
6.828 2011 Lecture 19: Virtual Machines

Read: A comparison of software and hardware techniques for x86
virtualizaton, Keith Adams and Ole Agesen, ASPLOS 2006.

what's a virtual machine?
 simulation of a computer
 running as an application on a host computer
 accurate
 isolated
 fast

why use a VM?
 one computer, multiple operating systems (OSX and Windows)
 manage big machines (allocate CPUs/memory at o/s granularity)
 kernel development environment (like qemu)
 better fault isolation: contain break-ins

how accurate do we need?
 handle weird quirks of operating system kernels
 reproduce bugs exactly
 handle malicious software
 cannot let guest break out of virtual machine!
 usual goal:

 impossible for guest to distinguish VM from real computer

 impossible for guest to escape its VM

 some VMs compromise, require guest kernel modifications

VMs are an old idea
 1960s: IBM used VMs to share big machines
 1990s: VMWare re-popularized VMs, for x86 hardware

terminology
 [diagram: h/w, VMM, VMs..]
 VMM ("host")
 guest: kernel, user programs
 VMM might run in a host O/S, e.g. OSX
 or VMM might be stand-alone

VMM responsibilities
 divide memory among guests
 time-share CPU among guests
 simulate per-guest virtual disk, network
 really e.g. slice of real disk

why not simulation?
 VMM interpret each guest instruction
 maintain virtual machine state for each guest
 eflags, %cr3, &c

 much too slow!

idea: execute guest instructions on real CPU when possible
 works fine for most instructions

1

 e.g. add %eax, %ebx
 how to prevent guest from executing privileged instructions?

 could then wreck the VMM, other guests, &c

idea: run each guest kernel at CPL=3
 ordinary instructions work fine
 privileged instructions will (usually) trap to the VMM
 VMM can apply the privileged operation to *virtual* state
 not to the real hardware

 "trap-and-emulate"

Trap-and-emulate example -- CLI / STI
 VMM maintains virtual IF for guest
 VMM controls hardware IF
 Probably leaves interrupts enabled when guest runs
 Even if a guest uses CLI to disable them

 VMM looks at virtual IF to decide when to interrupt guest

 When guest executes CLI or STI:

 Protection violation, since guest at CPL=3

 Hardware traps to VMM

 VMM looks at *virtual* CPL

 If 0, changes *virtual* IF

 If not 0, emulates a protection trap to guest kernel

 VMM must cause guest to see only virtual IF

 and completely hide/protect real IF

trap-and-emulate is hard on an x86
 not all privileged instructions trap at CPL=3

 popf silently ignores changes to interrupt flag

 pushf reveals *real* interrupt flag

 all those traps can be slow

 VMM must see PTE writes, which don't use privileged instructions

what real x86 state do we have to hide (i.e. != virtual state)?
 CPL (low bits of CS) since it is 3, guest expecting 0
 gdt descriptors (DPL 3, not 0)
 gdtr (pointing to shadow gdt)
 idt descriptors (traps go to VMM, not guest kernel)
 idtr
 pagetable (doesn't map to expected physical addresses)
 %cr3 (points to shadow pagetable)
 IF in EFLAGS
 %cr0 &c

how can VMM give guest kernel illusion of dedicated physical memory?
 guest wants to start at PA=0, use all "installed" DRAM
 VMM must support many guests, they can't all really use PA=0
 VMM must protect one guest's memory from other guests
 idea:
 claim DRAM size is smaller than real DRAM

 ensure paging is enabled

 maintain a "shadow" copy of guest's page table

 shadow maps VAs to different PAs than guest

 real %cr3 refers to shadow page table

2

 virtual %cr3 refers to guest's page table
 example:
 VMM allocates a guest phys mem 0x1000000 to 0x2000000
 VMM gets trap if guest changes %cr3 (since guest kernel at CPL=3)
 VMM copies guest's pagetable to "shadow" pagetable
 VMM adds 0x1000000 to each PA in shadow table
 VMM checks that each PA is < 0x2000000

Why can't VMM just modify the guest's page-table in-place?

also shadow the GDT, IDT
 real IDT refers to VMM's trap entry points

 VMM can forward to guest kernel if needed

 VMM may also fake interrupts from virtual disk

 real GDT allows execution of guest kernel by CPL=3

note we rely on h/w trapping to VMM if guest writes %cr3, gdtr, &c
 do we also need a trap if guest *read*s?

do all instructions that read/write sensitive state cause traps at CPL=3?
 push %cs will show CPL=3, not 0
 sgdt reveals real GDTR
 pushf pushes real IF
 suppose guest turned IF off

 VMM will leave real IF on, just postpone interrupts to guest

 popf ignores IF if CPL=3, no trap

 so VMM won't know if guest kernel wants interrupts

 IRET: no ring change so won't restore restore SS/ESP

how can we cope with non-trapping instructions that reveal real state?
 modify guest code, change them to INT 3, which traps
 keep track of original instruction, emulate in VMM
 INT 3 is one byte, so doesn't change code size/layout
 this is a simplified version of the paper's Binary Translation

how does rewriter know where instruction boundaries are?
 or whether bytes are code or data?
 can VMM look at symbol table for function entry points?

idea: scan only as executed, since execution reveals instr boundaries
 original start of kernel (making up these instructions):
 entry:
 pushl %ebp

 ...

 popf

 ...

 jnz x

 ...

 jxx y

 x:

 ...

 jxx z

 when VMM first loads guest kernel, rewrite from entry to first jump
 replace bad instrs (popf) with int3

3

 replace jump with int3

 then start the guest kernel

 on int3 trap to VMM

 look where the jump could go (now we know the boundaries)

 for each branch, xlate until first jump again

 replace int3 w/ original branch

 re-start

 keep track of what we've rewritten, so we don't do it again

indirect calls/jumps?
 same, but can't replace int3 with the original jump
 since we're not sure address will be the same next time
 so must take a trap every time

ret (function return)?
 == indirect jump via ptr on stack
 can't assume that ret PC on stack is from a call
 so must take a trap every time. slow!

what if guest reads or writes its own code?
 can't let guest see int3
 must re-rewrite any code the guest modifies
 can we use page protections to trap and emulate reads/writes?
 no: can't set up PTE for X but no R
 perhaps make CS != DS

 put rewritten code in CS

 put original code in DS

 write-protect original code pages

 on write trap

 emulate write

 re-rewrite if already rewritten

 tricky: must find first instruction boundary in overwritten code

do we need to rewrite guest user-level code?
 technically yes: SGDT, IF
 but probably not in practice
 user code only does INT, which traps to VMM

how to handle pagetable?
 remember VMM keeps shadow pagetable w/ different PAs in PTEs
 scan the whole pagetable on every %cr3 load?
 to create the shadow page table

what if guest writes %cr3 often, during context switches?
 idea: lazy population of shadow page table
 start w/ empty shadow page table (just VMM mappings)
 so guest will generate many page faults after it loads %cr3
 VMM page fault handler just copies needed PTE to shadow pagetable
 restarts guest, no guest-visible page fault

what if guest frequently switches among a set of page tables?
 as it context-switches among running processes
 probably doesn't modify them, so re-scan (or lazy faults) wasted
 idea: VMM could cache multiple shadow page tables

4

 cache indexed by address of guest pagetable

 start with pre-populated page table on guest %cr3 write

 would make context switch much faster

what if guest kernel writes a PTE?
 store instruction is not privileged, no trap
 does VMM need to know about that write?
 yes, if VMM is caching multiple page tables

 idea: VMM can write-protect guest's PTE pages

 trap on PTE write, emulate, also in shadow pagetable

this is the three-way tradeoff the paper talks about
 trace costs / hidden page faults / context switch cost
 reducing one requires more of the others
 and all three are expensive

how to guard guest kernel against writes by guest programs?
 both are at CPL=3
 delete kernel PTEs on IRET, re-install on INT?

how to handle devices?
 trap INB and OUTB
 DMA addresses are physical, VMM must translate and check
 rarely makes sense for guest to use real device
 want to share w/ other guests

 each guest gets a part of the disk

 each guest looks like a distinct Internet host

 each guest gets an X window

 VMM might mimic some standard ethernet or disk controller

 regardless of actual h/w on host computer

 or guest might run special drivers that jump to VMM

Today's paper

Two big issues:
 How to cope with instructions that reveal privileged state?
 e.g. pushf, looking at low bits of %cs

 How to avoid expensive traps?

VMware's answer: binary translation (BT)
 Replace offending instructions with code that does the right thing
 Code must have access to VMM's virtual state for that guest

Example uses of BT
 CLI/STI/pushf/popf -- read/write virtual IF
 Detect memory stores that modify PTEs
 Write-protect pages, trap the first time, and rewrite
 New sequence modifies shadow pagetable as well as real one

How to hide VMM state from guest code?
 Since unprivileged BT code now reads/writes VMM state
 Put VMM state in very high memory
 Use segment limits to prevent guest from using last few pages
 But set up %gs to allow BT code to get at those pages

5

BT challenges
 Hard to find instruction boundaries, instructions vs data
 Translated code is a different size
 Thus code pointers are different

 Program expects to see original fn ptrs, return PCs on stack

 Translated code must map before use

 Thus every RET needs to look up in VMM state

Intel/AMD hardware support for virtual machines
 has made it much easier to implement a VMM w/ reasonable performance
 h/w itself directly maintains per-guest virtual state
 CS (w/ CPL), EFLAGS, idtr, &c
 h/w knows it is in "guest mode"

 instructions directly modify virtual state

 avoids lots of traps to VMM

 h/w basically adds a new priv level

 VMM mode, CPL=0, ..., CPL=3

 guest-mode CPL=0 is not fully privileged

 no traps to VMM on system calls

 h/w handles CPL transition

 what about memory, pagetables?

 h/w supports *two* page tables

 guest page table

 VMM's page table

 guest memory refs go through double lookup

 each phys addr in guest pagetable translated through VMM's pagetable
 thus guest can directly modify its page table w/o VMM having to shadow it
 no need for VMM to write-protect guest pagetables
 no need for VMM to track %cr3 changes
 and VMM can ensure guest uses only its own memory

 only map guest's memory in VMM page table

6

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec22_notes.txt

