
# -*- mode: org -*­
#+STARTUP: indent 

* <2011-11-05 Sat>, <2012-10-21 Sun>: L14: Operating System Organization
 

* Operating System Organization
 
students have completed building an exokernel in lab3 and lab4
 
user-space fork (copy-on-write)
 
sophisticated VM handling in libos
 
assumption in this lecture: one cannot change the kernel
 

* Plan: OS organization
 
** goals for a kernel interface
 
** monolithic
 
** microkernel
 
** exokernel
 
** little data, much opinion
 

* Goals for kernel
 
** Apps can use hardware resources
 
** Apps are easy convenient to write
 
** Apps are multiplexed (isolation and sharing)
 
** Few kernel crashes
 
** Kernel can evolve
 

* the topic is overall o/s design
 
lots of ways to structure an OS -- how to decide?

  what is the right kernel API?
 
looking for principles and approaches
 

* what's the traditional approach? (Linux, xv6)
 
kernel API ~ POSIX
 
virtualize some resources: cpu and memory

    simulate a dedicated cpu and memory system for each app
    why? it's a simple model for app programmers 
abstract others: storage, network, IPC
    layer a sharable abstraction over h/w (file system, IP/TCP) 

* example: virtualize the cpu
  goal: simulate a dedicated cpu for each process
    we want transparent CPU multiplexing 
<    process need not think about how it interacts w/ other processes
  o/s runs different processes in turn, via clock interrupt

    clock means process doesn't need to do anything special to switch

    also prevents hogging

  how to achieve transparency?

    o/s saves state, then restores

  what does o/s save?

    eight regs, EIP, seg regs, eflags, page table base ptr

  where does o/s save it?

    o/s keeps per-process table of saved states

  the return from clock interrupt restores a *different* process's state

  the point: process doesn't have to worry about multiplexing!
 

1



  this is the traditioal approach to virtualizing the CPU

    what does the exokernel/JOS do?
 

* example: virtualize memory
  idea: simulate a complete memory system for each process

    so process has complete freedom how it uses that memory

    doesn't have to worry about other processes

    so addresses 0..2^32 all work, but refer to private memory

    convenient: all programs can start at zero

      and memory looks contiguous, good for large arrays &c
    safe: can't even *name* another process's memory
  again: traditional but we'll soon see it's a very limiting approach
    really want apps to have more control than this style of VM implies 

* level of indirection allows o/s to play other tricks 
** demand paging: 
process bigger than available physical memory? 
"page-out" (write) pages to disk, mark PTEs invalid 
if process tries to use one of those pages, MMU causes page fault
  kern finds phys mem, page-in from disk, mark PTE valid 
this works because apps use only a fraction of mem at a given time 
need h/w valid flag, page faults, and re-startable instructions 
** copy-on-write: 
*** avoid copy implied by fork() -- won't be needed if exec() 
make parent and child share the physical memory pages 
*** if either writes, do the copy then 
so need per-page write-protect flag 
*** both of above are transparent to application 
still thinks it has simple dedicated memory from 0..2^32 
*** paging h/w has turned out to be one of the most fruitful ideas in o/s 
you have been using it a lot in labs 
** can we make it safe for apps to play these tricks? 

* traditional organization: monolithic o/s 
h/w, kernel, user 
kernel is a big program: process ctl, vm, fs, network 
all of kernel runs w/ full hardware privilege (very convenient) 
good: easy for sub-systems to cooperate (e.g. paging and file system) 
bad: interactions => complex, bugs are easy, no isolation within o/s 
extensibility: dynamically-loadable modules, wait for next kernel release 
** philosophy: convenience (for app or o/s programmer) 
*** for any problem, either hide it from app, or add a new system call 
(we need philosophy because there is not much science here) 
may take a while for the new system call is added 
*** very successful approach 

* alterate organization: microkernel
  philosophy: IPC and user-space servers
    for any problem, make a new server, talk to it w/ RPC

  h/w, kernel, server processes, apps

  servers: VM, FS, TCP/IP, Print, Display

  split up kernel sub-systems into server processes

    some servers have privileged access to some h/w (e.g. FS and disks)
  apps talk to them via IPC / RPC 

2



  kernel's main job: fast IPC
  good: simple/efficient kernel, sub-systems isolated, enforced better modularity
  bad: cross-sub-system optimization harder, lots of IPCs may be slow
  extensibility: can replace servers
  in the end, lots of good individual ideas, but overall plan didn't catch on for desktops/servers 

* alternate organization: exokernel
  philosophy: eliminate all abstractions
    for any problem, expose h/w or info to app, let app do what it wants

  h/w, kernel, environments, libOS, app

  an exokernel would not provide address space, virtual cpu, file system, TCP

  instead, give control to app:

    phys pages, addr mappings, clock interrupts, disk i/o, net i/o

    let app build nice address space if it wants, or not

    should give aggressive apps much more flexibility

 challenges:

    how to multiplex cpu/mem/&c if you expose directly to apps?

    how to get security/isolation despite apps having low-level control?

    how to multiplex w/o understanding: disk (file system), incoming tcp pkts
 

* exokernel example: memory
  what are the resources? (phys pages, mappings)
  what does an app need to ask the kernel to do?
    pa = AllocPage()


 DeallocPage(pa)

    TLBwr(va, pa)

  and these kernel->app upcalls:


 PageFault(va)

 PleaseReleaseAPage()


  what does o/s need to do to make multiplexing work?

    ensure app only creates mappings to phys pages it owns

    track what env owns what phys pages

    decide which app to ask to give up a phys page when system runs out

      that app gets to decide which of its pages 

* simple example: shared memory
  two processes want to share memory, for fast interaction
    note traditional "virtual address space" doesn't allow for this
  process a: pa = AllocPage()

             put 0x5000 -> pa in private table

             PageFault(0x5000) upcall -> TLBwr(0x5000, pa)

             give pa to process b (need to tell exokernel...)

  process b:

             put 0x6000 -> pa in private table


 ...
 

* example cool thing you could do w/ exokernel-style memory
  databases like to keep a cache of disk pages in memory
  problem on traditional o/s:
    assume an o/s with demand-paging to/from disk

    if DB caches some disk data, and o/s needs a phys page,

      o/s may page-out a DB page holding a cached disk block

    but that's a waste of time: if DB knew, it could release phys

      page w/o writing, and later read it back from DB file (not paging area)
 

3



    

 1. exokernel needs phys mem for some other app
 2. exokernel sends DB a PleaseReleaseAPage() upcall
 3. DB picks a clean page, calls DeallocPage(pa)
 4. OR DB picks dirty page, writes to disk, then DeallocPage(pa) 

* exokernel example: cpu
  what does it mean to expose cpu to app?

    kernel tells app when it is taking away cpu

    kernel tells app when it gives cpu to app

  so if app is running and timer interrupt causes end of slice

    cpu jumps from app into kernel

    kernel jumps back into app at "please yield" upcall

    app saves state (registers, EIP, &c)

    app calls Yield()

  when kernel decides to resume app

    kernel jumps into app at "resume" upcall

    app restores those saved registers and EIP
 

* what cool things could an app do w/ exokernel-style cpu management?
  suppose time slice ends in the middle of


 acquire(lock);

 ...

 release(lock);


  you don't want the app to be holding the lock the whole time!

    then maybe other apps can't make forward progress

  so the "please yield" upcall can first complete the critical section
 

* fast RPC with direct cpu management
  how does traditional o/s let apps communicate?

    pipes (or sockets)

    picture: buffer in kernel, lots of copying and system calls

    RPC probably takes 8 kernel/user crossings (read()s and write()s)

  how does exokernel help?
    Yield() can take a target process argument

      almost a direct jump to an instruction in target process

      kernel allows only entries at approved locations in target

    kernel leaves regs alone, so can contain arguments
      (in constrast to traditional restore of target's registers)

    target app uses Yield() to return

    so only 4 crossings
 

4



 

MIT OpenCourseWare
http://ocw.mit.edu 

6.828 Operating System Engineering 
Fall 2012 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	D:\MITOCW\F14\Content\6\6.828_F12\Lecture Notes\Scrubbed\lec13_notes.txt




