
6.830 2009 Lecture 19: BigTable

big picture
 parallel db (one data center)
 mix of OLTP and batch analysis
 lots of data, high r/w rates, 1000s of cheap boxes thus many failures

what does paper say Google uses BigTable for?
 analyzing big web crawls
 analyzing click records to optimize ads
 some on-line uses: orkut, personalized search

data model
 figure 1 shows a table has three (four?) dimensions
 row, column family, column, time

query model
 single-row fetch by row/column key
 single-row atomic update and read-modify-write
 scans in key order
 no joins
 no aggregates (but they have MapReduce for this)

example use: Figure 1, web crawl for various analyses
 one row per URL (== page)
 one column for each link *to* a page! that's a lot of columns.
 how to store row/col/time in a file?
 the model may be 3d, but underlying storage has only one dimension
 guess flattened layout for figure 1?

 com.cnet.www

 com.cnn.www

 anchor:cnnsi.com

 t9: CNN

 anchor:my.look.ca

 t8: CNN.com

 ...

 content

 t6: ...

 t5: ...

 t3: ...

 com.cnx.www

 very different kind of "column" than an SQL db

 different rows have different columns!

 like a mini-b-tree table in every row

 a hierarchical data model

 or like one big btree

 keys are rowname+family+colname+time

 so it's cheap to scan all the links to a certain page

 but *not* cheap to scan all content inserted at t5

 i.e. BigTable is not a three-dimensional DB
 how would we store Figure 1 in a relational DB?

 anchor(site, from, time, text)

 content(site, time, html)

 does it make any difference?

 usual argument against hierarchy is repeated data

 doesn't really apply here

 we'd want to cluster tables for good scan performance

 relational model lets us ask for all anchors by from column

 while BigTable really only lets you scan by site
 but implementing scan-by-from requires indices, would be slowish
 "Locality group" mechanism puts some column families in separate file
 so you could scan all pages' anchors w/o having to scan+ignore content

 much like c-store

example use: section 8.1 Google Analytics
 record and analyze user actions on web sites

 are people clicking on your ads?

 which ads are the most effective?

 row per user session, key is <site,starttime>

 column per click???

 periodic batch analysis of each site's recent sessions/clicks

 data must arrive at a huge rate!

 worse, it arrives in the wrong order

 arrives sorted by time

 but we want to store and scan by site

 this is a pretty classic problem

 bad solution: insert each new click into a b-tree

 we'll see later how they deal with this

how do they implement BigTable?

not an ordinary parallel DB
 partition data over the servers and their disks
 each server does reads/writes for data on its disk
 this is not how BigTable works!

starting point: GFS
 GFS a cluster file system
 FS model: directories, files, names, open/read/write
 100s of Linux chunk servers with disks
 store 64MB chunks (an ordinary Linux file for each chunk)

 each chunk replicated on three servers

 GFS master server knows directory hierarchy

 for dir, what files are in it

 for file, knows chunk servers for each 64 MB

 master has private recoverable DB for metadata

 primary/backup to a slave
 client read:

 send file name and offset to master

 master replies with set of servers that have that chunk

 ask nearest chunk server

 client write:

 ask master where to store

 maybe master chooses a new set of chunk servers if crossing 64 MB

 one chunk server is primary

 it chooses order of updates and forwards to two backups

 what works well in GFS?

 huge sequential reads and writes

 appends

 huge throughput (3 copies, striping)

 fault tolerance of data (3 copies)

 what works badly in GFS?

 fault-tolerance of master

 small files (master a bottleneck)

 concurrent updates to same file from many clients (except appends)

so GFS maybe already solves some problems for BigTable
 giant storage
 data fault-tolerance
 high sequential throughput

BigTable acts as a set of clients to GFS
 BigTable servers r/w GFS across the net, no local storage
 data not really tied permanently to particular BigTable servers
 if one (or all) BigTable servers have permanent failures
 you don't lose data -- data is in GFS

 just fire up replacement BigTable servers, they read GFS

 this simplifies the BigTable design

It splits each table into lots of tablets
 partition by row name
 each tablet is stored in a set of GFS files

given a table name and row name, how to find tablet?
 1. tablet server needs to know what GFS files hold the tablet data

 METADATA of Figure 4

 Chubby is a mini file server that says what

 GFS files hold the METADATA table

 so BigTable knows where to start

 2. client needs to know what tablet server serves the tablet
 (not the same as question #1, can be soft state)
 my guess: METADATA holds this too
 client doesn't ask the master (4th para of Section 5)
 but paper's only mention of tablet -> server mapping is in master mem

 e.g. booting master doesn't read this info from METADATA

 but by talking to all live tablet servers

so what does a METADATA entry contain?
 <table ID, starting row name> ->

 names of GFS files that store the tablet (sec 5.3)

 what tablet server serves it (guessing, paper doesn't say)

what properties of Chubby are important?
 why a master AND chubby?
 most systems integrate them; separation means chubby can be reused
 chubby is a generic fault-tolerant file and lock server
 chubby does three things for BigTable
 stores root of METADATA table in a file

 maintains master lock, so there's at most one master

 tracks which tablet servers are alive (via locks)

 key properties:

 Chubby replicates METADATA and locks

 Chubby keeps going even if one (two?) Chubby servers down

 Chubby won't disagree with itself

 example: network partition

 you update Chubby replica in one partition

 Chubby replica in other partition will *not* show stale data

what is the point of the master?
 after all, the METADATA is all in Chubby and GFS
 answer: there had better be only one entity assigning tablets to servers
 only the master writes METADATA

 chubby locking ensures there's at most one master

 even during network partitions

why isn't Chubby a bottleneck?
 clients cache METADATA
 METADATA doesn't change often
 tablet server will tell client if it is talking to wrong server

read/write processing inside a tablet server
 similar to c-store
 log for fast writes, SSTables for fast lookups
 [diagram: log in GFS, memtable, SSTables in GFS]
 SStables in GFS
 compact ordered row/family/col/time data

 compressed

 index at the end

 immutable -- why not mutable b+tree?

 fast search, compact, compression, GFS not good at rand write

 log in GFS

 compaction

recovery from tablet server crashes
 key problem:

 what if it was in the middle of some update when it crashed?

 do we need to wait for it to reboot and recover from its log?

 chubby notices server is dead (stops refreshing its lock)

 and/or master notices it is dead?

 even if tablet server is live but partitioned,

 it won't be able to refresh its lock if Chubby thinks it is dead

 so table server will know to stop serving

 if master sees tablet server no longer has its lock:

 picks another tablet server (preferably lightly loaded one)

 tells is "load that tablet from GFS"

 new tablet server reads the crashed server's log from GFS!

recovery from BigTable master crashes
 Chubby takes away its lock
 some other machine(s) decide to be master
 only one gets the Chubby lock
 recreate old master's state:

 read set of tablets from METADATA

 ask Chubby for list of live tablet servers

 ask tablet servers what they serve

Evaluation

setup
 1700 GFS servers, N tablet servers, N clients
 all using same set of machines
 two-level LAN with gig-e
 each row has 1000 bytes

single-tablet-server random read
 first row, first column of Figure 6
 single client reads random rows
 how can one server do 1212 random reads/second?
 you can't seek 1212 times per second!

 answer: only 1 GB of data, split up over maybe 16 GFS servers

 so all the data is in the GFS Linux kernel file cache

 so why only 1212, if in memory?

 that's only 1 megabyte/second!

 each row read reads 64KB from GFS

 78 MB / second, about all gig-e or TCP can do

single-tablet-server random write
 single client reads random rows
 traditionally a hard workload
 how could it write 8850 per second?
 each write must go to disk (the log, on GFS) for durability

 log is probably in one GFS chunk (one triple of servers)

 you cannot seek or rotate 8850 times per second!

 presumably batching many log file writes, group commit

 does that means BigTable says "yes" to client before data is durable?

what about scaling
 read across a row in Figure 6
 the per-server numbers go down
 so performance goes up w/ # tablet servers, but not linearly
 why not linear?
 paper says load imbalance:

 some BigTable servers have other stuff running on them

 master doesn't hand out tablets 100% balanced

 also network bottleneck, at least for random read

 remember 64K xfer over LAN per 1000-byte row read

 root of net only has about 100 gbit/second total

 enough to keep only about 100 tablet servers busy

i like this paper's evaluation section
 shows good and bad aspects
 explains reasons for results
 connects performance back to design

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

