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This is Password Engine, an iPhone app (http://appshopper.com/utilities/password-engine). Its 

purpose is to generate passwords 

This UI has some simplicity challenges. The screen is packed and complex. Are all these 

features necessary? Do we need “Other Criteria”? The very name suggests unimportance. Why 

are these features on the main screen, instead of bundled off to an Options screen?  And once 

you bundle a feature off to Options, where many users won’t even find it, it’s important to ask 

whether you need it at all. Aggressive removal of features that are unnecessary to the user’s task 

is a great way to improve usability. 

The UI also has some learnability challenges. What should be done first? There’s no natural 

ordering in a screen as complex as this. 

What about the Save and Revert buttons? This app has taken the interesting approach that the 

user has to explicitly save any changes to options– and yet it isn’t using the conventional dialog 

pattern to do that (i.e., a temporary window with OK/Cancel buttons). This is likely to lead to 

lapses on the part of the user – failures to remember to save – so the app goes to extra effort to 

make changes visible (see the message “No Changes to Save”). Unfortunately this message is 

hardly salient – it’s unlikely to be in the user’s attention.  Fewer things on the screen would 

make it more salient; but even better would be either automatic save or a less error-prone dialog 

structure. 
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This lecture continues the stream on research methods. Our last lecture in the stream concerned 

experiment design -- how to design controlled experiments to answer a research question. 

Today’s lecture is about the second part of that process, how to analyze the data from the 

experiment to determine the answer to the question. We’ll discuss the principles of hypothesis 

testing, which is the basis for analysis. We’ll talk about a cheap and easy way to get a feel for 

your data, by graphing it with error bars, which is not hypothesis testing but is always good 

practice to do anyway.  And we’ll discuss two statistical tests commonly used in HCI research: 

the t test and the ANOVA (Analysis of Variance) test.  

This is only a very brief introduction to statistical methods and experiment analysis. There’s 

much more to be said on this topic, which is outside the scope of this class. There are other 

good MIT classes that cover it in much more depth, particularly 9.07 Statistical Methods in 

Brain & Cognitive Sciences and 16.470/ESD.756 Statistical Methods in Experimental Design. 

Also see statistics.mit.edu/, a clearinghouse site for classes and research in statistics at MIT. 
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Let’s return to the example we used in the experiment design lecture.  Suppose we’ve conducted 

an experiment to compare the position of the Mac menubar (flush against the top of the screen) 

with the Windows menubar (separated from the top by a window title bar). 

For the moment, let’s suppose we used a between-subjects design. We recruited users, and each 

user used only one version of the menu bar, and we’ll be comparing different users’ times. For 

simplicity, each user did only one trial, clicking on the menu bar just once while we timed their 

speed of access. (Doing only one trial is a very unreliable experiment design, and an expensive 

way to use people, but we’ll keep it simple for the moment.) 

The results of the experiment are shown above (times in milliseconds; note that this is fake, 

randomly-generated data, and the actual experiment data probably wouldn’t look like this).  Mac 

seems to be faster (574 ms on average) than Windows (590 ms).  But given the noise in the 

measurements – some of the Mac trials are actually much slower than some of the Windows 

trials -- how do we know whether the Mac menubar is really faster? 

This is the fundamental question underlying statistical analysis: estimating the amount of 

evidence in support of our hypothesis, even in the presence of noise. 
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Here’s the basic process we follow to determine whether the measurements we made support the 

hypothesis or not. 

We summarize the data with a statistic (which, by definition, is a function computed from a set 

of data samples). A common statistic is the mean of the data, but it’s not necessarily the only 

useful one. Depending on what property of the process we’re interesting in measuring, we may 

also compute the variance (or standard deviation), or median, or mode (i.e., the most frequent 

value). Some researchers argue that for human behavior, the median is a better statistic than the 

mean, because the mean is far more distorted by outliers (people who are very slow or very fast, 

for example) than the median. 

Then we apply a statistical test that tells us whether the statistics support our hypothesis. Two 

common tests for means are the t test (which asks whether the mean of one condition is different 

from the mean of another condition) and ANOVA (which asks the same question when we have 

the means of three or more conditions). 

The statistical test produces a p value, which is the probability that the difference in statistics 

that we observed happened purely by chance. Every run of an experiment has random noise; the 

p value is basically the probability that the means were different only because of these random 

factors. Thus, if the p value is less than 0.05, then we have a 95% confidence that there really is 

a difference. (There’s a more precise meaning for this, which we’ll get to in a bit.) 
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Let’s talk about a simple, rough method for judging whether an experiment might support its hypothesis or 
not, if the statistics you’re using are means. 

The standard error of the mean is a statistic that measures how close the mean statistic you computed is 
likely to be to the true mean. The standard error is computed by taking the standard deviation of the 
measurements and dividing by the square root of n, the number of measurements. (This is derived from 
the Central Limit Theorem of probability theory: that the sum of N samples from a distribution with mean 
u and variance V has a probability distribution that approaches a normal distribution, i.e. a bell curve, 
whose mean is Nu and whose variance is V. Thus, the average of the N samples would have a normal 
distribution with mean u and variance V/n. Its standard deviation would be sqrt(V/N), or equivalently, the 
standard deviation of the underlying distribution divided by sqrt(n).) 

The standard error is like a region of likelihood around the computed mean – the region around the 
computed mean in which the true mean of the process probably lies. Think of the computed mean as a 
random selection from a normal distribution (bell curve) around the true mean; it’s randomized because of 
all the uncontrolled variables and intentional randomization that you did in your experiment. With a 
normal distribution, 68% of the time your random sample will be within +/-1 standard deviation of the 
mean; 95% of the time it will be within +/- 2 standard deviations of the mean. The standard error is the 
standard deviation of the mean’s normal distribution, so what this means is that if we draw an error bar 
one standard error above our computed mean, and one standard error below our computed mean, then that 
interval will have the true mean in it 68% of the time. It is therefore a 68% confidence interval for the 
mean. 

To use the standard error technique, draw a bar chart of the means for each condition, with error bars 
(whiskers) stretching 1 standard error above and below the top of each bar.  If we look at whether those 
error whiskers overlap or are substantially different, then we can make a rough judgement about whether 
the true means of those conditions are likely to be different.  Suppose the error bars overlap – then it’s 
possible that the true means for both conditions are actually the same – in other words, that whether you 
use the Windows or Mac menubar design makes no difference to the speed of access.  But if the error bars 
do not overlap, then it’s likely that the true means are different. 

The error bars can also give you a sense of the reliability of your experiment, also called the statistical 
power. If you didn’t take enough samples – too few users, or too few trials per user – then your error bars 
will be large relative to the size of the data.  So the error bars may overlap even though there really is a 
difference between the conditions.  The solution is more repetition – more trials and/or more users – in 
order to increase the reliability of the experiment. 
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Plotting your data is the first step you should do after every experiment, to eyeball your results 
and judge whether statistical testing is worthwhile, or whether you need more data. It’s said that 
John Tukey, the Stanford statistician who gave his name to one of the statistical tests we’ll be 
talking about, refused to help anybody who hadn’t first gone off and plotted their data on a big 
piece of paper.  Tukey’s excellent book Exploratory Data Analysis introduced the notion of a 
“box plot” (shown here on the right) which is even richer than a simple bar with error whiskers, 
showing 5 useful statistics about the spread of each data set in a single graphic. Don’t discount 
the value of your perceptual system for detecting patterns and really appreciating the size of 
effects. 

If you want to publish the results of your experiment, you’ll need to do some statistical tests as 
well, like the t tests or ANOVAs we’ll talk about in the rest of this lecture.  But your paper 
should still have plots with error bars in it. Some researchers even argue that the error-bar plots 
are more valuable and persuasive than the statistical tests (G.R. Loftus, “A picture is worth a 
thousand p values: On the irrelevance of hypothesis testing in the microcomputer age,” Behavior 
Research Methods, Instruments & Computers, 1993, 25(2), 250—256), though this view is far 
from universally held. 

Be warned that nonoverlapping error bars is only a rough indicator; it does not imply a 
statistically significant difference (i.e., p < 0.05).  For that, you have to actually do the t test or 
ANOVA test, which is what we’ll turn to now. (For more explanation, see Harvey Motulsky, 
“The link between error bars and statistical significance”, http://www.graphpad.com/articles/ 
errorbars.htm, 2002; and Dave Munger, “Most researchers don’t understand error bars,” http:// 
scienceblogs.com/cognitivedaily/2008/07/most_researchers_dont_understa_1.php#more, March 
2007.) 
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R is a good choice for a lot of statistical processing, because it’s free and very powerful.  A good 

introduction to R is online at http://cran.r-project.org/doc/manuals/R-intro.html. 

Here’s how you can use R to create simple bar charts with error bars.  The “error.bar” function is 

actually not part of R by default, but there’s a nice function that draws them here: 

http://monkeysuncle.stanford.edu/?p=485 
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Our hypothesis is that the position of the menubar makes a difference in time.  Another way of 

putting it is that the (noisy) process that produced the Mac access times is different from the 

process that produced the Windows access times.  Let’s make the hypothesis very specific: that 

the mean access time for the Mac menu bar is less than the mean access time for the Windows 

menu bar. 

In the presence of randomness, however, we can’t really prove our hypothesis. Instead, we can 

only present evidence that it’s the best conclusion to draw from all possible other explanations.  

We have to argue against a skeptic who claims that we’re wrong.  In this case, the skeptic’s 

position is that the position of the menu bar makes no difference; i.e., that the process producing 

Mac access times and Windows access times is the same process, and in particular that the mean 

Mac time is equal to the mean Windows time.  This hypothesis is called the null hypothesis. In 

a sense, the null hypothesis is the “default” state of the world; our own hypothesis is called the 

alternative hypothesis. 

Our goal in hypothesis testing will be to accumulate enough evidence – enough of a difference 

between Mac times and Windows times – so that we can reject the null hypothesis as very 

unlikely. 
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Here’s the basic idea behind statistical testing.  We boil all our experimental data down to a 

single statistic (in this case, we’d want to use the difference between the average Mac time and 

the average Windows time).  If the null hypothesis is true, then this statistic has a certain 

probability distribution. (In this case, if H0 is true and there’s no difference between Windows 

and Mac menu bars, then our difference in averages should be distributed around 0, with some 

standard deviation). 

So if H0 is really true, we can regard our entire experiment as a single random draw from that 

distribution. If the statistic we computed turned out to be a typical value for the H0 distribution 

– really near 0, for example – then we don’t have much evidence for arguing that H0 is false.  

But if the statistic is extreme – far from 0 in this case – then we can quantify the likelihood of 

getting such an extreme result. If only 5% of experiments would produce a result that’s at least 

as extreme, then we say that we reject the null hypothesis – and hence accept the alternative 

hypothesis H1, which is the one we wanted to prove – at the 5% significance level. 

The probability of getting at least as extreme a result given H0 is called the p value of the 

experiment. Small p values are better, because they measure the likelihood of the null 

hypothesis. Conventionally, the p value must be 5% to be considered statistically significant, 

i.e. enough evidence to reject. But this convention depends on context. An experiment with 

very few trials (n<10) may be persuasive even if its p value is only 10%. (Note that a paper 

reviewer would expect you to have a good reason for running so few trials that the standard 5% 

significance wasn’t enough…)  Conversely, an experiment with thousands of trials won’t be 

terribly convincing unless its p value is 1% or less. 

Keep in mind that statistical significance does not imply importance.  Suppose the difference 

between the Mac menu bar and Windows menu bar amounted to only 1 millisecond (out of 

hundreds of milliseconds of total movement time). A sufficiently large experiment, with enough 

trials, would be able to detect this difference at the 5% significance level, but the difference is so 

small that it simply wouldn’t be relevant to user interface design. 
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Let’s look at some of the more common statistical tests that are used in user interface 

experiments. 

The T test is what you’d use to compare two means in a between-subjects experiment, like the 

hypothetical Mac/Windows menubar experiment we’ve been discussing.  The T statistic 

computes the difference between the Mac average and the Windows average, divided by an 

estimate of the standard deviation. If the null hypothesis is true, then this statistic follows a T 

distribution (which looks very similar to a normal distribution, a hump centered at 0). You can 

look up the value of the T statistic you computed in a table of the T distribution to find out the 

probability of getting a more extreme value. 

There are two forms of the T test, with different alternative hypotheses.  In the more 

conservative, two-sided T test, your alternative hypothesis is merely that the means are different, 

so an extreme t value (either positive or negative) counts as evidence against the null hypothesis. 

The other form is the one-sided test, in which your alternative hypothesis expects the difference 

to go one way or the other – e.g., if there’s any difference between Mac and Windows at all, the 

Mac should be faster.  It’s conventional to use the two-sided test unless you (and the skeptic 

you’re arguing against) are completely certain which way the difference should go, if the 

difference exists at all. 

Using the T test requires a few assumptions.  First, your samples should be independent, so you 

need to use good experiment design with randomization and controls to prevent inadvertent 

dependence between samples. Second, the T test also assumes that the underlying probability 

distribution of the samples (e.g., the access times) is a normal distribution, and that even if the 

alternative hypothesis is true, both samples have equal variance. Fortunately the T test is not too 

sensitive to the normality and equal-variance assumptions: if your sample is large enough (N > 

20), deviations don’t affect it much.  There’s also an “unequal variances” version of the T test, 

which uses a slightly different statistic, but with weaker assumptions come less power (i.e., it 

takes a larger N to reach the same level of significance with the unequal variances T test). 
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The actual calculation of the t statistic and the proof that it’s a valid test are beyond the scope of 
this course; the statistics courses mentioned earlier cover it. In practice, nobody computes their 
own t statistic; they use a statistical package to do the computations. So for the sake of this 
class, we’ll focus on understanding when to use a t test (that was the last slide), and then how to 
read the report of the test produced by a stats package. For these examples, we’re using 
Microsoft Excel and R. Other tools are mentioned at the end of lecture. 

Here’s the result of applying the t test (assuming equal variances) to the small Windows/Mac 
menubar experiment we’ve been using. The report shows the computed means for each sample 
(589.8 for Windows, 573.9 for Mac), which is what we’re actually testing.  We can also compute 
standard error from this report (by taking the square root of Variance/Observations).  Degrees of 
freedom, or df, is a measure of the power of the test; it’s directly related to the number of 
observations you have (n-2 in this case, but different tests vary).  T Stat is the actual t statistic 
value computed from your data. T Critical are the minimum values of the t statistic that would 
give you statistical significance at the 5% level (which is what I chose as my desired  
significance level when I ran the test).  

The most important numbers are highlighted in yellow – the p values produced by the test.  
Excel runs both the one-tail and two-tail versions of the t test for you, and displays the p value  
for each one. (The one-tailed test always has half the p value of the two-tailed test.) Note that  
you should not pick and choose which test to run after seeing this report; you should choose  
your statistical test before you even run the experiment and collect the data.  

In this case, the two-tailed t test had p value 0.75, which means that the difference in means 
between the Windows sample and the Mac sample was 75% likely to happen by pure chance 
even if the Windows and Mac conditions actually had the same true mean (the null hypothesis).  
That’s way too high a chance, so we say that this data showed no significant difference between 
the Windows and Mac menubars (two-tailed t=0.336, df=6, p = 0.75). The part in parentheses 
is important when you’re writing this result in a paper – it gives the type of statistical test used 
(two-tailed t), the actual value of the statistic (0.336), the degrees of freedom, and the resulting 
p value. (Many researchers would omit it for a failing test like this one, but it’s essential to 
include it when the test succeeds). 
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Here’s another experiment that had more observations (10 samples per condition instead of just 

4), so its statistical power is greater.  The p value for the two-tailed t test is now 0.047, which 

means that the observed difference between the Windows and Mac menubar is only 4.7% likely 

to happen purely by chance. Assuming we decided to use a 5% significance level from the 

outset, we would now say that the difference is statistically significant (two-tailed t = 2.13, df = 

18, p < 0.05). Often researchers will write just “p<0.05” or “p<0.01” instead of giving the actual 

p value. 
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Running a t test in R to compare two conditions, represented as vectors of numbers, is almost 

trivial. For more information, look at http://www.statmethods.net/stats/ttest.html 
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There’s another way to run this t test in R, which we’ll look at because it introduces an important 

concept that we’ll need for more sophisticated tests in a bit: a factor. A factor is a vector of 

values of a categorical independent variable. In this case, the menubar condition can be either 

win or mac, so we first construct a vector of strings (10 “win” and 10 “mac”, matching the 20 

measurements in the vector time), and then convert it from a vector of strings into a factor of 

enumerated values. 

Once we’ve used a factor to identify the two groups in our t test, we can run the t test against an 

explicit model of the process. That’s what time ~ menubar means: that we believe that time 

depends on the (two-valued variable) menubar, and we want the t test to test this model against 

the null hypothesis that time is independent of menubar. 

17 



What if we had run a within-subjects experiment instead? Then we would need to compare 

each subject with themselves, by computing the difference between each subject’s Macintosh 

access time and the same subject’s Windows access time. We would then use a t test for the 

hypothesis that the mean of these differences is nonzero, against the null hypothesis that the 

mean of the differences is zero.  This test is called a paired t test. 

Why is a paired t test more powerful? Because by computing the difference within each user, 

we’re canceling out the contribution that’s unique to the user.  That means that individual 

differences between users are no longer contributing to the noise (variance) of the experiment. 
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Here’s an analysis of a within-subjects menubar experiment.  Each subject did a trial on each 

menubars (counterbalanced to control for ordering effects, so half the subjects used the Windows 

menubar first and half used the Mac menubar first). The data is ordered by subject, so subject 

#1’s times were 625ms for the Windows menubar and 647ms for the Mac menubar. The t test is 

actually applied to the differences (e.g., 625 – 647 = -22 for subject 1).  The p value for the two-

tailed t test is now 0.025, which means that the observed difference between the Windows and 

Mac menubar is only 2.5% likely to happen purely by chance. So we would be justified in 

concluding that the difference is statistically significant. 
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Here’s how to run the same test in R.  See http://www.statmethods.net/stats/ttest.html  
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So far we’ve only looked at one independent variable (the menu bar position) with only two 

levels tested (Mac position and Windows position).  If you want to test means when you have 

more than one independent variable, or more than two levels, you can use ANOVA (short for 

Analysis of Variance). 

One-way ANOVA (also called “single factor ANOVA”) addresses the case where you have more 

than two levels of the independent variable that you’re testing. For example, suppose we wanted 

to test a third menu bar position at the bottom of the screen. Then we’d have three samples: top 

(Mac), below title (Windows), and bottom.  One-way ANOVA can simultaneously compare all 

three means against the null hypothesis that all the means are equal. 

ANOVA works by weighing the variation between the independent variable conditions (Mac vs. 

Windows vs. bottom) against the variation within the conditions (which is due to other factors 

like individual differences and random noise).  If the null hypothesis is true, then the 

independent variable doesn’t matter, so dividing up the observations according to the 

independent variable is merely an arbitrary labeling. Thus, assuming we randomized our 

experiment properly, the variation between those arbitrary groups should be due entirely to 

chance, and identical to the random variation within each group. So ANOVA takes the ratio of 

the between-group variation and the within-group variation, and if this ratio is significantly 

greater than 1, then that’s sufficient evidence to argue that the null hypothesis is false and the 

independent variable actually does matter. 

Like the t test, ANOVA also assumes that the samples are independent, normally distributed, and 

have equal variance. 
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Here’s an example of running an ANOVA test.  The fictitious experiment here is a between-

subjects experiment with three conditions: Windows menubar, Mac menubar, and menubar at 

bottom of screen. These three “groups” of samples are labeled Windows, Mac, and Bottom.  

The table at the top simply shows some useful summary statistics about the samples in each 

group (count, sum, average, variance). The table at the bottom is the crucial part. SS shows the 

sum of the squared deviations from the mean, which is how ANOVA measures how broadly a 

sample varies. The within-groups SS uses the deviation of each sample from its group’s mean, 

so the first Windows sample would contribute (625-584.0)2 to the within-groups SS. The 

between-groups SS replaces each sample with its group’s mean and then uses the deviation of 

these group mean from the overall mean of all samples; so the same Windows sample would 

contribute (584.0-531.5)2 to the between-groups SS. df is the degrees of freedom of each SS 

statistic, and MS is the mean sum of squared deviations (SS/df). Finally the F statistic is the 

ratio of the between-groups MS and the within-groups MS. It is this ratio that tells us whether 

there is more variation between the three menubar conditions than within the samples for each 

(due to other random uncontrolled variables, like user differences).  If the F statistic is 

significantly greater than 1, then the p-value will show significance. F crit is the critical value 

of the F statistic above which the p value would be less than 5%. 

In this case, the p value is 0.04, so we say that there is a significant difference between the three 

menubars (one-way ANOVA, F2,27=3.693, p < 0.05). Note that degrees of freedom for the F 

statistic are usually shown as subscripts, as shown. 

(It turns out that ANOVA is equivalent to the t test when the number of conditions is 2; in that 

case, the F statistic used in ANOVA is related to the t statistic simply as F=t2, and you get the 

same p value from both tests.) 
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Here’s how we do the same thing in R.  Note that our menubar factor now has three different 

values in it (win, mac, btm). The aov function (“analysis of variance”) does the test, and returns 

an object with the results. If we just display that object directly, however, it doesn’t give us the 

information we want, like the F statistic and the p value. We have to use the summary() function 

to get out the critical stuff.  See http://www.statmethods.net/stats/anova.html 
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Within-subjects ANOVAs are possible in R, but require more information.  First, we need to 

create a factor for the subject – which subject provided each measurement? That factor now 

becomes one of the independent variables of the experiment. But when we write the model, we 

use this factor not as part of the process, but in a special Error term, as shown. 

http://www.statmethods.net/stats/anova.html 
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So the ANOVA test told us that the choice of menubar affects time. But how?  By itself the test 
doesn’t say which differences are significant.  Is Windows significantly worse than the other 
two, but Mac and Bottom are basically the same? Or are all three different from each other?  
Graphing with error bars can give a rough answer; it looks like Mac and Bottom are within their 
error bars of each other, while Windows is beyond.  For a statistical test of this question, we can 
use the Tukey HSD (Honestly Significant Difference) test, which is also sometimes called the 
Tukey post-hoc test. 

Not every stats package can do this test (Excel can’t), but there are web sites that do, and the 
calculation of the Tukey statistic uses data that is already included in an ANOVA report (like the 
means for each group, the within-group degrees of freedom, and the within-group MS), so it’s 
straightforward. The larger the Tukey statistic is, the better.  In this case (for n=10 and df=27), 
the critical value for 5% significance is roughly 3.5. None of the pairwise comparisons reach 
that level, so even though we can say that the choice of menubar significantly affected time at a 
5% level, we don’t have enough evidence to say that the Windows menubar was actually worse 
at the 5% level. 

Why don’t we just apply a t test between each pair of conditions?  That’s a risky thing to do.  
Statistical testing is only sound when you apply just one test to any given set of data. Roughly 
speaking, any given test has a 5% chance of lying to you and indicating a significant difference 
at the 5% level even when there isn’t one.  (Statisticians call this a “type I error.”) The more tests 
you do, the more likely you are to fall into this trap. This is why you need to choose your 
statistical tests before you collect your data, rather than just dredge around through the data 
afterwards to see what tests work. Sometimes experimenters plan to run multiple tests on the 
same data; when they do this, however, they use a stricter level of significance than 5% for each 
test, so that the overall (“familywise”) risk of making the type I error is still bounded by 5%. 
This stricter significance is called “Bonferroni adjustment”; you’ll see it in seriously empirical 
HCI papers from time to time. 

The Tukey HSD test is an example of a post-hoc test, one that you didn’t originally plan to run 
(because your decision to run it was triggered by the successful ANOVA), and so you didn’t 
adjust your significance level for it. So the Tukey test is designed to be much more stringent 
than a t test – you need bigger differences in your data to get 5% significance.  You may have 
noticed that the data in all these fake experiments happens to be identical – but where the t test 
comparing Win vs. Mac was significant, the Tukey HSD test was not. 
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ANOVA can be extended to multiple independent variables, by looking at the variation between 

different levels of one independent variable (while holding the other independent variable 

constant). This is two-way  (or two-factor) ANOVA. 

Two-way ANOVA can be used to analyze a within-subjects experiment, where one independent 

variable is the variable we were testing (e.g. menubar position), while the other independent 

variable is the user’s identity. 

This can really only be done in a real stats package like R – Excel and online statistical 

caluclators don’t support multiway ANOVAs.  See http://www.statmethods.net/stats/anova.html 

for more about how to do it in R. 
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http://www.statmethods.net/stats/anova.html  
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The t test and ANOVA are designed for cases where your independent variable is discrete-

valued (e.g. two or three menubar conditions) and your dependent variable is a scalar quantity 

(in fact, a normally distributed scalar). This is very common, but other kinds of variables 

sometimes appear in UI experiments. 

When both variables are discrete-valued, you end up visualizing your data as a table of 

occurrence frequencies (called a contingency table) rather than a bar graph. There are two 

statistical tests for this kind of relationship: the Fisher exact test works best when the numbers 

are small (some frequencies in the table are less than 10) and the table is 2x2 (i.e., each variable 

has only two possible values). It can be computed for larger table sizes, but not by hand.  The 

chi-square test is more suitable for large table dimensions, and when the frequencies in each cell 

are big enough (all greater than 5). Excel doesn’t have these tests, but the web does. 

When both variables are scalar, the right tool is regression.  If our menubar experiment varied 

the starting distance from the menu, for example, and measured the time to access, then we 

might use regression to “fit a model” to the data that actually quantifies the relationship between 

these two variables – i.e., that time varies with the log of starting distance. Regression can do 

this fitting, and tell us how well the model fits the data (the analog of statistical significance for 

hypothesis testing) as well as the constant factors of the relationship. Regression is beyond the 

scope of this class (get it in a statistical methods course), but you’ll see it from time to time in 

empirical HCI papers, particularly work on low-level input like Fitts’s Law. 
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There are many free calculators on the web for running simple t tests, ANOVAs, and the other 

tests mentioned in this lecture. Search for “T test calculator” and “ANOVA calculator”, for 

example, to find good ones. The calculators only really need summary statistics about your data 

(means, standard deviations, counts), which you can easily compute yourself in a spreadsheet, so 

it isn’t necessary to enter all your data in a web form. 

Microsoft Excel also has some support for the common tests. It requires installing the optional 

Analysis Toolpak (go to Options/Add-ins/Manage Excel Add-ins); once installed, go to the Data 

tab and look for the Data Analysis button. 

Full-fledged stats applications have much richer support for these tests, at the cost of a greater 

learning curve. MIT has some discounts for SPSS and Stata.  There’s also a free GNU stats 

system called R which is rapidly growing in popularity. 
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For next time: Flash designers love to reimplement scrollbar widgets – and they do it wrong. 

We’ll pick on http://spotfire.tibco.com/Demo/. What parts of the scrollbar did they get right, and 

what parts did they get wrong? 
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