

6828 2011 L17: Lock-free coordination

Required reading: Linux scalability

Plan
 programming without locks
 example: lists

 rcu: plan widely-used in Linux

 paper discussion

Problem:
 Locks limit scalability (serialize lock holders)
 Transferring lock from one holder to another is expensive
 Even when locks are scalable

 Can we do better?

 lock-free concurrent data structures

Example: a stack
 Sequential program:

 struct element {

 int key;

 int value;

 struct element *next;

 };

 struct element *top;

 void push(struct element *e) {

 e->next = top;

 top = e;

 }

 struct element *pop(void) {

 struct element *e = top;

 top = e->next;

 return e;

 }

 int search(int key) {

 struct element *e = top;

 while (e) {

 if (e->key == key)

 return e->value;

 e = e->next;

 }

 return -1;

 }

this is clearly not going to work on a concurrent system
 what is a race?

global spinlock: correct, but what about performance?
1

 how many concurrent ops? just one CPU at a time

 bus interactions? bounce cache line for both reads, writes

global read-write lock: correct, but what about performance
 how many concurrent ops? theoretically, could do one per CPU
 bus interactions? bounce cache line for both reads, writes
 draw timing diagram of CPU interactions
 we might be slower on two CPUs than on a single CPU!

is it going to get better if we allocate a read-write lock for each item?
 concurrency still possible but penalty even worse: N_{elem}
 cache line bounces for each search traversal

other possible solutions
 partition data into n lists (e.g., n free lists, one per core)
 if one runs out of memory, steal memory from other core's free lists

why do we want to avoid locks?
 performance
 complexity
 deadlock
 priority inversion

what's the plan?
 reduce the operation we want to perform to some atomic x86 instruction
 x86 LOCK prefix makes many read-modify-write instructions atomic
 simple example: implement atomic counters by adding LOCK prefix
 most general thing is cmpxchg (which we seen many times now)

 int cmpxchg(int *addr, int old, int new) {

 int was = *addr;

 if (was == old)

 *addr = new;

 return was;

 }

 cmpxchg can be used to implement locks, but we can also use it

 directly for concurrent, correct access to the linked list.

example: concurrent stack with out locks

 void push(struct element *e) {
 again:

 e->next = top;

 if (cmpxchg(&top, e->next, e) != e->next)

 goto again;

 }

 struct element *pop(void) {
 again:

 struct element *e = top;

 if (cmpxchg(&top, e, e->next) != e)

 goto again;

 return e;

2

 }

 search can be the same as in the non-concurrent case (almost..)

why is this better than not having locks?
 readers no longer generate spurious updates, which incurred performance hit
 may be not having to think about deadlock is great

problem 1: lock-free data structures require careful design, hw support
 suppose we want to remove arbitrary elements, not just the first one
 what could go wrong if we try to use the same cmpxchg?
 race condition when two processors
 one processor deletes a node next to the other node being deleted
 need DCAS (double-compare-and-swap) to implement remove properly
 must make sure neither previous nor next element changed
 x86 hardware doesn't have DCAS
 one approach:
 on delete, mark node's next pointer to signal node is deleted
 now the CAS that removes a subsequent node if this previous node is delete concurrently too

problem 2: memory reuse
 when can we free a memory block, if other CPUs could be accessing it?
 other CPU's search might be traversing any of the elements

 reusing a memory block can corrupt list

 stack contains three elements

 top -> A -> B -> C

 CPU 1 about to pop off the top of the stack,

 preempted just before cmpxchg(&top, A, B)

 CPU 2 pops off A, B, frees both of them

 top -> C

 CPU 2 allocates another item (malloc reuses A) and pushes onto stack

 top -> A -> C

 CPU 1: cmpxchg succeeds, stack now looks like

 top -> B -> C

 this is called the "ABA problem"

 (memory switches from A-state to B-state and back to A-state without being able to tell)

 strawman solution for specific problem (actually used by some systems):

 type-stable memory (stack-elements never become non-stack-elements)

 each stack element has a reuse counter

 include generation# along with each pointer (so that cmpxchg notices)

 but for more complex data structures this becomes hard to solve

 for example, readers must check that data structure hasn't been freed

 need a general-purpose garbage-collection plan

 see below

RCU: ready-copy update
 concurrent data structure approach used in the Linux kernel for read-intensive concurrent data structures
 many usages in kernel, for hash tables, lists, etc.

 3 components:
 - lock-free readers, but serialize writers using locks

3

 - writers don't update in place

 on write, make copy

 update copy

 switch one pointer atomically

 => readers seen atomic switch from old to new

 - garbage collection to allow readers to read old versions and avoid ABA problem
 Can be applied to many data structures

Example: RCU stack

void
rcu_push(int k, int v)
{
 acquire(l);
 push(k, v);
 release(l);
}

elem_t*
rcu_pop()
{
 elem_t *e;
 acquire(l);
 e = pop();
 release(l);
 return e;
}

int
rcu_search(k)
{
 int v;
 v = search(k);
 return v;
}

problem: garbage collection
 after pop, can we just free e?
 no! such may be still looking at it!
 in a garbage-collected language, the garbage collection will make this safe

many different gc schemes possible for C
 on free, put element on a list for delayed freeing
 remove an element when sure that no reader is looking at the element

one scheme: epochs
 global epoch counter
 writers increment epoch number
 they hold lock anyway
 on free of element, record epoch number in element
 at beginning of read, threads stores global epoch in thread-local state
 gc: free all elements with epoch # < minimum of all readers

example stack
4

int
rcu_search(k)
{
 int v;

 rcu_start_read()

 v = search(k);

 rcu_end_read()

 return v;

}

rcu_begin_read(int tid)
{
 epochs[tid].epoch = global_epoch;
 __sync_synchronize();
}

void
rcu_end_read(int tid)
{
 epochs[tid].epoch = INF;
}

void free(e)
{
 // record global epoch into e
}

void gc()
{
 unsigned long min = global_epoch;

 for (i = 0; i < nthread; i++) {

 if (min > epochs[i].epoch)

 min = epochs[i].epoch;

 }

 // free all e whose epoch < min

}

RCU
 concurrent code very similar to sequential code
 general approach for read-intensive data structures
 but serializes all writers
 ok for stack case
 but what if inserting at the beginning and end of list concurrently?
 may make unnecessary copies

Future
 lock-free data structures for readers and writers?
 exist for lists, hash tables, skip lists, etc.

Paper
 What is the current state of scalability in current kernels?
 Many short sections

5

 Partitioning and replication of data structures for scalability

 RCU for lock-free sections

Example: exim
 Many processes do path name lookup concurrent
 Linux has a directory entry cache for mappings from directory entry to inode #
 [i#,name] -> file struct
 RCU has been used for the directory entry cache

 lookups for different pathnames run in parallel without locks

 lookups for the same dir entry of a lock

Problem:
 Look ups for "/", however, hit the same dentry
 Contention on spinlock, and collapse.
 Not simple fix:

 reads increase refcnt

 writes (e.g., rename), too + [i#,name]->file struct

Strawman solution: scalable locks
 Avoid collapse, but not more scalability

Solution: lock-free dentry?
 add generation #

 write: lock dentry, g = gen, gen=0, change, gen=g+1

 read:

 g <- gen#

 if g== 0, use locks (some core is modifying)

 copy relevant fields

 g1 <- gen#

 if g1 != g locking protocol

 if match, refcnt++ (if refcnt != 0)

 Gen # is well-known trick

 Result: all lookups run lock free

Future: ?

6

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec21_notes.txt

