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Today’s candidate for the Hall of Fame & Shame is the Alt-Tab window switching interface in 

Microsoft Windows.  This interface has been copied by a number of desktop systems, including 

KDE, Gnome, and even Mac OS X. 

For those who haven’t used it, here’s how it works.  Pressing Alt-Tab makes this window appear.  As 

long as you hold down Alt, each press of Tab cycles to the next window in the sequence.  Releasing 

the Alt key switches to the window that you selected. 

We’ll discuss this example in class.  Here are a few things to think about: 

- how learnable is this interface? 

- what about efficiency? 

- what kinds of errors can you make, and how can you recover from them? 

My comments:  

The first observation to make is that this interface is designed only for keyboard interaction. Alt-Tab  

is the only way to make it appear; pressing Tab (or Shift-Tab) is the only way to cycle through the  

choices. If you try to click on this window with the mouse, it vanishes. The interface is weak on  

affordances, and gives the user little help in remembering how to use it.   

But that’s OK, because the Windows taskbar is the primary interface for window switching,  

providing much better visibility and affordances. This Alt-Tab interface is designed as a shortcut,  

and we should evaluate it as such.  

It’s pleasantly simple, both in graphic design and in operation. Few graphical elements, good  

alignment, good balance. The 3D border around the window name could probably be omitted  

without any loss.  

This interface is a mode (since pressing Tab is switching between windows rather than inserting tabs  

into text), but it’s spring-loaded, happening only as long as the Alt button is held down.  

Is it efficient? A common error, when you’re tabbing quickly, is to overshoot your target window.   

You can fix that by cycling around again, but that’s not as reversible as just moving backwards with  

a mouse. (You can also back up by holding down Shift when you press Tab, but that’s not well- 

communicated by this interface, and it’s tricky to negotiate while you’re holding Alt down.)  
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For comparison, we’ll also look at the Exposé feature in Mac OS X. When you push F9 on a Mac, it displays  

all the open windows – even hidden windows, or windows covered by other windows – shrinking them as  

necessary so that they don’t overlap.  Mousing over a window displays its title, and clicking on a window  

brings that window to the front and ends the Exposé mode, sending all the other windows back to their old  

sizes and locations.  

My comments:  

Like Alt-Tab, Exposé is also a mode. Unlike Alt-Tab, however, it is not spring-loaded.  It depends instead on  

dramatic visual differences as a mode indicator – with its shrunken, tiled windows, Exposé mode usually looks  

a lot different than the normal desktop.  

To get out of Exposé mode without choosing a new window, you can press F9 again, or you can click the  

window you were using before. That’s easier to discover and remember than Alt-Tab’s mechanism – pressing  

Escape. When I use Alt-Tab, and then decide to abort it, I often find myself cycling through all the windows  

trying to find my original window again. Both interfaces support user control and freedom, but Exposé  

seems to make canceling more efficient.  

The representation of windows is much richer in Exposé than Alt-Tab (at least on Windows XP).  Rather than  

Alt-Tab’s icons (many of which are identical, when you have several documents open in the same application),  

Exposé uses the window itself as its visual representation. That’s much more in the spirit of direct  

manipulation. (The version of Alt-Tab included in Windows Vista now shows images of the windows  

themselves – try it!)  

Let’s look at efficiency more deeply.  Alt-Tab is a very linear interface – to pick an arbitrary window out of the  

n windows you have open, you have to press Tab O(n) times. Exposé, on the other hand, depends on pointing –  

so because of Fitts’s Law, the cost is more like O(log n).  (Of course, this analysis only considers motor  

movement, not visual search time; it assumes you already know where the window you want is in each  

interface. But Exposé probably wins on visual search, too, since the visual representation shows the window  

itself, rather than a frequently-ambiguous icon.)  

But Alt-Tab is designed to take advantage of temporal locality; the windows you visited recently are at the  

start of the list. So even if Exposé is faster at getting to an arbitrary window, Alt-Tab really wins on one very  

common operation: toggling back and forth between two windows.  
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We’ve seen that UI design is iterative – that we have to turn the crank several times to achieve good 

usability.  How do we get started? How do we acquire information for the initial design? 

Today’s lecture is about the process of collecting information about users and their tasks, which is 

the first step in user-centered design.  We’ll talk about four key steps: 

User analysis: who is the user?  

Task analysis: what does the user need to do?  

Domain analysis: what is the context the user works in (the people and things involved)?  

Requirements analysis: what requirements do the preceding three analyses impose on the  

design?  
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The reason for user analysis is straightforward: since you’re not the user, you need to find out who  

the user actually is.  

User analysis seems so obvious that it’s often skipped.  But failing to do it explicitly makes it easier  

to fall into the trap of assuming every user is like you. It’s better to do some thinking and collect  

some information first.  

Knowing about the user means not just their individual characteristics, but also their situation. In  

what environment will they use your software? What else might be distracting their attention? What  

is the social context? A movie theater, a quiet library, inside a car, on the deck of an aircraft carrier;  

environment can place widely varying constraints on your user interface.  

Other aspects of the user’s situation include their relationship to other users in their organization, and  

typical communication patterns. Can users ask each other for help, or are they isolated? How do  

students relate differently to lab assistants, teaching assistants, and professors?  
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Many, if not most, applications have to worry about multiple classes of users.  

Some user groups are defined by the roles that the user plays in the system: student, teacher, reader,  

editor.    

Other groups are defined by characteristics: age (teenagers, middle-aged, elderly); motivation (early  

adopters, frequent users, casual users). You have to decide which user groups are important for your  

problem, and do a user analysis for every class.  

The Olympic Message System case study we saw in a previous lecture identified several important  

user classes by role.  
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One popular technique for summarizing user classes is to give each user class a fictional 

representative, with typical characteristics and often a little back story.  These representatives are 

called personas. 

Personas are useful shorthand for a design group; you can say things like “let’s think about how 

Yoshi would do this”, rather than a mouthful like “non-English-speaking athlete.”  They also help 

focus attention on typical members of the user class, rather than extremes. And by putting a human 

face on a user class, albeit an imaginary one, they can encourage you to have more empathy for a 

user class that’s very different from your own.  (Alan Cooper, The Inmates are Running the Asylum, 

1999). 

Some cautions: a badly-chosen persona, an extreme case, won't help focus on the typical user. And 

it's shorthand, so you're abstracting away the richness and diversity of the user class into a specific 

example. It's not too bad for scalar properties like age or education level, where a mean or median 

value has some meaning, but what do you do for categorical properties like gender? Say you have a 

user class that's 35% male and 65% female. Do you use a female persona, at the risk of ignoring the 

guys? Or do you split it into two user classes, and run the risk of designing for gender differences 

that really aren't relevant? 

Personas are essentially stereotypes. Technically, you want a persona to be a stereotype; it should 

typify its user class. But we all know the dehumanizing effects of stereotyping, so you also want the 

persona to be like a human being, an individual that you respect and love. So each persona implicitly 

has two parts: the stereotypical part, and the "color" we added to make it a real person. For example, 

Franny is an 8-year old child (typical of some user class), who happens to be a girl, lives in Chicago, 

and likes drawing bunnies and mushroom clouds (but those parts aren't typical for the class, nor do 

they really matter for our design). Everybody on the design team has to implicitly know what part of 

the persona matters and what doesn't. 
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Who are the users in Piazzza?  
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The best way to do user analysis is to find some representative users and talk to them. 

Straightforward characteristics can be obtained by a questionnaire. Details about context and 

environment can be obtained by interviewing users directly, or even better, observing them going 

about their business, in their natural habitat. 

Sometimes it can be hard to reach users. Software companies can erect artificial barriers between 

users and developers, supposedly for their mutual protection. After all, if users know who the 

developers are, they might pester them with bugs and questions about the software, which are better 

handled by tech support personnel. The marketing department may be afraid to let the developers 

interact with the users – not only because geeks can be scary (and sometimes obnoxious), but also 

because usability discussions may make customers dissatisfied with the current product. (“I hadn’t 

noticed it before, but that DOES suck!”) But this isn’t a good idea.  Developers should interact with 

users, if only so that they learn that their users are intelligent human beings with real goals, not just 

idiots who can’t find the Any key. 

Some users are also expensive to find and talk to. Nevertheless, make every effort to collect the 

information you need. A little money spent collecting information initially should pay off 

significantly in better designs and fewer iterations. 
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The next step is figuring out what tasks are involved in the problem. A task should be expressed as a  

goal: what needs to be done, not how.  

One good way to get started on a task analysis is hierarchical decomposition. Think about the  

overall problem you’re trying to solve. That’s really the top-level task.  Then decompose it into a set  

of subtasks, or subgoals, that are part of satisfying the overall goal.  
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Once you’ve identified a list of tasks, fill in the details on each one. Every task in a task analysis 
should have at least these parts. 

The goal is just the name of the task, like “send an email message.” 

The preconditions are the conditions that must be satisfied before it’s reasonable or possible to 
attempt the task. Some preconditions are other tasks in your analysis; e.g., before you can listen to 
your messages in the Olympic Message System, you first have to log in. Other preconditions are 
information needs, things the user needs to know in order to do the task. For example, in order to 
send an email message, I need to know the email addresses of the people I want to send it to; I may 
also need to look at the message I’m replying to. 

Preconditions are vitally important to good UI design, particularly because users don’t always satisfy 
them before attempting a task, resulting in errors. Knowing what the preconditions are can help you 
prevent these errors, or at least render them harmless. For example, a precondition of starting a fire 
in a fireplace is opening the flue, so that smoke escapes up the chimney instead of filling the room. 
If you know this precondition as a designer, you can design the fireplace with an interlock that 
ensures the precondition will be met. Another design solution is to offer opportunities to complete 
preconditions: for example, an email composition window should give the user access to their 
address book to look up recipients’ email addresses. 

Finally, decompose the task into subtasks, individual steps involved in doing the task. If the 
subtasks are nontrivial, they can be recursively decomposed in the same manner. 
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Here’s an example of a task from the Olympic Message System.  
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There are lots of questions you should ask about each task. Here are a few, with examples relevant 

to the OMS send-message task. 
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The best sources of information for task analysis are user interviews and direct observation. Usually, 

you’ll have to observe how users currently perform the task. For the OMS example, we would want 

to observe athletes interacting with each other, and with family and friends, while they’re training for 

or competing in events. We would also want to interview the athletes, in order to understand better 

their goals in the task. 
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Looking at today’s typical use of elevators, the high-level task is: 

•�go to a floor: for example, I want to go to floor 5. Subtasks include: 

•�decide between elevator or stairs 

•preconditions: knowing how many flights you’d have to climb up or down, and knowing 

where the elevators are now (are they far away or not moving, so it’s worth taking the stairs) 

•call elevator to request it to come to you 

•step in 

•preconditions: elevator has arrived and the door has opened 

•(we might omit this one from the task analysis, because it seems like an insignificant 

subtask; on the other hand, the system *is* affected by this action.  For one thing, the user 

may now face a different interface, the one inside the elevator, rather than outside, so it’s a 

significant state change from a UI perspective. For another, the system has sensors that 

detect when this happens, and doors open and close in order to enable this to happen.) 

•request floor (push a button on the panel) 

•exceptional condition: if the elevator stops moving, call for help 

•step out 

•preconditions: elevator has arrived at destination floor and doors have opened. 

These are the tasks for a passenger.  The elevator task we’re observing is heavily automated, but elevators 

didn’t used to be automated.  An elevator with a manual driver might have had these tasks for the driver: 

•�drive the elevator 

•view calls (requests from other floors, which helps the driver form a plan about which floors to go to 

in which order) 

•which floors have calls? how many people and how much stuff are waiting at each floor? 

•go to floor 

•close door 

•go up 

•go down 

•stop  

•open door  
This example isn’t necessarily arguing to go back to the days of manually-controlled elevators, but user control 

and freedom is a good thing, and some of this control UI is still found in modern elevators, e.g. open door and 
�������������	�����	�
���


�
�
���

���
	����		����
������������	��
����	�����������	����	����
��������������	�
���

17 



The third step is domain analysis, which discovers the elements of the domain and how they’re 

related to each other.  If you took 6.170 or a similar software engineering class, you did domain 

analysis by drawing object model diagrams or entity-relationship diagrams. That’s what we’ll do 

too. 

To draw a domain diagram, you first need to identify the entities of the domain – the things that are 

involved. Entities include people, physical objects, and information objects. (An information object 

is something that consists only of bits. You can't store a chair digitally, but you can store a slide, or a 

memo, or a purchase order, or an email message, or an account. When you translate your domain 

diagram into a software system design, you might create classes or database tables that represent 

people and physical objects in your domain. But at the level of domain analysis, you're not designing 

the software yet, and people and physical objects are still physical, not digital.) 

User classes defined by role should certainly be entities; user classes defined by characteristics 

generally aren’t, because variation in characteristics doesn’t change how they fundamentally relate to 

other entities. In the OMS example, athletes have namecards and sysadmins don’t (role-based 

classes); but young or male isn’t a useful distinction (characteristic-based classes). 

Sometimes you need to include people in the domain model that you haven’t identified as user 

classes, because they’re involved in the system but aren’t actually users of the interface you’re 

designing. For example, an IM client needs to represent Buddies, but they aren’t a user class.  A 

hospital information management system needs to represent Patients even if they won’t actually 

touch the UI. 

Draw each kind of entity as a labeled box, as shown here. Note that you should think about these 

boxes as representing a set of objects – so the Athlete box is the set of all athletes in OMS. 
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Next, determine the relationships between the entities that matter to your problem, and draw them 

as edges. Here are some examples from the OMS. Relationships are usually labeled as verbs 

(create, know), but with generic relationships like “have” (also called “has-a”), it’s more readable to 

label it with a noun, analogous to a field or property name (the athlete’s “account”, the account’s 

“messages”). 

Another kind of relationship is classification, or “is-a”. You can use this to show that several entity 

classes are subclasses of a larger one – e.g., Lecturers and TAs are subclasses of Instructors. 
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Finally, add multiplicities showing the sizes of entity sets and relationships. The multiplicity of an  

entity set is the number of members of that set in the system; for example, there were about 10,000  

athletes in OMS. The multiplicity of a relation is the number of targets per source; for example, an  

athlete has exactly one account, and each account might have 10 messages stored in it.  

Why do we want multiplicities? They will be useful in later design, both for thinking about your  

backend (10 million messages have to be stored much differently than 100 messages) and your user  

interface (10,000 messages must be displayed and manipulated much differently than 10 messages).  

If there’s some uncertainty in your estimate, or if the multiplicity will vary in actual use, then show a  

typical value plus a range. In the diagram here, we’re showing that we expect a typical account to  

have 10 messages, with as few as 0 messages but possibly as many as 100. The best multiplicity  

estimates are based on actual data or observation. If you’re building an email system, for example,  

find out how large users’ inboxes actually are, by measuring existing email practices.  

Note that you don’t have to mark every multiplicity, because many of them can be deduced from  

other multiplicities. For example, what is the multiplicity of the Message set, given the other  

information on the diagram?  

You can abbreviate common multiplicities with symbols:  ! means exactly 1, ? means 0 or 1, +  

means 1 or more, and * means 0 or more. Use + and * when more precise estimates aren’t likely to  

change the system design, either the backend or the UI.  
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After doing some domain analysis, you can use it to think about whether your user and task analysis 

was complete. For example, you may have identified new people entities who really should be user 

classes of your system. Maybe Patients should be users of the hospital information system, and a 

user interface should be created that supports their tasks. 

Your domain analysis may have also identified physical or information objects that don’t seem to be 

involved in any of the tasks you specified. That could be a sign that your domain analysis is broader 

or more detailed than you really need, or it could be a sign that you missed some tasks. 

One heuristic that you can use for information objects is CRUD. For every information object, 

consider whether you need low-level tasks for Creating, Reading (viewing information about), 

Updating (changing the information), and Deleting the objects. Consider Messages in the OMS 

example: friends and family need to record messages (Create), athletes need to listen to them (Read), 

and athletes need to delete them (Delete). We’re missing the Update task.  Maybe that’s because 

messages should be immutable, like face-to-face speech is; once something comes out of your 

mouth, you can’t modify it.  But maybe editing a message is something we could consider in the 

design. In any case, by checking for CRUD, we might find tasks we didn’t observe in the task 

analysis. 
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Clearly Tweets are an entity.  Also Users, and their Accounts. 

Relationships include Account says Tweet, and Account follows Account. 
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User, task, and domain analysis feed into a more general process called requirements analysis, 

which creates a description of the system’s desired functionality and other nonfunctional properties 

(like performance, security, and capacity).   

Without user and task analysis, requirements are incomplete.  User and task analysis contribute 

additional functionality (tasks that users need to do which may not be evident from the domain 

analysis alone) as well as nonfunctional requirements about usability (like how efficient certain 

tasks should be, or how learnable, or how memorable) and about other properties of the system as 

well (e.g., accommodation for users’ physical limitations, like impaired vision).  For example, here 

are some of the requirements in the OMS system that might come out of user and task analysis: 

•Support twelve languages (because athletes, friends & family don’t all speak the same language) 

•Support non-touchtone phones (because friends & family don’t all have them) 

•Check Messages task should take less than 30 seconds (because athletes may be pressed for time) 

23 



Many problems in user and task analysis are caused by jumping too quickly into a requirements 

mindset. In user analysis, this sometimes results in wishful thinking, rather than looking at reality.  

Saying “OMS users should all have touchtone phones” is stating a requirement, not a characteristic 

of the existing users. One reason we do user analysis is to see whether these requirements are 

actually satisfied, or whether we’d have to add something to the system to make sure it’s satisfied.  

For example, maybe we’d have to offer touchtone phones to every athlete’s friends and family… 
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The requirements mindset can also affect task analysis.  If you’re writing down tasks from the 
system’s point of view, like “Notify user about appointment”, then you’re writing requirements 
(what the system should do), not tasks (what the user’s goals are).  Sometimes this is merely 
semantics, and you can just write it the other way; but it may also mean you’re focusing too much on 
what the system can do, rather than what the user wants. Tradeoffs between user goals and 
implementation feasibility are inevitable, but you don’t want them to dominate your thinking at this 
early stage of the game. 

Task analysis derived from observation may give too much weight to the way things are currently 
done. A task analysis that breaks down the steps of a current system is concrete. For example, if the 
Log In task is broken down into the subtasks Enter username and Enter password, then this is a 
concrete task relevant only to a system that uses usernames and passwords for user identification. If 
we instead generalize the Log In task into subtasks Identify myself and Prove my identity, then we 
have an essential task, which admits much richer design possibilities when it’s time to translate this 
task into a user interface. 

A danger of concrete task analysis is that it might preserve tasks that are inefficient or could be done 
a completely different way in software.  Suppose we did a task analysis by observing users 
interacting with paper manuals. We’d see a lot of page flipping: “Find page N” might be an 
important subtask. We might naively conclude from this that an online manual should provide really 
good mechanisms for paging & scrolling, and that we should pour development effort into making 
those mechanisms as fast as possible. But page flipping is an artifact of physical books! It would 
pay off much more to have fast and effective searching and hyperlinking in an online manual.  That’s 
why it’s important to focus on why users do what they do (the essential tasks), not just what they do 
(the concrete tasks). 

An incomplete task analysis may fail to capture important aspects of the existing procedure. In one 
case, a dentist’s office converted from manual billing to an automated system.  But the office 
assistants didn’t like the new system, because they were accustomed to keeping important notes on 
the paper forms, like “this patient’s insurance takes longer than normal.”  The automated system 
provided no way to capture those kinds of annotations. That’s why interviewing and observing real 
users is still important, even though you’re observing a concrete task process. 
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When you’re interviewing users, they tend to focus on the what: “first I do this, then I do this…” Be 

sure to probe for the why and how as well, to make your analysis more abstract and at the same time 

more detailed. 

Since you want to improve the current situation, look for its weaknesses and problems. What tasks 

often fail? What unimportant tasks are wasting lots of time? It helps to ask the users what annoys 

them and what suggestions they have for improvement. 

There are two other techniques for making user and task analysis more effective: contextual inquiry 

and participatory design, described in more detail on the next slides. 
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Contextual inquiry is a technique that combines interviewing and observation, in the user’s actual 

work environment, discussing actual work products. Contextual inquiry fosters strong collaboration 

between the designers and the users. (Wixon, Holtzblatt & Knox, “Contextual design: an emergent 

view of system design”, CHI ’90) 
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Participatory design includes users directly on the design team – participating in the task analysis, 

proposing design ideas, helping with evaluation. This is particularly vital when the target users have 

much deeper domain knowledge than the design team. It would be unwise to build an interface for 

stock trading without an expert in stock trading on the team, for example. 
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