
6.828 2012 Lecture 4: Virtual Memory

plan:
 address spaces
 paging hardware
 xv6 VM code

today's problem:
 [user/kernel diagram]
 suppose the shell has a bug:
 sometimes it writes to a random memory address

 how can we keep it from wrecking the kernel?

 and from wrecking other processes?

we want isolated address spaces
 each process has its own memory
 it can read and write its own memory
 it cannot read or write anything else

xv6 uses x86's paging hardware to implement AS's
 ask questions! this material is important

paging provides a level of indirection for addressing
 CPU -> MMU -> RAM

 VA PA
 s/w can only ld/st to virtual addresses, not physical
 kernel tells MMU how to map each virtual address to a physical address
 MMU essentially has a table, indexed by va, yielding pa

 called a "page table"

 MMU can restrict what virtual addresses user code can use

x86 maps 4-KB "pages"
 and aligned -- start on 4 KB boundaries
 thus page table index is top 20 bits of VA

what is in a page table entry (PTE)?
 see handout
 top 20 bits are top 20 bits of physical address
 "physical page number"

 MMU replaces top 20 of VA with PPN

 low 12 bits are flags

 Present, Writeable, &c

where is the page table stored?
 in RAM -- MMU loads (and stores) PTEs
 o/s can read/write PTEs

would it be reasonable for page table to just be an array of PTEs?
 how big is it?
 2^20 is a million
 32 bits per entry
 4 MB for a full page table -- pretty big on early machines
 would waste lots of memory for small programs!

1

 you only need mappings for a few hundred pages
 so the rest of the million entries would be there but not needed

x86 uses a "two-level page table" to save space
 diagram
 pages of PTEs in RAM
 page directory (PD) in RAM
 PDE also contains 20-bit PPN -- of a page of 1024 PTEs
 1024 PDEs point to PTE pages
 each PTE page has 1024 PTEs -- so 1024*1024 PTEs in total
 PD entries can be invalid

 those PTE pages need not exist

 so a page table for a small address space can be small

how does the mmu know where the page table is located in RAM?
 %cr3 holds phys address of PD
 PD holds phys address of PTE pages
 they can be anywhere in RAM -- need not be contiguous

how does x86 paging hardware translate a va?
 need to find the right PTE
 %cr3 points to PA of PD
 top 10 bits index PD to get PA of PT
 next 10 bits index PT to get PTE
 PPN from PTE + low-12 from VA

flags in PTE
 P, W, U
 xv6 uses U to forbid user from using kernel memory

what if P bit not set? or store and W bit not set?
 "page fault"
 CPU saves registers, forces transfer to kernel
 trap.c in xv6 source
 kernel can just produce error, kill process
 or kernel can install a PTE, resume the process
 e.g. after loading the page of memory from disk

Q: why mapping rather than e.g. base/bound?
 indirection allows paging h/w to solve many problems
 e.g. avoids fragmentation
 e.g. copy-on-write fork
 e.g. lazy allocation (today's in-class exercise)

 many more techniques

how does xv6 use the x86 paging hardware?

big picture of an xv6 address space -- one per process
 [diagram]
 0x00000000:0x80000000 -- user addresses below KERNBASE
 0x80000000:0x80100000 -- map low 1MB devices (for kernel)
 0x80100000:? -- kernel instructions/data
 ? :0x8E000000 -- 224 MB of DRAM mapped here
 0xFE000000:0x00000000 -- more memory-mapped devices

2

where does xv6 map these regions, in phys mem?
 [diagram]
 note double-mapping of user pages

each process has its own address space
 and its own page table
 all processes have the same kernel (high memory) mappings
 kernel switches page tables (i.e. sets %cr3) when switching processes

Q: why this address space arrangement?
 user virtual addresses start at zero
 of course user va 0 maps to different pa for each process
 2GB for user heap to grow contiguously
 but needn't have contiguous phys mem -- no fragmentation problem
 both kernel and user mapped -- easy to switch for syscall, interrupt
 kernel mapped at same place for all processes
 eases switching between processes

 easy for kernel to r/w user memory

 using user addresses, e.g. sys call arguments

 easy for kernel to r/w physical memory

 pa x mapped at va x+0x80000000

 we'll see this soon while manipulating page tables

Q: what's the largest process this scheme can accomodate?

Q: could we increase that by increasing/decreasing 0x80000000?

To think about: does the kernel have to map all of phys mem
 into its virtual address space?

let's look at some xv6 virtual memory code
 virtual memory == address space / translation

a process calls sbrk(n) to ask for n more bytes of heap memory
 malloc() uses sbrk()
 each process has a size
 kernel adds new memory at process's end, increases size

 sbrk() allocates physical memory (RAM)

 maps it into the process's page table

 returns the starting address of the new memory

sys_sbrk() in sysproc.c

growproc() in proc.c
 proc->sz is the process's current size
 allocuvm() does most of the work
 switchuvm sets %cr3 with new page table
 also flushes some MMU caches so it will see new PTEs

allocuvm() in vm.c
 why if(newsz >= KERNBASE) ?
 why PGROUNDUP?
 arguments to mappages()...

3

mappages() in vm.c
 arguments are PD, va, size, pa, perm
 adds mappings from a range of va's to corresponding pa's
 rounds b/c some uses pass in non-page-aligned addresses
 for each page-aligned address in the range
 call walkpgdir to find address of PTE
 need the PTE's address (not just content) b/c we want to modify
 put the desired pa into the PTE
 mark PTE as valid w/ PTE_P

diagram of PD &c, as following steps build it

walkpgdir() in vm.c
 mimics how the paging h/w finds the PTE for an address
 refer to the handout
 PDX extracts top ten bits
 &pgdir[PDX(va)] is the address of the relevant PDE
 now *pde is the PDE
 if PTE_P
 the relevant page-table page already exists

 PTE_ADDR extracts the PPN from the PDE

 p2v() adds 0x80000000, since PTE holds physical address

 if not PTE_P

 alloc a page-table page

 fill in PDE with PPN -- thus v2p

 now the PTE we want is in the page-table page

 at offset PTX(va)

 which is 2nd 10 bits of va

4

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec4_notes.txt

