
6.832 - Underactuated Robotics Problem Set 2, Spring ’09 

This problem set is due by 11:59pm on Tuesday, March 3.     
      

Problem 1 (Value Iteration on the Double Integrator) In this problem, we’ll recon›
sider the optimal control problem on the double integrator (aka, unit mass brick on 
ice), described by 

q̈ = u, 

using the Value Iteration algorithm. An implementation of that algorithm is available 
for you in the file brick_vi.m, which is available for download on the course web-
site. This is a complete implementation of the algorithm with discrete actions and vol›
umetric interpolation over state; you only need to define the mesh location, the action 
set, and the cost function. 

a) Use value iteration to compute the optimal policy and optimal cost-to-go for the 
minimum-time problem. Submit your code and the resulting plots. Is it different 
from the analytical solution we found in lecture? Explain. 

b) Use value iteration to compute the optimal policy and optimal cost-to-go for the 
quadratic regulator problem, using the cost function 

1 1 1 
g(q, q, u˙ ) = Qpq 2 + Qdq̇

2 + Ru2 .
2 2 2 

You should appropriately set the gains Qp, Qd, R to achieve the task. Submit 
your code and the resulting plots. How does this compare to the analytical solu›
tion from lecture? 

c) Design a new cost function which causes the optimally controlled brick to os›
cillate stably (in a stable limit cycle), rather than stabilizing a fixed point. Note 
that, because the value iteration solves infinite-horizon problems (and assumes 
that the optimal policy/cost-to-go do not depend on time), your cost function 
cannot depend on time. Submit your cost function, plots of the resulting policy 
and cost-to-go functions, and convincing trajectories from the simulation with 
the optimal policy. 

Although we will not require it for this assignment, you should note that this code 
can be easily edited if you wish to examine optimal control solutions for the simple 
pendulum, or any other two-dimensional problem. Extending it to higher dimensions 
will require a slightly more general implementation of the volumetric interpolation. 
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Problem 2 (Pontryagin Minimum Principle) Consider a 2D robotic submarine with 
a position given by (x, z). Assume that the submarine is operating in a very viscous 
medium, yielding first-order dynamics, and that the control input is the pitch θ, encoded 
such that u = tan(θ) = dz/dx (this encoding is used simply to make the mathematics 
more tractable). We will assume that the thrust is always a constant, and that the 
environment’s resistance to motion (viscosity), varies inversely with z-position, and 
that gravitational effects are negligible, resulting in equations of motion: 

ẋ = z cos(θ) 
ż = z sin(θ) 
θ = tan−1(u) 

Our goal for this problem is to obtain the minimum-time trajectory for the submarine 
to get from a position (0, a) to a position (X, b). 

x

(X,b)

θ

z

(0,a)

The trick for solving the problem simply will be to reparameterize the trajectory in 
terms of x, instead of time. We will therefore assume that the robot will not backtrack 
(− π 

2 < θ < π 
2 ). Let us proceed with the optimal control derivation using the following 

steps: 

a) Compute the time taken to travel from an x-position x0 to x0 + dx as a function 
of u and z (you should be able to cancel all θ’s). Then write the total time (this 
will be the minimum-time cost function) as a definite integral over x with limits 
of 0 and X . The integrand should be a function of only u and z. 

b) Compute the dynamics of the system z with respect to x (eg, ∂z = ...).∂x 

c) Now, give the Hamiltonian for this problem and the adjoint equation. Hint: To 
see things in the more standard form, you might literally replace the x in your 
dynamics equation and your cost function with a t (it’s perfectly legal). 

d) Recalling that the Hamiltonian must be constant throughout the optimal trajec›
tory for problems of this form (i.e., problems where the cost is not a function of 
the parameterizing coordinate, which is in this case x), give a differential equa›
tion that defines the optimal trajectory (and thus the optimal policy u∗(x)). You 
don’t have to worry about the specific values of any constants. 

e) Either through simulating or examining the equation, what form of curve does 
this differential equation describe? Can you give the equation of this curve? 
Again, don’t worry about the values of any constants which may appear. 
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Problem 3 (Swing-Up and Balance for the Cart-Pole System) In this problem we’ll 
implement the energy-based swing-up and LQR balancing controllers for the cart-pole 
system. You can start by downloading cartpole.m from the course website. For all 
parts, use the system parameters: mc = 10kg, mp = 1kg, l = 0.5m, g = 9.8m/s2 . 

a)	 Controllability. Linearize the dynamics of the cart-pole system about the desired 
fixed point, x∗ = [0, π, 0, 0]T , u∗ = 0. Is this linear system controllable? Show 
your work. 

b)	 Balancing. Implement LQR to stabilize the desired fixed point. Submit the re›
sulting LQR policy, and trajectories of the nonlinear system following this policy. 
Explore the basin of attraction of this controller and define a coarse (conserva›
tive) approximation of this basin that will define your switching surface (note ›
we are not asking for any detailed basin of attraction analysis). 

Hint: In addition to using the lqr command in Matlab, you might consider 
using dlqr which will explicitly take into account the discreteness of your inte›
gration step. 

c)	 Swing-Up. Implement the energy-based swing-up controller described in lec›
ture. Using the switching law you defined in part (b), have your controller 
switch to the LQR solution for balancing at the top. Submit your control code, 
and a plot of the trajectory which takes the system from x = [0, 0, 0, 0]T to 
x = [0, π, 0, 0]T . 
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