
6.830/6.814 — Notes∗ for Lecture 1:
Introduction to Database Systems

Carlo A. Curino

September 10, 2010

2 Introduction

READING MATERIAL: Ramakrishnan and Gehrke Chapter 1

What is a database? A database is a collection of structured data. A
database captures an abstract representation of the domain of an application.

Typically organized as “records” (traditionally, large numbers, on disk) •

and relationships between records •

This class is about database management systems (DBMS): systems for cre­
ating, manipulating, accessing a database.

A DBMS is a (usually complex) piece of software that sits in front of a
collection of data, and mediates applications accesses to the data, guaranteeing
many properties about the data and the accesses.

Why should you care? There are lots of applications that we don’t offer
classes on at MIT. Why are databases any different?

2

3

DB "a collection of structure data"

DBMS
"a system to create,

manipulate, access databases
(mediate access to the data)"

APP1 APP2

Figure 1: What is a database management system?

•	 Ubiquity (anywhere from your smartphone to Wikipedia)

•	 Real world impact: software market (roughly same size as OS market
roughly $20B/y). Web sites, big companies, scientific projects, all manage
both day to day operations as well as business intelligence + data mining.

•	 You need to know about databases if you want to be happy!

The goal of a DBMS is to simplify the storing and accessing of data. To
this purpose DBMSs provide facilities that serve the most common operations
performed on data. The database community has devoted significant effort in
formalizing few key concepts that most applications exploit to manipulate data.
This provides a formal ground for us to discuss the application requirements
on data storage and access, and compare ways for the DBMS to meet such
requirements. This will provide you with powerful conceptual tools that go
beyond the specific topics we tackle in this class, and are of general use for any
application that needs to deal with data.

Now we proceed in showing an example, and show how hard is doing things
without a DB, later we will introduce formal DB concepts and show how much
easier things are using a DB.

Mafia Example

Today we cover the user perspective, trying to detail the many reason we want
to use a DBMS rather than organizing and accessing data directly, for example
as files.

Let us assume I am a Mafia Boss (Note: despite the accent this is not the
case, but only hypothetical!) and I want to organize my group of “picciotti”
(sicilian for the criminals/bad guys working for the boss, a.k.a the soldiers, see
Figure 2) to achieve more efficiency in all our operations. I will also need a
lot of book-keeping, security/privacy etc.. Note that my organization is very

3

Figure 2: Mafia hierarchy.

large, so there is quite a bit of things going on at any moment (i.e., many people
accessing the database to record or read information).

I need to store information about:

•	 people that work for me (soldiers, caporegime, etc..)

•	 organizations I do business with (police, ’Ndrangheta, politicians)

•	 completed and open operations:

–	 protection rackets

–	 arms trafficking

–	 drug trafficking

–	 loan sharking

–	 control of contracting/politics

–	 I need to avoid that any of may man is involved in burglary, mugging,
kidnapping (too much police attention)

–	 cover-up operations/businesses

–	 money laundry and funds tracking

•	 assignment of soldiers to operations

etc...•

I will need to share some of this information with external organizations I
work with, protecting some of the information.

Therefore I need:

•	 the boss, underboss and consigliere should be able to access all the data
and do any kind of operations (assign soldiers to operations, create or
shutdown operations, pay cops, check the total state of money movements,
etc...)

•	 the accountants (20 of them) access to perform money book-keeping (track
money laundering operations, move money from bank to bank, report
bribing expenses)

4

Consigliere

Caporegime

Soldiers

Associates

Boss

Underboss

Caporegime

Soldiers

Caporegime

Soldiers

Image by MIT OpenCourseWare.

•	 the soldiers (5000) need to report daily misdeeds in a daily-log, and report
money expenses and collections

•	 the semi-public interface accessible by other bosses I collaborate with
(search for cops on our books, check areas we already cover, etc..)

person

organization

log

operation

accounts

name
nickname
phone

log_id
author
title
summary

name
desc
$$
coverup-name

involve

collaboration_with

name
boss
rank

account-number
false-identity
balance

Figure 3: What data to store in my Mafia database.

3.1 An offer you cannot refuse

I make you an offer you cannot refuse: “you are hired to create my Mafia
Information System, if you get it right you will have money, sexy cars, and a
great life. If you get it wrong... well you don’t want to get it wrong”.

As a first attempt, you think about just using a file system:

1.	 What to represent:, what are the key entities in the real world I need
to represent? how many details?

2.	 How to store data: maybe we can use just files: people.txt, organiza­
tions.txt, operations.txt, money.txt, daily-log.txt. Each files contains a
textual representation of the information with one item per line.

3.	 Control access credentials at low granularity: accountants should
know about money movement, but not the names and addresses of our
soldiers. Soldiers should know about operations, but not access money
information

4.	 How to access data: we could write a separate procedural program
opening one or more files, scanning through them and reading/writing
information in them.

5.	 Access patterns and performance: how to find shop we didn’t col­
lected money from for the longest time (and at least 1 month)? scan the
huge operation file, sort by time, pick the oldest, measure time? (need to
be timely or they will stop paying, and this get the boss mad... you surely

5

don’t want that, and make sure no one is accessing it right now). “Tony
Schifezza” is a mole, we need to find all the operations and people he was
involved or knew about and shut them down... quick... like REAL quick!!!

6.	 Atomicity: when an accountant moves money from one place to another
you need to guarantee that either money are removed from account A and
added to account B, or nothing at all happens... (You do not want to have
money vanishing, unless you plan to vanish too!).

7.	 Consistency: guarantee that the data are always in a valid state (e.g.,
there are no two operations with the same name)

8.	 Isolation: multiple soldiers need to add to daily-log.txt at the same time
(risk is that they override each other work, and someone get “fired” be­
cause not productive!!)

9.	 Durability: in case of a computer crash we need to make sure we don’t
lose any data, nor that data get scrambled (e.g., If the system says the
payment of a cop went through, we must guarantee that after reboot the
operation will be present in the system and completed. The risk is police
taking down our operation!)

Using the file system, you realize that most probably you will fail, and that
can be very dangerous... Luckily you are enrolled in 6.830/6.814 and you just
learned that: Databases address all of these issues!! you might have a chance!
In fact, you might notice that the issues listed above are already related to the
three concepts we mentioned before: 1-3 are problems related to Data Model,
4-5 are problems related to the Query language and 6-9 are problems related to
Transactions.

So let’s try to do the same with a “database” and get the boss what he needs.

3.2 More on fundamental concepts

Database are a microcosm of computer science, their study covers: languages,
theory, operating systems, concurrent programming, user interfaces, optimiza­
tion, algorithms, artificial intelligence, system design, parallel and distributed
systems, statistical techniques, dynamic programming. Some of the key con­
cepts we will investigate are:

Representing Data We need a consistent structured way to represent data,
this is important for consistency, sharing, efficiency of access. From database
theory we have the right concepts.

•	 Data Model: a set of constructs (or a paradigm) to describe the organiza­
tion of data. For example tables (or more precisely relations), but we could
also choose graph, hierarchies, objects, triples <subject,predicate,object>,
etc..

6

•	 Conceptual/Logical Schema: is a description of a particular collection
of data, using the a given data model (e.g., the schema of our Mafia
database).

•	 Physical Schema: is the physical organization of the data (e.g., data and
index files on disk for our Mafia database).

Declarative Querying and Query Processing a high-level (typically declar­
ative) language to describe operations on data (e.g., queries, updates). The goal
is to guarantee Data independence (logical and physical), by separating “what”
you want to do with data from “how” to achieve that (more later).

•	 High level language for accessing data

•	 “Data Independence” (logical and physical)

•	 Optimization Techniques for efficiently accessing data

Transactions

•	 a way to group actions that must happen atomically (all or nothing)

•	 guarantees to move the DB content from a consistent state to another

•	 isolate from parallel execution of other actions/transactions

•	 recoverable in case of failure (e.g., power goes out)

This provide the application with guarantees about a group of actions even
in presence of concurrency and failures. It is a unit of access and manipulation
of data. And significantly simplify the work of application developers.

This course covers these concepts, and goes deep into the investigation of
how modern DBMS are designed to achieve all that. We will not cover the more
artificial-inteligence / statistical / mining related areas that are also part of
database research. Instead, we will explore some of the recent advanced topics
in database research—see class schedule to get an idea of the topics.

3.3 Back to our Mafia database

What features of our organization shall we store? How do we want to capture
them? Choose a level of abstraction and describe only the relevant details (e.g.,
I don’t care about favorite movies for my soldiers, but I need to store their
phone numbers). Let’s focus on a subset:

•	 each person has real name, nickname, phone number

•	 each operation has a name, description, economical value, cover-up name

•	 info about the persons involved in an operation and their role,

7

We could represent this data according to many different data models:

hierarchies •

• objects

• graph

• triples

etc..•

Let’s try using an XML hierarchical file:

<person>
<name> </name>
<nickname> </nickname>
<phone> </phone>
<operation>

<op_name> </op_name>
<description> </description>
<econ_value> </econ_value>
<coverup_name> </coverup_name>

</operation>
</person>

Operations are duplicated in each person, this might make the update very
tricky (inconsistencies) and the representation very verbose and redundant.
Otherwise we can organize the other way around with people inside operations,
well we would have people replicated.

Another possibility is using a graph structure with people, names, nick­
names,phones, operation names etc.. as nodes, and edges to represent relation­
ships between them. Or we could have objects and methods on them, or triples
like <carlo,is a,person>, <carlo,phone,5554348882> etc..

Different data models are more suited for different problems.

They different expressive power and different strengths depending on what
data you want to represent and how you need to access them.

Let’s choose the relational data model and represent this problem using “ta­
bles”. Again there are many ways to structure the representation, i.e., different
“conceptual/logical schemas” that could capture the reality are modeling. For
example we can have a single big table with all info together... again, is redun­
dant and might slow down all the access to data.

The “database design” is the art of capturing a set of real world concepts
and their relations in the best possible organization in a database. A good
representation is shown in Figure 4. It is not redundant and contains all the
information we care about.

8

shifezzatony 789

lungo 456mike

baffocarlo 123

name nickname phone

person operation

.. laundromat

irish pub

irish pub

chocolate

snowflake

coverup

caffe

$10M

econ_valtitle descr.

... $2M

... $5M

chocolatemike chief

snowflake soldtony

carlo snowflake chief

pers_name oper_name rols

involved

Figure 4: Simple Logical Schema for a portion of our Mafia database.

What about the physical organization of the data? As a database user you
can ignore the problem, thanks to the physical independence! As a student of
this class you will devote a lot of effort in learning how to best organize data
physically to provide great performance to access data.

3.4 Accessing the data (transactionally)

As we introduced before databases provide high-level declarative query lan­
guages. The key idea is that you describe “what” you want to access, rather
than “how” to access it.

Let’s consider the following operations you want to do on data, and how we
can represent them using the standard relational query language SQL:

•	 Which operations involve “Tony Schifezza”?

SELECT oper_name
FROM involved
WHERE person = "tony";

•	 Given the “laundromat” operation, get the phone numbers of all the people
involved in operations using it as a cover up.

SELECT p.phone
FROM person p, operation o, involve i
WHERE p.name = i.person AND

i.oper_name = o.name AND
o.coverup_name = "laundromat";

•	 Reassign Tony’s operations to Sam and remove Tony from the database
(he was the mole).

BEGIN
UPDATE involved i SET pers_name="sam" WHERE pers_name="tony";
DELETE FROM person WHERE name = "tony";
COMMIT

9

4

• Create a new operation with “Sam Astuto” in charge of it.

BEGIN
INSERT INTO operation VALUES (’newop1’,’’,0,’Sam’s bakery’);
INSERT INTO involve VALUES (’newop1’,’sam’,’chief’);
COMMIT

Let us reconsider the procedural approach. You might organize data into
files: one record of each table in a file, and maybe sort the data by one of the
fields. Now every different access to the data, i.e., every “query” should become
a different program opening the files, scanning them, reading or writing certain
fields, saving the files.

Extras

The two following concepts have been broadly mentioned but not discussed in
details in class.

Optimization The goal of a DBMS is to provide a library of sophisticated
techniques and strategy to store, access, update data that also guarantees per­
formance, atomicity, consistency, isolation, durability. DBMS automatically
compile the user declarative queries into an execution plan (i.e., a strategy that
applies various steps to achieve the compute the user queries), looks for equiv­
alent but more efficient ways to obtain the same result query optimization, and
execute it, see example in Figure 5.

scan(person) scan(involved) scan(operations)

product

product

filter(p.name=i.person)

filter(i.oper_name=o.name)

filter(o.coverup="laundromat")

project(p.phone)

scan(person) scan(involved) lookup(operations, coverup="laundromat")

product

product

filter(p.name=i.person)

project(p.phone)

filter(i.oper_name=o.name)

project(p.name,p.phone) project(i.oper_name, i.person) project(o.name)

BASIC PLAN OPTIMIZED PLAN

Figure 5: Two equivalent execution plan, a basic and an optimized one.

10

5

External schema A set of views over the logical schema, that predicates how
users see/access data. (e.g., a set of views for the accountants). It is often not
physically materialized, but maintain as a view/query on top of the data.

Let try to show only coverup names of operations worth less or equal to $5M
and the nicknames of all people involved using a view (see Figure 6):

CREATE VIEW nick-cover AS
SELECT nickname, coverup_name
FROM operation o, involved i, person p
WHERE p.name = i.person AND

i.oper_name = o.name AND

o.econ_val <= 5M;

schifezza laundromat

lungo irish pub

baffo laundromat

nickname coverup
nick-cover

Figure 6: Simple External Schema for a portion of our Mafia database.

What’s next?

Next week lessons introduce more formally the relational model (and some of
its history) and how to design the schema of a database. After that we will dive
into the DBMS internals and study “how” DBMS are internally architected
to achieve all the functionalities we discussed. Later on we will study how to
guarantee transactional behaviors, and how to scale a DBMS beyond a single
node. The last portion of the course is devoted to more esoteric topics from
recent advances in database research.

11

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

