

6.828 2012 Lecture 3: O/S Organization

plan:
 O/S organization
 processes
 isolation

topic: overall o/s design
 what should the main components be?
 what should the interfaces look like?

why have an o/s at all?
 why not just a library?
 then apps are free to use it, or not -- flexible
 some tiny O/Ss for embedded processors work this way

key requirement: support multiple activities
 multiplexing
 isolation
 interaction

helpful approach:
 abstract services rather than raw hardware
 file system, not raw disk
 TCP, not raw ethernet
 processes, not raw CPU/memory
 abstractions often ease multiplexing and interaction
 and more convenient and portable

note:
 i'm going to focus on mainstream designs (xv6, Linux, &c)
 for *every* aspect, someone has done it a different way!
 example: exokernel and VMM does *not* abstract anything!

xv6 has only a few abstractions / services
 processes (cpu, mem)
 I/O (file descriptors)
 file system

i'm going to focus on xv6 processes today
 a process is a running program
 it has its own memory, share of CPU, FDs, parent, children, &c
 it uses system calls to interact outside itself
 to get at kernel services

 xv6 basic design here very traditional (UNIX/Linux/&c)

xv6 user/kernel organization
 h/w, kernel, user
 kernel is a big program
 services: process, FS, net
 low-level: devices, VM
 all of kernel runs w/ full hardware privilege (very convenient)
 system calls switch between user and kernel

1

 good: easy for sub-systems to cooperate (e.g. paging and file system)

 bad: interactions => complex, bugs are easy, no isolation within o/s

 called "monolithic"; traditional and successful

 worth thinking about what *has* to be in the kernel

 Q: could FS be a user-level library? why / why not?
 note: you could have a small kernel, most functionality at user-level

 microkernel, exokernel

isolation is the most constraining consideration!
 isolation determines much of the basic design
 it's much of the reason why we need the notion of process at all
 isolation will come up again and again

what is isolation?
 the process is the unit of isolation
 prevent process X from wrecking or spying on process Y
 memory, cpu, FDs, resource exhaustion

 prevent a process from wrecking the operating system itself

 i.e. from preventing kernel from enforcing isolation

 in the face of bugs or malice

 e.g. a bad process may try to trick the h/w or kernel

what are all the mechanisms that keep processes isolated?
 user/kernel mode flag
 address spaces
 timeslicing
 system call interface

the foundation of xv6's isolation: user/kernel mode flag
 controls whether instructions can access privileged h/w
 called CPL on the x86, bottom two bits of %cs
 CPL=0 -- kernel mode -- privileged

 CPL=3 -- user mode -- no privilege

 x86 CPL protects everything relevant to isolation

 writes to %cs (to defend CPL)

 every memory read/write

 I/O port accesses

 control register accesses (eflags, %cs4, ...)

 every serious microprocessor has something similar

user/kernel mode flag is not enough
 protects only against direct attacks on the hardware
 kernel must configure control regs, page tables, &c to protect other stuff
 e.g. kernel memory

how to do a system call -- switching CPL
 Q: would this be an OK design for user programs to make a system call:
 set CPL=0
 jmp sys_open
 bad: user-specified instructions with CPL=0
 Q: how about a combined instruction that sets CPL=0,

 but *requires* an immediate jump to someplace in the kernel?

 bad: user might jump somewhere awkward in the kernel

 the x86 answer:

2

 there are only a few permissible kernel entry points
 INT instruction sets CPL=0 and jumps to an entry point
 but user code can't otherwise modify CPL or jump anywhere else in kernel
 system call return sets CPL=3 before returning to user code

 also a combined instruction (can't separately set CPL and jmp)

 but kernel is allowed to jump anywhere in user code

the result: well-defined notion of user vs kernel
 either CPL=3 and executing user code
 or CPL=0 and executing from entry point in kernel code
 not:
 CPL=0 and executing user

 CPL=0 and executing anywhere in kernel the user pleases

Q: could one have process isolation WITHOUT h/w-supported kernel/user mode?
 yes!
 see Singularity O/S, later in semester
 but h/w user/kernel mode is the most popular plan

how to isolate process memory?
 idea: "address space"
 give each process some memory it can access
 for its code, variables, heap, stack

 prevent it from accessing other memory (kernel or other processes)

how to create isolated address spaces?
 xv6 uses x86 "paging hardware"
 MMU translates (or "maps") every address issued by program
 VA -> PA

 instruction fetch, data load/store

 for kernel and user

 there's no way for any instruction to directly use a PA

 MMU array w/ entry for each 4k range of "virtual" address space

 refers to phy address for that "page"

 this is the page table

 o/s tells h/w to switch page table when switching process
 why isolated?
 each page table entry (PTE) has a bit saying if user-mode instructions can use
 kernel only sets the bit for the memory in current process's address space
 paging h/w used in many ways, not just isolation
 e.g. copy-on-write fork(), see Lab 4
 note: you don't need paging to isolate memory

 type safety, JVM, Singularity

 but paging is the most popular plan

how to isolate CPU?
 prevent a process from hogging the CPU, e.g. buggy infinite loop
 how to force uncooperative process to yield
 h/w provides a periodic "clock interrupt"
 forcefully suspends current process

 jumps into kernel

 which can switch to a different process

 kernel must save/restore process state (registers)

 totally transparent, even to cooperative processes

3

 called "pre-emptive context switch"

 note: traditional, but maybe not perfect; see exokernel paper

back to system calls

 i've talked a lot about how o/s isolates processes

 but need user/kernel to cooperate! user needs kernel services.

 what should user/kernel interaction look like?

 can't let user r/w kernel mem (well, you can, later...)

 kernel can r/w user mem

 but don't want to do this too much!

 so style of system call interface is pretty simple

 integers, strings (copying only), user-allocated buffers

 no objects, data structures, &c

 never any doubt about who owns memory

 let's illustrate by tracing sys calls in xv6

on-screen:
 xterm -fn 10x20
 illustrate sh.c exercise
 draw parent/child diagram
 echo hi
 echo hi > x
 echo hi | wc

4

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec3_notes.txt

