB produces the ex-
pected result.

A.2 THE MANIPULATOR EQUATIONS

If you crank through the Lagrangian dynamics for a few simple serial chain robotic manip-
ulators, you will begin to see a pattern emerge - the resulting equations of motion all have
a characteristic form. For example, the kinetic energy of your robot can always be written

in the form:

1

where H is the state-dependent inertial matrix. This abstraction affords some insight into
general manipulator dynamics - for example we know that H is always positive definite,
and symmetric[7, p.107].

Continuing our abstractions, we find that the equations of motion of a general robotic
manipulator take the form

H(q)q + C(q,4)q + G(q) = B(q)u,
where q is the state vector, H is the inertial matrix, C captures Coriolis forces, and G

captures potentials (such as gravity). The matrix B maps control inputs u into generalized
forces.
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EXAMPLE A.2 Manipulator Equation form of the Simple Double Pendulum

The equations of motion from Example 1 can be written compactly as:

my + mo)lZ + mal2 4+ 2molilacs  mol2 + malylsc
H(q):{(l 2)1 202 20102C2 202 20102C2

mglg + molilaco mgl%
N 0 —malila(2¢1 + ¢2)s2
Cla.q) = |:m2l1l24132 0
| (ma +ma)lis1 + malasiio
G(q) _g |: m2l251+2

Note that this choice of the C matrix was not unique.

The manipulator equations are very general, but they do define some important char-
acteristics. For example, q is (state-dependent) linearly related to the control input, u. This
observation justifies the form of the dynamics assumed in equation 1.1.
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