Selinger Optimizer

6.814/6.830 Lecture 10
October 07, 2010

(Slides gently offered by Sam Madden)

The Problem

* How to order a series of N joins, e.g.,
A.a=B.b AND A.c=D.d AND B.e =C.f

N! ways to order joins (e.g., ABCD, ACBD,)
(N-1)! plans per ordering (e.g., (((AB)C)D), ((AB)(CD), ...)
Multiple implementations (e.g., hash, nested loops, etc)

* Naive approach doesn’t scale, e.g., for 20-way join

— 10!x91=1.3x10"12
— 20!x19!'=29x10" 35

Selinger Optimizations

Left-deep only (((AB)C)D) (eliminate (N-1)!)
Push-down selections

Don’t consider cross products

Dynamic programming algorithm

Dynamic Programming

R < set of relations to join (e.g., ABCD)
Fordin {1...|R|}:
for Sin {all length 0 subsets of R}:
optjoin(S) = a join (S-a),
where a is the single relation that minimizes:
cost(optjoin(S-a)) +
min. cost to join (S-a) to a +
min. access cost for a

optjoin(S-a) is cached from previous iteration

Cache

Best Cost
choice

Example e w

B seqscan 50

optjoin(ABCD) —assume all joins are NL

0=1
A = best way to access A
(e.g., sequential scan, or predicate pushdown into index...)
B = best way to access B
C = best way to access C
D = best way to access D

Total cost computations: choose(N,1), where N
is number of relations

Cache

Best Cost
choice

Exa m p I e A index 100

B seqscan 50
optjoin(ABCD) {AB} BA 156
{B,C} BC 98

0=2
{A,B} = AB or BA
(using previously computed best way to access A and B)
{B,C}=BCorCB
{C,D}=CD or DC
{A,C} = AC or CA
{A,D} = AD or DA Total cost computations: choose(N,2) x 2
{B,D}=BD or DB

Cache

e
choice
Exa m p I e A index 100
t. . (ABCD) B seqscan 50
optoin {AB} BA 156
AIready. computed - B0} e 5
3=3 lookup in cache
= {AB,C} BCA 125
{A,B,C} = remove A, compare A to ({B,C})A
remove B, compare B({A,C}) to ({A,C})B (B0 | ECD I

remove C, compare C({A,B}) to ({A,B})C
{A,B,D} =remove A, compare A({B,D}) to ({B,D})A

{A,C,D}=...
{B,C,D} = ...

Total cost computations: choose(N,3) x 3 x 2

Example

optjoin(ABCD)
Already computed —
lookup in cache

<€

0=4

{A,B,C,D} = remove A, compare A o ({B,C,D})A
remove B, compare B({A,C,D}) to ({A,C,D})B

remove C, compare C({A,B,D}) to ({A,B,D})C

remove D, compare D({A,B,C}) to ({A,B,C})D

Final answer is plan with minimum cost of
these four

Total cost computations: choose(N,4) x 4 x 2

Cache
A
B
{A,B}
{B,C}
{A,B,C}

{B,C,D}

{A,B,C,D}

Best C
choice

index
seq scan
BA

BC

BCA
BCD

ABCD

ost
100
50
156
98
125
115

215

Complexity

choose(n,1) + choose(n,2) + ... + choose(n,n) total
subsets considered

All subsets of a size n set = power set of n = 2”n
Equiv. to computing all binary strings of size n

000,001,010,100,011,101,110,111
Each bit represents whether an item is in or out of set

Complexity (continued)

For each subset,
k ways to remove 1 join
k<n

m ways to join 1 relation with remainder
Total cost: O(nm2”n) plan evaluations

n=20m=2
4.1 x 10™7

Interesting Orders

Some queries need data in sorted order

— Some plans produce sorted data (e.g., using an index scan or merge join

May be non-optimal way to join data, but overall optimal plan

— Avoids final sort

In cache, maintain best overall plan, plus best plan for each
interesting order

At end, compare cost of

best plan + sort into order
to
best in order plan

Increases complexity by factor of k+1, where k is number of
interesting orders

Example

SELECT A.f3, B.f2 FROM A,B where A.f3 = B.f4
ORDER BY A.f3

index index
B seq scan 50 seqscan 50
{A,B} BA hash 156 AB merge 180
compare:
cost(sort(output)) + 156
to

180

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

