
6.832 Midterm 

Name: 

April 22, 2009 

Please do not open the test packet until you are asked to do so. 

•	 You will be given 90 minutes to complete the exam. 

•	 Please write your name on this page, and on any additional pages that are in 
danger of getting separated. 

•	 We have left workspace in this booklet. Scrap paper is available from the staff. 
Any scrap paper should be handed in with your exam. 

•	 YOU MUST WRITE ALL OF YOUR ANSWERS IN THIS BOOKLET (not the scrap 
paper). 

•	 The test is open notes. 

•	 The test is out of 30 points. 

Good luck! 
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Problem 1 (Optimal control of the simple pendulum) (8 points total) Consider the 
following four phase portraits, θ-histories and u-histories which are the result of vari­
ous closed-loop policies being executed on the simple pendulum: 

1) 

2) 

3) 

4) 
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Match the closed-loop dynamics above with the following candidate control methods. 
In each case, explain what features of the plot allowed you to determine the algorithm 
and cost function which generated it (8 points): 

a) Feedback linearizing controller which inverts gravity. 

Matching Trajectory (1-4):


Justification:


b) Miniminum-time cost function, solved with finely discretized value iteration 

Matching Trajectory (1-4):


Justification:


c) Quadratic regulator cost, with torque-limits imposed but not used in the con­
troller design, solved with value iteration. 

Matching Trajectory (1-4):


Justification:


d) Minimum-time cost function, solved with direct collocation. 

Matching Trajectory (1-4):


Justification:
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Problem 2 (Pendubot) (7 points total) The Pendubot is the companion system to the

Acrobot - a two-link arm with an actuator at the shoulder but no actuator at the elbow.
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The equations of motion are: 

(I1 + I2 + m2l
2 + 2m2l1lc2c2)q̈1 + (I2 + m2l1lc2c2)q̈2 − 2m2l1lc2s2q̇1q̇21 

= τ−m2l1lc2s2q̇2
2 + (m1lc1 + m2l1)gs1 + m2gl2s1+2


(I2 + m2l1lc2c2)q̈1 + I2q̈2 + m2l1lc2s2q̇1
2 + m2glc2s1+2 = 0,


where I1, I2 are the moments of inertia of the first and second links, respectively, about 
the pivots, m1,m2 are the masses, l1, l2 are the lengths, lc1, lc2 are the distances from 
the pivots ot the center of mass, g is gravity, and s1, ... are the usuals short-hands for 
sin(q1), .... 

a) (4 points) Is there any configuration of the pendubot in which non-collocated 
partial feedback linearization will fail? If so, which configurations, and why? 
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b) (3 points) Consider a change of coordinates to an “absolute frame”. The new 
coordinates are given as ψ1 = q1 and ψ2 = q1 + q2. In this new frame, the 
equations of motion are: 

(I1 + m2l1
2 + m2l1lc2c2−1)ψ̈ 

1 + (I2 + m2l1lc2c2−1)ψ̈ 
2 

−m2l1lc2s2−1(ψ̇1
2 + ψ̇2

2) + (m1lc1 + m2l1)gs1 + m2gl2s2 = τ 

m2l1lc2c2−1ψ̈ 
1 + I2ψ̈ 

2 + m2l1lc2s2−1ψ̇1
2 + m2glc2s2 = 0. 

Our goal is now to control ψ2. Does the system represented by this new coor­
dinate frame have any configurations in which non-collocated partial feedback 
linearization will fail? If there are any differences between the two coordinate 
frames, explain why. (Also note that c2−1 now means cos(ψ2 − ψ1)). 

7 



6.832 Midterm, Spring 2009 Name: 

This page intentionally left blank for workspace 

8




6.832 Midterm, Spring 2009 Name: 

θ

l

m

γ

2α

g

Problem 3 (Control of a Rimless Wheel) (15 points total) Consider a modified ver­
sion of the rimless wheel, where the length of the spokes can be changed (all simultane­
ously) by a single motor, which applies a radial force, f . The kinetic, T , and potential, 
U , energies of the system are given by 

T =
1 
m(l̇2 + l2θ̇2), U = mgl cos(θ).

2

The resulting equations of motion during the stance phase are, 

ml2θ ̈+ 2mll̇θ̇ − mgl sin θ = 0 

m ̈  l − mlθ̇2 + mg cos θ = f, 

where f is the force applied to change the length of the leg (positive force extends the 
leg). The impact conditions do not change; to keep the impact dynamics simple we will 
assume that the legs are instantaneously clamped (l̇ = 0) at the impact. This results in 
the impact dynamics: 

+ +θ̇(tc ) = θ̇(tc
−) cos(2α), l̇(tc ) = 0. 

At the impact, θ is also reset to the coordinate system of the new stance leg. For 
reference, you may wish to observe that the distance (chord length) between two feet is 
2l sin(α). 

a) (5 points) Design an energy-shaping controller which drives the rimless wheel 
into it’s vertical (inverted-pendulum balancing) configuration. 

(i) Give a feedback law for the stance phase, [f =?]. Make sure you consider 
the case when l̇ = 0. 

(ii) Give the resulting energy dynamics in the stance phase, [ Ė =?]. 

(iii) The impacts will add or remove energy from the system. Describe, in words, 
any additional constraints that this puts on your feedback design. 
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b) (3 points) Can we stabilize the upright balancing configuration with feedback? 

(i) Linearize the dynamics around the upright fixed point and write the equa­
tions in the form ẋ̄ = Ax̄ + Bū. For simplicity, you may set all parameters 
to one: m = l = g = 1. 

(ii) Compute the controllability matrix for this system. Is it controllable at the 
fixed point? Can you give an intuitive reason for your answer? 
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c) (4 points) Design a controller which drives the system to a desired rolling fixed 
point defined by θ̇(t+) = ω∗ 

dc > 0. 

(i) If we design a controller such that the leg length is constant on the nominal 
limit cycle, l(t) = l∗, like in the passive rimless wheel, what must this leg 
length be? Your answer should be in the form [l∗ =?] and be in terms of 

.the system parameters and w∗ 

(ii) Give a feedback controller, [f =?], which stabilizes this rolling fixed point. 
You may assume that at the initial conditions that θ̇(0) > 0 and E(0) > 
mgl∗. 

(iii) Is your controller a dead-beat controller? If so, for what choice of parame­
ters? If not, is it possible to produce a dead-beat controller for this problem 
(answer this part with a sentence or two explanation - there is no need to 
design the controller)? 

d
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d) (3 points) Optimal control algorithms 

(i) If we wished to find feedback control law, f = π(x) for this problem with 
value iteration, using N bins per state variable, then how many total bins 
would be required? Are their any major potential concerns of this ap­
proach? 

(ii) If we wished to use value iteration to find a find a feedback control law 
on the Poincare map (decisions made once per step), using N bins per 
dimension, then how many total bins would be required? (This could be 
implemented with [ld, l̇  

d] = π(xp), where ld and l̇  
d are tracked by a PD 

controller inside the step). How are the concerns for this approach different 
that in part i? 

(iii) Could we use a shooting method to optimize the nominal trajectory of this 
system? 
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