
Lecture 9 
10/8/09 

Query Optimization


Lab 2 due next Thursday. 


M pages memory

S and R, with |S| |R| pages respectively; |S| > |R|

M > sqrt(|S|)


External Sort Merge


split |S| and |R| into memory sized runs

sort each

merge all runs simultaneously 


total I/O 3 |R| + |S|
(read, write, read) 

"Simple" hash 

given hash function h(x), split h(x) values in N ranges
N = ceiling(|R|/M) 

for (i = 1…N)
for r in R 

if h® in range i, put in hash table Hr
o.w. write out 

for s in S 
if h(s) in range i, lookup in Hr
o.w. write out 

total I/O 

N (|R| + |S|) 

Grace hash: 

for each of N partitions, allocate one page per partition
hash r into partitions, flushing pages as they fill 
hash s into partitions, flushing pages as they fill 
for each partition p

build a hash table Hr on r tuples in p
hash s, lookup on Hr 

example: 

R = 1, 4, 3, 6, 9, 14, 1, 7, 11
S = 2, 3, 7, 12, 9, 8, 4, 15, 6
h(x) = x mod 3 

R1 = 3 6 9 
R2 = 1 4 1 7 
R3 = 14 11 

S1 = 3 12 9 15 6 
S2 = 7 4 
S3 = 2 8 



Now, join R1 with S1, R2 with S2, R3 with S3


Note -- need 1 page of memory per partition. Do we have enough memory?


We have |R| / M partitions


M ≥ sqrt(|R|) 


worst case


|R| / sqrt(|R|) = sqrt(|R|) partitions 

Need sqrt(|R|) pages of memory b/c we need at least one page per partition as we write out (note that simple

hash doesn't have this requirement)


I/O:


read R+S (seq)

write R+S (semi-random)

read R+S (seq) 


also 3(|R|+|S|) I/OS


What's hard about this? 


When does grace outperform simple? 


(When there are many partitions, since we avoid the cost of re-reading tuples from disk in building partitions )


When does simple outperform grace?

(When there are few partitions, since grace re-reads hash tables from disk ) 

So what does Hybrid do?
M = sqrt(|R|) + E
Make first partition of size E, do it on the fly (as in simple)
Do remaining partitions as in grace. 
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CPU Costs! 

I/O costs are comparable

690 / 1000 seconds in sort merge are due to the costs of sorting

17.4 in the case of CPU for grace/hybrid! 

Will this still be true today?
(Yes) 

Selinger 

Famous paper. Pat Selinger was one of the early System R researchers; still active today. 

Lays the foundation for modern query optimization. Some things are weak but have since been improved 
upon. 

Idea behind query optimization:
(Find query plan of minimum cost ) 

How to do this? 
(Need a way to measure cost of a plan (a cost model) ) 

single table operations 

how do i compute the cost of a particular predicate?
compute it's "selectivity" - fraction F of tuples it passes 

how does selinger define these? -- based on type of predicate and available statistics 

what statistics does system R keep? 
- relation cardinalities NCARD 
- # pages relation occupies TCARD 
- keys in index ICARD 
- pages occupied by index NINDX 

Estimating selectivity F: 

col = val 
F = 1/ICARD()
F = 1/10 (where does this come from?) 

col > val 
high key - value / high key - low key
1/3 o.w. 

col1 = col2 (key-foreign key)
1/MAX(ICARD(col1, col2))
1/10 o.w. 

ex: suppose emp has 10000 records, dept as 1000 records
total records is 10000 * 1000, selectivity is 1/10000, so 1000 tuples expected to pass join
note that selectivity is defined relative to size of cross product for joins! 

p1 and p2 

F1 * F2 



 

p1 or p2 

1 - (1-F1) * (1-F2) 

then, compute access cost for scanning the relation.
how is this defined? 
(in terms of number of pages read) 

equal predicate with unique index: 1 [btree lookup] + 1 [heapfile lookup] + W 

(W is CPU cost per predicate eval in terms of fraction of a time to read a page ) 

range scan: 

clustered index, boolean factors: F(preds) * (NINDX + TCARD) + W*(tuples read) 

unclustered index, boolean factors: F(preds) * (NINDX + NCARD) + W*(tuples read)
unless all pages fit in buffer -- why? 

... 
seq (segment) scan: TCARD + W*(NCARD) 

Is an index always better than a segment scan? (no) 

multi-table operations 

how do i compute the cost of a particular join? 

algorithms:
NL(A,B,pred)

C-outer(A) + NCARD(outer) * C-inner(B) 

Note that inner is always a relation; cost to access depends on access methods for B; e.g.,

w/ index -- 1 + 1 + W

w/out index -- TCARD(B) + W*NCARD(B)


C-outer is cost of subtree under outer


How to estimate # NCARD(outer)? product of F factors of children, cardinalities of children
example: 

Merge_Join_x(P,A,B), equality pred 

C-outer + C-inner + sort cost 
(Saw cost models for these last time) 

At time of paper, didn't believe hashing was a good idea 

Overall plan cost is just sum of costs of all access methods and join operators
Then, need a way to enumerate plans 

σ
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Iterate over plans, pick one of minimum cost 

Problem: 

Huge number of plans. Example: 

suppose I am joining three relations, A, B, C
Can order them as: 

(AB)C
A(BC) 
(AC)B 
A(CB) 
(BA)C
B(AC) 
(BC)A 
B(AC) 
(CA)B 
C(AB) 
(CB)A 
C(BA) 

Is C(AB) different from (CA)B?
Is (AB)C different from C(AB)?

yes, inner vs. outer 

n! strings * # of parenthetizations 

how many parenthetizations are there? 

ABCD --> (AB)CD A(BC)D AB(CD) 3
 XCD AXD ABX * 2 

=== 
6 --> (n-1)!

==> n! * (n-1)!


6 * 2 == 12 for 3 relations


Ok, so what does Selinger do? 


Push down selections and projections to leaves

Now left with a bunch of joins to order. 


Selinger simplifies using 2 heuristics?  What are they? 


- only left deep; e.g., ABCD => (((AB)C)D) show 
- ignore cross products 

e.g., if A and B don't have a join predicate, doing consider joining them 

still n! orderings. can we just enumerate all of them? 

10! -- 3million 
20! -- 2.4 * 10 ^ 18


so how do we get around this? 




 

 
                       
                       
                       

 

     

Estimate cost by dynamic programming: 

idea: if I compute join (ABC)DE -- I can find the best way to combine ABC  and then consider all the ways to
combine that with DE. 

i can remember the best way to compute (ABC), and then I don't have to re-evaluate it. best way to do ABC
may be ACB, BCA, etc -- doesn't matter for purposes of this decision. 

algorithm: compute optimal way to generate every sub-join of size 1, size 2, ... n (in that order). 

R <--- set of relations to join
for ∂ in {1...|R|}:

for S in {all length ∂ subsets of R}:
optjoin(S) = a join (S-a), where a is the single relation that minimizes:


cost(optjoin(S-a)) +

min cost to join (S-a) to a +

min. access cost for a


example: ABCD 


only look at NL join for this example 


A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)

B = " " " " B 

C = " " " " C

D = " " " " D 


{A,B} = AB or BA

{A,C} = AC or CA

{B,C} = BC or CB

{A,D}

{B,D}

{C,D}


{A,B,C} = remove A -  compare A({B,C}) to ({B,C})A
remove B - compare ({A,C})B to B({A,C})
remove C - compare C({A,B}) to ({A,B})C 

{A,C,D}
{A,B,D}
{B,C,D} 

{A,B,C,D} = remove A - compare A({B,C,D}) to ({B,C,D})A
 .... 	 remove B 


remove C 

remove D 


Complexity:


number of subsets of size 1 * work per subset = W+

number of subsets of size 2 * W +

... 

number of subsets of size n * W+ 


n + n + n ... n 

1 2 3 n 




      
      

number of subsets of set of size n = power set of n = 2^n

(string of length n, 0 if element is in, 1 if it is out; clearly, 2^n such strings)


(reduced an n! problem to a 2^n problem)


what's W? (n)


so actual cost is: 2^n * n


So what's the deal with sort orders? Why do we keep interesting sort orders? 


Selinger says: although there may be a 'best' way to compute ABC, there may also be ways that produce

interesting orderings -- e.g., that make later joins cheaper or that avoid final sorts.


So we need to keep best way to compute ABC for different possible join orders. 


so we multiply by "k" -- the number of interesting orders 


how are things different in the real world? 
- real optimizers consider bushy plans (why?)

A 
D 	 B 


C E


- selectivity estimation is much more complicated than selinger says
and is very important. 

how does selinger estimate the size of a join? 

- selinger just uses rough heuristics for equality and range predicates. 

- what can go wrong?
consider ABCD 
suppose sel (A join B) = 1

everything else is .1 

If I don't leave A join B until last, I'm off by a factor of 10 


- how can we do a better job?

(multi-d) histograms, sampling, etc. 


example: 1d hist 
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example: 2d hist 
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