
6.828 2012 Lecture 17: Language/OS Co-Design / Singularity

Why are we looking at this paper?
 completely different approach to isolation, protection
 language type-checking rather than hardware page protection

Singularity is a Microsoft Research experimental O/S
 many people, many papers, reasonably high profile
 stated goals:
 better robustness, security

 ground-up design w/ modern techniques

High level structure
 microkernel: SIP/thread mgmt, memory, IPC setup
 not so micro: 192 system calls (page 5)
 user-level service processes
 NIC, TCP/IP, FS, disk driver (sealing paper)
 not UNIX compatible

Most radical part of design:
 No hardware protection!
 Paging is turned off, so all memory visible to all instructions
 CPL=0, so can always run privileged instructions
 Instead: programming language protections

Why is that useful?
 Performance
 Fast process switching: no page table switch
 Fast system calls: CALL not INT
 Fast IPC: no copying
 Direct user program access to h/w, for e.g. device drivers
 Table 1 shows they are a lot faster at microbenchmarks

Q: why does no paging contribute to their main goal, robustness?

Remember what paging buys us:
 Protection
 Contiguous address space (starts at zero &c)
 Big arrays
 Contiguous stack

 Flexible address layout via mapping

 No fragmentation of physical memory

 Sharing/IPC via multiple mappings

 Tricks like copy-on-write fork, paging to disk

Challenges for no paging / CPL=0 design?
 Read/write only to appropriate memory
 And define what inappropriate means!

 Allow allocation and freeing of memory

 Allow interaction (IPC)

 But not too much entangling, so kill/exit can work

How to ensure SIP reads/writes only its own memory?
1

Q: why not have compiler generate check code before each load/store?
 speed, trust

The paper's approach:
 source
 compiler

 bytecodes
 install: verify and compile
 machine code
 trusted run-time
 running sip

Q: why not compile source to machine code?

Q: why verify/compile at install time? why not at run time -- JIT?

What properties does verification establish?
 Only use reachable pointers [draw diagram]
 only trusted runtime can create pointers
 So if kernel/runtime never supply out-of-SIP pointers
 verified SIP can only use its own memory

How does verification work?
 What does the verifier have to check?
 A. Don't invent or modify pointers
 B. Don't change mind about type

 Would allow violation of A, e.g. interpret int as pointer

 C. Don't use after free

 Re-use might change type, violate B

 Enforced with GC (and exchange heap linearity)

 D. Don't use uninitialized variables
 E. In general, don't trick the verifier
 Example bytecodes:

 R0 <- new SomeClass;

 jmp L1

 ...

 R0 <- 1000

 jmp L1

 ...

 L1:

 mov (R0) -> R1

 Q: is this code OK?

 verifier tries to deduce type for every register

 by pretending to execute along each code path

 requires that all paths to a reg use result in same type

 check that all reg uses OK for type

 verifying the example:

 R0 has type SomeClass at first jmp to L1

 R0 has type integer at second jmp to L1

 so verifier would reject this code

Bytecode verification seems to do *more* than Singularity needs
 e.g. cooking up pointers might be OK, as long as within SIP's memory

2

 so verifier may forbid some OK programs

 this style of verification is off-the-shelf

 enforcing exactly what Singularity needs is not

 Singularity may actually need full verification

 can't allow jump to data, even if data is in process's memory

 since then executing unchecked code

What parts of verification scheme are trusted vs untrusted?
 That is:

 All s/w has bugs

 Trusted s/w: if it has bugs, it can crash Singularity or wreck other SIPs

 Untrusted s/w: if it has bugs, can only wreck itself

 Source?

 Compiler?

 Compiler output?

 Verifier?

 Machine code output of bytecode compiler?

 Runtime / GC?

IPC: what would we want?
 shared memory for efficiency
 send complex data structures
 but still have isolation, type checking

How do SIPs communicate?
 IPC messages
 "exchange heap" -- memory shared among all SIPs
 thus zero-copy -- efficient

 msgs can have pointers &c

 thus can send complex data structures

 each receiver has a queue in the exchange heap

 send() system call to wake up receiving SIP

 receiver blocks in recv() sys call, then checks queue

Q: dangers of shared-memory exchange heap?
 write someone else's message
 send the wrong type of data
 modify my msg while you are reading it
 use up all exchange heap memory and don't free

How do they prevent abuse via exchange heap?
 verifier ensures SIP can only use ptrs someone gives it
 i.e. only if you allocated mem, or found it in your recv queue
 verifier ensures SIP bytecodes keep only one ptr to anything in exchange heap
 never e.g. two
 and that SIP doesn't keep ptr after send()
 single-ptr rule helps here
 verifier knows when last ptr goes away

 via send

 via making another exchange heap obj point to it

 via delete

 single ptr rule prevents change-after-send

 and also ensures delete when done

 delete is explicit, no GC, but it's OK

3

 since verifier guarantees only a single ptr to each block
 runtime maintains owning-SIP entry in each exchg heap block

 updates on send() &c

 used to clean up in exit()

Limitations of exchange heap idea
 IPC can't carry existing language object -- not in exchange heap
 Single-pointer rule limits the code you write
 Need to use different types/functions for exchange heap data

What are channel contracts for? Section 2.2
 Are they just nice to have, or do other parts of Singularity rely on them?
 The type signatures clearly are important
 they probably mesh with verified language types

 perhaps you can't talk to a SIP that isn't verified to follow contract

 The state machine part guarantees finite queues, no blocking send().

 and also catches protocol implementation errors

 e.g. sending msg when not expected

How do system calls into the kernel work?
 INT? CALL?
 what stack?
 can a SIP pass pointers to kernel?
 how does SIP GC know to not examine kernel part of stack?

Q: SIP allocates single pages -- how to have stack > 4096 bytes?

Q: How to have array > 4096 bytes?

2.1 says SIPs are "sealed"
 Outlawed: JIT, dynamic library loader, self-modifying, debugger (?)
 Q: Why is this important?

 no code insertion attacks

 maybe easier to reason about correctness

 maybe easier to optimize, inline

 e.g. delete unused functions

 SIP can be a security principle, own files

You could put an interpreter in a SIP to evade ban on self-modifying code
 Would that cause trouble?

Why not use a Java VM as your operating system?
 Java has verification -- you can't make up pointers &c
 Could have a Java thread for each running application

Singularity vs Java VM:
 One SIP can *never* affect another SIP's memory

 Not even with IPC

 Would be easy to have such bugs w/ interacting Java threads

 Exiting/killing a SIP releases all resources
 Java must at least wait for a GC
 SIPs let every process have its own language run-time, GC scheme, &c

What should the evaluation show?
4

 What were their goals?
 To gain robustness -- perhaps better than paging / CPL=3
 To re-examine traditional design choices

What does the evaluation show?
 Mostly about performance

Table 1 shows microbenchmark performance
 10x reduction in sys calls -- why?
 2x faster thread switch -- why?
 5x faster IPC -- why?
 2x-10x faster process creation -- why?

Figure 5: unsafe code tax
 How much do they gain by static verification rather than run-time (or h/w) checks?
 Simple file reading benchmark -- client SIP, file server SIP, device driver SIP
 Figure 5 compare run-times; lower is better
 physical memory -- Singularity (no paging, CPL=0, static verification, &c)
 No runtime checks -- Singularity but no array bounds checking
 Add 4KB pages -- paging enabled, but single page table, all CPL=0
 separate domain -- separate page table for one of the SIPs, so switching costs
 ring 3 -- CPL=3 thus INT costs (for just one of the SIPs)
 full microkernel -- pgtable+INT for each of three SIPs
 Figure 5 is useful: shows costs of various x86 features

What did we learn?
 Are 1960s and 70s techniques now inadequate?
 Should we use verification &c instead of paging hardware?
 We *did* learn how to build O/S w/o paging -- very interesting!

A few open questions:
 What are manifests for?
 Can IPC carry a capability? How does kernel learn?
 Does IPC receiver have to check msg format at run-time?
 Why is the exchange heap data reference counted? When can the count be > 1?
 When is it OK for SIP user code to execute a CPL=0 privileged instruction?

5

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec17_notes.txt

