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Overview. These notes are intended as background and will not be covered in lecture, except in
passing. These notes consider the problems that arise when we hook two computers together using
some communication medium and try to exchange data between them. We’ll start with point-to-
point media where the only computers are at the two ends, and then move on to shared media
such as Ethernet. In traditional layering terms, these notes cover the essentials of “layer 2,” the
link layer. It also touches upon what “layer 1,” the physical layer, does.

What you should already know. Most of what’s covered in 6.033, especially the topics con-
cerning networking and sharing. Familiarity with protocol layering. The end-to-end argument and
some examples of it. Simple probability and statistics.

Readings: MB76, PD00 (Chapter 2) or PD96 (Chapter 3).
Read these for an extended discussion of the material in these notes.

1 The problem

We will take the seemingly trivial problem of making two computers hooked together “talk” to
each other, and convince ourselves that it isn’t as trivial as it sounds. Then, we will systematically
convert this specification into a set of five tasks and go about solving each one. In the end, we will
see how these all fit together.

The first issue is that physical media (such as phone lines, cable, or ethernets) transmit analog
signals, not bits. We therefore need a way of converting from bits to signals. This is typically called
modulation, and unsurprisingly, the converse process of analog-to-bits done at the receiver is called
demodulation. Among the variety of things done at the physical layer, this is an important step.

Recall that what we really want to do is to send a big file across to the other computer. Assuming
that we’ve solved the (de)modulation problem, we know how to send bits across. We need to way
of packaging portions of the file and shipping those bits across efficiently. One approach would be
to treat the file as a bit-stream and continually ship bits across. Another would be to “packetize”
or make frames of smaller sizes and ship them across. This is the framing problem.

The laws of physics make noise-free communication impossible under all circumstances. In many
cases, we're interested in ensuring that what the receiver sees is precisely what the sender sent it.
This means that the receivers needs machinery to perform error detection.

In some cases, it might be enough for the receiver to detect errors and throw away that chunk of
information. [Can you now see why framing is useful? Can you think of some situation where throwing
bad chunks away and not bothering to do anything about it might be the right thing to do?] However,
there are many others where it isn’t enough just to detect errors, it is important to recover from
them (can you think of such an application?). This is the error correction or error recovery problem.

Finally, there are many media, such as Ethernet, where one can attach more than two computers
to a single physical medium. We now have to deal with sharing. This is the media access or channel
access problem—the problem of determining who gets to send at any point in time, and how
competition for the channel is arbitrated and resolved.
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2 Modulation & Demodulation

Scheme 1. NRZ. In the simplest modulation scheme, bit “1” may be sent as a high voltage signal
and bit “0” as a low voltage signal. The confusing term “Non-Return to Zero” (NRZ) is used to
describe this scheme. The main problems with NRZ are that consecutive sequences of the same bit
(voltage) confuse the receiver—for example, it can’t easily distinguish a zero from no signal, and
too many consecutive 1s cause the baseline signal to deviate from the true average.

A key requirement of most (de)modulation schemes is that clock recovery be easy. Clock recovery
refers to the receiver being able to deduce (or “recover”) the sender’s clock, since the sender sends
information (bits) triggered by clock cycles. Intuitively, clock recovery is made easier by frequent
0-1 and 1-0 transitions.

Scheme 2. NRZI. NRZI stands for Non-Return to Zero Inverted. Here the sender stays the same
to signal a 0 and changes to signal a 1. Of course, this doesn’t solve the consecutive Os problem,
although it does solve the consecutive 1s problem.

Scheme 3. Manchester encoding. In Manchester encoding, the sender transitions from low to
high to encode a 0 and from high to low to encode a 1. This ensures transitions on every bit,
facilitating clock recovery. While it solves the problems with NRZ mentioned above, it is somewhat
inefficient. [Why?]

Scheme 4. 4B/5B This scheme solves the inefficiency of Manchester encoding by introducing
extra bits in the data to prevent long sequences of Os or 1s. You can think of this as adding some
redundancy to the data (“coding”) so that clock recovery is easy. Specifically, it converts every
sequence of 4 bits into a 5-bit code and then proceeds to encode it using NRZI (this is why we
even discussed NRZI!). The trick is that the 4-bit to 5-bit encoding ensures that no consecutive
sequence of three or more zeroes appear in any valid encoding, thereby allowing NRZI to be used.
[How efficient is 4B/5B7]

3 Framing

Examples of framing protocols include PPP (the Point-to-Point Protocol) and HDLC (High-level
Data Link Control). The idea is that the sender demarcates the sequence of bits with a BEGIN
marker (a well-known 8-bit pattern, 01111110 in the case of HDLC) and the bits in between
correspond to a frame. The link-layer then ships the frame off to the receiver, using one of the
techniques above for modulation. At the receiver, the link-layer has to take these frames and
deliver them to the higher layer application that the sender application wanted to talk to. This is
the simplest example of protocol layering, illustrating the three interfaces that every layer has: (i)
peer interface, to the peer it is communicating with, (ii) lower-layer interface, from which it receives
data on the sending side and to which it sends data on the receiving side, and (iii) higher-layer
interface, for the converse. The last two interfaces are sometimes called service interfaces.

One problem that arises in such framing is that the BEGIN marker might show up in the actual data
being transmitted. Left unchanged, this will confuse the receiver into delivering a frame wrongly
to the higher layer. The solution to this problem is called bit stuffing and is a lot like using a
well-known escape sequence. In the context of HDLC and PPP, every time a sequence of 5 1s is
observed, the sender introduces a 0. The receiver now uses the following decoding strategy: if it sees
5 1s, then it looks at the next bit. If that bit is a ‘0’ then it must have been stuffed, so it removes
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it and proceeds. If that bit is a ‘1’ then this is either the BEGIN marker (for the next frame), or
the frame has suffered an error in transmission. By looking at the next bit this is easy to figure
out—the next bit must be a 0.

This form of framing used by HDLC and PPP is called bit-oriented framing. One of the problems
with this form is that bit-stuffed frames are variable in length, with the size of the frame depending
on the actual payload.

4 Error Detection

There are many ways of detecting errors in transmissions, including parity, checksums and CRCs, in
increasing order of sophistication. The challenge is to do this well with as little overhead as possible.
Details are in the 6-page handout from Peterson and Davie’s book (1st Ed.); I can’t improve on
their excellent description of this material!

5 Error Recovery

There are two forms of error recovery over noisy or loss-prone channels: ARQ (Automatic Repeat
reQuest) and FEC (Forward Error Correction). ARQ uses some form of receiver acknowledgments
to perform retransmissions, while FEC schemes use coding theory to add redundancy to the trans-
mitted data, allowing the receiver to correct certain commonly occuring error patterns. We will not
study specific FEC schemes in this course (there are other courses at MIT devoted to this topic).

5.1 ARQ

The simplest form of error recovery is via acknowledgments in which the sender sends a packet
(or frame), and waits for an acknowledgment (ACK) from the receiver. Upon receiving this ACK,
it sends the next packet. If it doesn’t receive an ACK within a certain period of time, called the
timeout period, it assumes that the packet was corrupted or lost and retransmits it. This simple
scheme is called stop-and-wait for obvious reasons.

One might think that stop-and-wait doesn’t need any information in the packet header, for at most
one packet can be outstanding at any point in time. However, this isn’t true, since the sender
can’t be absolutely sure that a packet that it presumed lost was actually lost (or corrupted)!. For
example, it could have just been delayed for a time period longer than the timeout period. This
means that an ARQ protocol needs a sequence number so that the receiver can distinguish amongst
duplicates. A little thought shows that a 1-bit sequence number that alternates (“wraps around”)
between 0 and 1 will suffice, even when there are several retransmissions for the same packet.

In general, a sender and receiver can’t achieve true synchrony over loss-prone networks. This is the famous
“two-generals problem,” where two generals on either side of a valley wish to agree on a common time at which to
simultaneously attack an enemy in the valley, by exchanging messages using soldiers on horseback that travel via the
same valley. These messages are loss-prone, since unfortunate soldiers could be eliminated or detained for long periods
by the enemy in the valley. It is easy to prove this property by contradiction on the length of the shortest protocol
that can in fact accomplish this task. Notice that the last message of the shortest correct protocol is redundant since
it can in fact be lost, which contradicts our choice of the shortest protocol.
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The main drawback of stop-and-wait is that it allows only one outstanding packet in each round-
trip time (RTT), implying that the maximum throughput is bounded by the ratio of the size of a
packet to the RTT. In other words, it doesn’t “fill the pipe” between sender and receiver.

How much data can the sender-receiver “pipe” hold assuming that we know the available capacity
(bandwidth, B) and the RTT, d? Suppose this quantity is P. We know that when the pipe is full,
the bottleneck capacity, B is fully utilized. We also know that when the number of unacknowledged
bytes in the pipe is P and no data is lost, the observed receiver throughput is P/d. Thus, the
right pipe size in the absence of any variations of bandwidth or RTT is B x d. This quantity is
often called the bandwidth-delay product of the network between sender and receiver. Ideally, the
sender would like to ensure that B x d bytes “in the pipe” rather than waiting to see every packet
acknowledged before proceeding (unless of course B x d < S, where S is the size of a packet).

This may be accomplished using a window-based protocol. Intuitively, one can see that the size of
the ideal window is B x d to achieve the highest link utilization. The slightly non-intuitive part
is that this window should slide. That is, a protocol where we send a window’s worth of packets,
wait for an acknowledgment, then send the next window’s worth, doesn’t work well. [Why not?].
We therefore use sliding-window protocols to achieve our goals.

The idea in a sliding-window protocol is that the receiver acknowledges every packet it receives, and
the sender slides its window by one to the right. At this time, it sends out a new packet to conserve
the number of unacknowledged, outstanding packets in flight to remain equal to the window size.
In most practical protocols, this window is bounded, as a way to perform flow control to ensure
that the receiver’s buffers are never overrun by the sender sending too much data.

Although I have described this in the context of a link-layer ARQ), this idea of using sliding windows
and acknowledgments is applicable at other places too, and not just over single links. Later in the
course, we’ll see how transport protocols like TCP use similar ideas in their operation.

6 Shared Media Access

Often, we are able to attach more than two nodes to the same physical medium (“link”), as in the
popular Ethernet technology. Such media are called shared media and bring up another important
problem—media access. The problem is figuring out how to resolve contention for the shared channel
amongst several contending stations. Protocols that do this are called MAC (for Media Access
Control) protocols.

In general, there are several categories of MAC protocols. Centralized protocols rely on a central
controller on the network to decide who gains access to the channel at any point in time. On the
other hand, distributed protocols do not have any special stations to perform this task, relying
instead on decentralized mechanisms. A particularly interesting example is the protocol used in
Ethernet, called CSMA/CD (Carrier Sense Multiple Access/Collision Detect) with exponential
backoffs. It is a distributed, randomized protocol that has been highly successful.

When a station wants to transmit data, it first senses the carrier to see if the channel is currently
active. It does so by sensing the voltage to see if it is higher than the baseband value. If it doesn’t
detect a carrier, it goes ahead and sends the packet. It then waits a certain period of time (51.2
microsecs for 10Mbps Ethernet) before trying to send another packet, giving a chance to other
stations to transmit in the interim.
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Figure 1: Summary of Ethernet’s MAC protocol. The function CalcBackoff() picks a random number
uniformly between 0 and the current backoff interval. For every unsuccessful transmission, this
backoff interval doubles in size.

On the other hand, if it does detect a carrier, it decides to wait until the carrier is free and then
transmits the packet. Of course, two or more stations might end up transmitting data at the same
time. This leads to a collision. Ethernet stations support collision detection (the “CD” part of
CSMA/CD); when a collision is detected, the station makes sure to transmit at least 512 bits of
the packet and then stops transmitting. [Why does it send at least this many bits?]

Each time a station detects a collision, it assumes that the collided packet has been irrecoverably
corrupted. It waits a certain period of time and tries again. The period of time that it waits for
is called the backoff period. There are many ways of picking the backoff period, and Ethernets
use a technique called exzponential backoff. The idea here is that the backoff value is randomly
and uniformly chosen from intervals that successively double in length for every detected collision.
The randomization helps avoid station synchronizations, while exponential backoffs improve system
stability in the sense that they reduce collision probabilities?. The intuition behind using backoffs is
that each station tries to estimate how crowded the channel is; the busier it thinks the contention,
the longer it backs off. (Because of its distributed nature, no station really knows how many other
active stations there are at any point in time.) Stations do not try and retransmit ad infinitum;
they give up after some fixed number of tries (usually 16). [How is this an example of an end-to-end
argument?] The transmitter algorithm (most of the intelligence is implemented there) is summarized
in Figure 1.

The theoretical and practical performance of the Ethernet protocol has been the subject of much
research in years past. It isn’t hard to show that when packet sizes are small and the number
of stations is large (the worst case scenario), the maximum utilization is bounded by 1/e (37%).
However, in most practical situations, Ethernets function very well, often achieving utilizations as
high as 90%. Some simple ways to obtain high utilizations on an Ethernet are to eliminate really
long cables (Ethernets can be as long as 1.5 km, but usually there’s no need to go that far; shorter

2 Actually, if population sizes are infinite, even exponential backoffs don’t lead to stability. Fortunately, we don’t
have to deal with infinite populations in practice!
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segments with bridges work better), use fewer hosts per cable, and use larger packet sizes than the
64-byte minimum.

7 Summary

We saw that there are a number of tricky problems to solve even when our network is the smallest
imaginable one, running over a single technology: (de)modulation, framing, error detection, and
error recovery, and, in the case of shared (but single) media, channel access.

In the next lecture, the first of the course, we’ll consider the problem of packet switching and how
different links of the same kind can be hooked together to form larger networks.
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