
3 data models from the 1970s

Hierarchical (IMS + DL/1)

Network (Codasyl + Codasyl DML)

Relations (Codd proposal + DL/alpha

Relational algebra
SQL
Quel)

Themes:
Data redundancy
Physical data independence
Logical data independence
High level language

Why study ancient history?
“Those that do not understand the mistakes of their ancestors will end up
repeating them”

Use Zoo example (with one more kind of object)

3 objects
2 relationships

Animals (Name, species, age, feeding_time)--------------------
| lives_in |

Cages (id, size) ---------------------- | cared_for_by
|

Keepers (Name, address)<--

Each animal in ONE cage, multiple animals can share a cage
Each animal cared for by ONE keeper, a keeper cares for multiple animals

IMS (IBM 1968)

Segment types (record types)
Segments (instances)

Schema (hierarchical collection of segment types – must be a tree)

Possible schemas

Keepers Keepers
1) | 2) |

Animals Cages
 | |

Cages Animals

Instance of 1)

Sam
Freddie

1
Jimmy

2
Sally

1

All have redundancy!

1) repeat cage info for animals which share a cage
2) repeat cage info for animals in a shared cage with different keepers

Bad: possibility of inconsistency

Fundamental problem:

Keepers Cages
| |
Animals

Cannot be represented as a hierarchy!

IMS Storage

Root dependents
***** *********
Sequential Sequential
Index Sequential
Hash Pointer spaghetti
Index Pointer spaghetti

Note: no indexes on dependent segments!

DL/1

Every segment has a hierarchical sequential key (HSK)
Key of the segment, prepended by keys of path back to the root

All segments are logically in HSK order (for purposes of DL/1)

Commands
GU [segment type] [predicate]
GN
GNP
D
I

Find all cages that Sam enters:

GU Keepers (name = ‘Sam’)
Until no more

GNP Cages

Find the keepers that enter cage 6

GU Keepers

GNP Cages (id = 6)

Until no more
GN Keepers
GNP Cages (id = 6)

Notes: GU is really get first

Some commands are fast; some are slow; depends on the storage chosen and the schema
chosen. IMS wizards make gobs of money; even today.

IMS problems:

a) duplication of data (we talked about this above)

b) painful low level programming interface – have to program the search algorithm

c) limited physical data independence

change root from indexed to hash --- programs that do GN on the root segment
will fail

cannot do inserts into sequential root structure

maintenance required if you change the tuning knobs! Hard to tell how bad it will
be.

One of Codd’s key points!!! This is terrible system design

d) limited logical data independence

Zoo acquires a pair of Pandas – they have 2 feeding times!

Keepers

 |

Animals

| |

 Feedings Cages

Must change the schema!

As a cost cutting measure, Zoo management decides a keeper will be responsible for a
cage – and all the animals in that cage.

 Keepers

|

 Cages

|

 Animals

Should change the schema to match the business problem

Management decides to have “patrons” who buy cages

 Keepers

 |

Animals

 |

Cages

 |

Patrons

Schemas change for all these reasons – plus

Feds change the rules (OSHA)

Tax rules change (IRS)

Merge with another zoo

Whenever the logical schema changes – you need program maintenance – unknown

complexity!! In the worst case, toss everything; begin again!!

This was what was motivating Codd –

Codasyl (Committee on Data Systems Languages)

BF Goodrich (the guys without the blimp) built a prototype

Commercialized by Cullinet Corp. as IDS

Codasyl committee wrote standardization documents closely linked to IDS

Record types (like IMS)

Connected by named Sets (1::n relationships)

Arranged in a graph

Keepers Cages

| |
Cared_for_by | | Lives_in

\/ \/
Animals

Models network data directly. Ought to be better than IMS.

Record types
1) hashed
2) clustered with the owner record in some set

Pointer spaghetti for set implementation

If a record is not hashed, then it can only be accessed through set membership
.

Codasyl DML

Find the cages that Sam enters

Find Keepers (name = ‘Sam’)
Until nomore

Find next Animal in Cared_for_by
Find parent in Lives_in

IMS has current segment; current parent (2 pins)

Codasyl has

Current of app

Current of every record type

Current of every set type

(6 pins)

Programming is
Find an entry point
Navigate in N-D space

For a defense of this programming style see 1973 Turing award lecture by Charlie

Bachmann.

Codasyl issues

Horrible complexity.

No physical data independence – change most anything  recode

No logical data independence – change most anything -> recode

If you screw up the data structure inadvertently, then must reload everything. (No

isolation)

Initial load must be done all at once. – many hours.

Codd: relations

Unordered collections of tuples

Animals (name, species, age, feeding_time)

Cages (id, size)

Keepers (id, name, address)

Animals (name, species, age, feeding_time, cid, kid)

Cages (id, size)

Keepers (id, name, address)

Or

Animals (name, species, age, feeding_time)

Cages (id, size)

Keepers (id, name, address)

Lives_in (aname, cid)

Cared_for_by (aname, kid)

Data base design problem – which one to choose

High level language for access (physical data independence)

What you want not how to get it

Codd’s proposals (he did cellular automata previously)

Data language alpha (basically 1st order predicate calculus)

Relational algebra (a collection of operations chained together – APL style)

No mere mortals could understand either language

SQL (and Quel) were much more accessible

Find the cages that Sam touches

Select cid

From Animals

Where zid in

Select id
From Keepers
Where name = ‘Sam’

Complete physical data independence

Eliminates redundancy

Better change at logical data independence (views)

Define view (Sam_Cages) as
Select cid
From Animals
Where zid in

Select id
From Keepers
Where name = ‘Sam’

Select …

From Sam_Cages

Where …

All queries and many updates can be supported on views. Interested reader is referred to

SIGMOD 1976 and a litany of papers that have followed.

Debate raged throughout the 1970’s over:

Efficiency
Programmability of high level languages
Cobol

Won hands down by relational model.

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

