
6.832 - Underactuated Robotics Practice Problems, Spring 2009 

Problem 1 (Numerical Optimal Control Algorithms) An ice skater is skating 
around a pond that has several weak spots in the ice. The equations of motion are: 

v̇ =u1, (1) 
¨ θ =u2. (2) 

where 

ẋ = −v cos θ, (3) 
ẏ = −v sin θ. (4) 

Note that this enforces a nonholonomic “skating” constraint which effectively prevents 
the skate from slipping sideways across the ice. 

The red line gives the optimal trajectory when they are trying to get from point (a,b) 
to (0, 0) while minimizing a quadratic cost g(x, u) = 12 x

T Qx + 12 u
T Ru. 

a) Is value iteration likely to find a policy such that when simulated from (a, b), 
the trajectory it produces closely approximates the optimal trajectory? Does it 
depend on the coarseness of the mesh, and if so, how? How many dimensions 
must you tile over for this problem? 

b) Is a shooting method likely to find a trajectory that closely approximates the 
optimal trajectory? What issues might you run into if you initialize the method 
with a random trajectory? 

c) Would direct collocation likely find a trajectory that closely approximates the 
optimal trajectory? How does it depend on the spacing between state/action 
pairs? How does it depend on the initial trajectory? 
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Problem 2 (PFL) Please answer the following questions about partial feedback lin­
earization. 

Three masses are attached by springs and dampers as shown in the accompanying 
figure, and have the following equations of motion: 

q̈1 =u − kq1 + kq2, (5) 
q̈2 =kq1 − 2kq2 + kq3 − bq̇2 + bq̇3, (6) 
q̈3 =kq2 − kq3 + bq̇2 − bq̇3. (7) 

a) What is the expression for the collocated PFL input u = f(x, q̈1desired) in which 
you attempt to linearize the control of mass 1? 

b) Is it possible to perform a noncollocated PFL of mass 3? Why or why not? If it 
is possible, give the u = f(x, q̈3desired) that accomplishes the PFL. 

c) What if you wish to control h(x) = q3 − q1? Is this possible, and if it is, give the 
¨ u = f(x, hdesired) that accomplishes the PFL. 
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Problem 3 (Dynamic Programming with Continuous Actions) In this prob­
lem we’ll explore a variant of the discrete dynamic programming algorithm, where 
we avoid discretizing the action space (but still discretize state and time). Consider a 
mechanical system described by the manipulator equations: 

H(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)u, 

and an quadratic regulator instantaneous cost function: 

1 1 
g(x, u) = xT Qx + uT Ru.

2 2 

a) Rewrite the discrete-time dynamics of the system in the form 

x[n + 1] = f(x[n], u[n]), 

where the discretization is done by Euler integration (z[n + 1] = z[n] + żdt). 

b) The discrete-time dynamic programming equation is 

J∗(x, n) = min [g(x, u) + J∗(f(x, u), n + 1)] , 
u 

u∗(x, n) = arg min [g(x, u) + J∗(f(x, u), n + 1)] . 
u 

Assuming only that J∗(x, n) is smoothly differentiable, compute the update for 
u∗ analytically in terms of H, C, G, B, Q, R, J, ∂J and dt (your answer should ∂x 
not have any min in it). 

c) Using your answer from part (b), compute the continuous-state, continuous ac­
tion update 

J(x, n) =?. 

Again, your answer should be in terms of H, C, G, B, Q, R, J, ∂J and dt, and ∂x 
should not have any min in it. 

Note: The final step, which we omit here for brevity, is discretizing x into a finite set 
of states s, and converting the update equations appropriately. The result is a numer­
ical variant of dynamic programming that (for some problems) avoids discretizing the 
action space. 
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