

6.828 2011 Lecture 9: File System

topic: file systems
 what they are
 how the xv6 file system works
 intro to larger topics

FS goals?
 durable storage
 multiplexing
 sharing
 organization

why are file systems interesting?
 they are a critical (and fruitful) piece of many stories
 performance
 security
 fault tolerance
 O/S API design
 user interfaces
 and you will implement one for JOS

high-level choices made by UNIX (and xv6)
 granularity: files (vs virtual disk, DB)
 content: byte array (vs 80-byte records, BTree)
 naming: human-readable (vs object IDs)
 organization: name hierarchy
 synchronization: none (vs locking, versions)

what's the API?
 fd = open("x/y", O_CREATE);
 write(fd, "abc", 3);
 link("x/y", "x/z");
 unlink("x/y");

FS abstraction turns out to be useful
 pipes
 devices /dev/console
 Linux /proc
 /afs
 Plan 9
 point: apps don't have to know about each of these objects separately
 write app to general FS/FD interface, works for many underlying things

a few implications of the API:
 fd refers to something

 that is preserved even if file name changes

 or if file is deleted while open!

 a file can have multiple links
 i.e. occur in multiple directories

 no one of those occurences is special

 so cannot store info about file in the directory

 thus:

1

 a file exists independent of its names
 called an "inode"
 inode must have link count (tells us when to free)
 inode must have count of open FDs
 inode deallocation deferred until last link and FD are gone

let's talk about xv6

FS software layers
 system calls
 name ops | file descriptors
 inode ops
 inode cache (really just active inodes)
 transactions
 buffer cache
 disk driver

on-disk layout
 we will view disk as linear array of 512-byte sectors
 though, when thinking about performance, remember concentric tracks
 0: unused
 1: super block (size, ninodes)
 2: array of inodes, packed into blocks
 X: block in-used bitmap (0=free, 1=inuse)
 Y: file/dir content blocks
 Z: log for transactions

 end of disk

on-disk inode
 type (free, file, directory, device)
 nlink
 size
 addrs[12+1]

direct and indirect blocks

each i-node has an i-number
 easy to turn i-number into inode
 location on disk: sector 2 + 64*inum

directory contents
 directory much like a file
 but user can't directly write
 content is array of dirents
 dirent:
 inum

 14-byte file name
 dirent is free if inum is zero

you should view FS as an on-disk data structure
 [tree: dirs, inodes, blocks]
 two allocation pools: inodes and blocks

let's look at xv6 in action
2

 focus on disk writes, as in homework

 illustrate on-disk data structures via how updated

[hand out the following]

Q: how does xv6 create a file?

$ echo > a

log_write 4 ialloc (44, from create 54)

log_write 4 iupdate (44, from create 54)

log_write 29 writei (47, from dirlink 48, from create 54)

log_write 2 iupdate

Q: what is writei writing?

Q: what is the 2nd iupdate about?

Q: what if there are concurrent calls to ialloc?
 will they get the same inode?
 note bread / bwrite / brelse in ialloc
 bread sheet 39
 diagram of block cache
 focus on B_BUSY and sleep()
 Q: why goto loop?

Q: how does xv6 write data to a file?

$ echo x > a
log_write 28 balloc (43, from bmap 46, from writei 47)
log_write 417 bzero
log_write 417 writei
log_write 4 iupdate
log_write 417 writei
log_write 4 iupdate

Q: why the iupdate?

Q: why *two* iupdates?

Q: how does xv6 delete a file?

$ rm a
log_write 29 writei
log_write 4 iupdate
log_write 28 bfree
log_write 4 iupdate
log_write 4 iupdate

Q: what's in block 29?

Q: what are the iupdates doing?

Q: what is the block cache replacement policy?
 bget and brelse, sheet 39

3

Q: is that the best replacement policy?

Q: when does xv6 write user data to disk?
 writei 47, bwrite 39, iderw 38 (which sleeps)

Q: is that a good write policy?
 performance?
 correctness? what's the danger?

Q: when does xv6 write meta-data to disk?
 same policy as user data
 is that a good meta-data write policy?

 performance

 correctness (order)

 tune in next lecture...

Q: what if lots of processes need to read the disk? who goes first?
 iderw 38 appends to idequeue
 idestart looks at head of list
 ideintr pops head, starts next
 so FIFO

Q: is FIFO a good disk scheduling policy?
 priority to interactive programs?
 elevator sort?

Q: how fast can an xv6 application read big files?
 contiguous blocks?
 blow a rotation -- no prefetch?

Q: why does it make sense to have a double copy of I/O?
 disk to buffer cache
 buffer cache to user space
 can we fix it to get better performance?

Q: how much RAM should we dedicate to disk buffers?

4

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec9_notes.txt

