
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2012

Quiz I

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to finish this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be harder than others. Read them all through first and attack them in the
order that allows you to make the most progress. If you find a question ambiguous, be sure to
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS EXAM IS OPEN BOOK AND OPEN LAPTOP, but CLOSED NETWORK.

Please do not write in the boxes below.

I (xx/11) II (xx/20) III (xx/16) IV (xx/24) V (xx/8) VI (xx/16) VII (xx/5) Total (xx/100)

Name:

1

I Shell

The xv6 shell creates new processes to run a command as follows:

if(fork1() == 0)

runcmd(parsecmd(buf));

wait();

1. [5 points]: It is possible that the child process that runs the command exits before the parent
calls wait. Give a scenario in which that can happen.

2. [6 points]: How does xv6 ensure that wait returns correctly even if the child already has exited
before the parent called wait?

Name: 2

II Locks

In the in-class exercises on locking you modified a hash table to work correctly under concurrent lookup
and insert by adding acquire and release statements for a global lock. The code we handed out for put
is as follows:

static void
insert(int key, int value, struct entry **p, struct entry *n)
{

struct entry *e = malloc(sizeof(struct entry));

e->key = key;

e->value = value;

e->next = n;

*p = e;

}

static
void put(int key, int value)
{

struct entry *n, **p;

for (p = &table[key%NBUCKET], n = table[key % NBUCKET];

n != 0; p = &n->next, n = n->next) {

if (n->key > key) {

insert(key, value, p, n);

goto done;

}

}

insert(key, value, p, n);

done:
return;

}

3. [4 points]: In your solutions for the in-class exercise, you added in the above code acquire
and release calls to ensure correct operation of concurrent put invocations. Indicate where in the
above code they should be added.

Name: 3

To avoid the overhead of locks, Alyssa suggests use of atomic operations, which are guaranteed to perform
their multiple step operation as a single atomic operation. In particular, Alyssa suggests use of the following
atomic operation:

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval)

This builtin function performs an atomic compare and swap. If the current value of *ptr is oldval, it
writes newval into *ptr, and returns true. Otherwise it returns false. The compiler turns the builtin
function into the atomic instruction sequence that’s appropriate for the target architecture; on the x86, it
might use lock cmpxchg.

An example:

char *p;
...
if(__sync_bool_compare_and_swap(&p, 0, 1))

.... // success: p was set to 1
else

... // failure: p was not set to 1, because p wasn’t equal to 0

This code will set p to 1 only if p previously held 0. If two cores execute the code at the same time, and p
held 0, only one of the two cores will see a true return value from the call.

Name: 4

4. [8 points]: Complete the put below using __sync_bool_compare_and_swap so that
concurrent invocations will run correctly without using locks:

static
void put(int key, int value)
{

struct entry *n, **p;

struct entry *e = malloc(sizeof(struct entry));

e->key = key;

e->value = value;

for (p = &table[key%NBUCKET], n = table[key % NBUCKET]; n != 0;

p = &n->next, n = n->next) {

if (n->key > key) {

}

}

done:
return;

}

5. [8 points]: For the lock-free implementation, give an example of a workload for which put’s
throughput scales linearly with an increasing number of cores.

Name: 5

III Logical Logging

Alyssa is unhappy that xv6 logging writes an entire sector to the log even if the file system only needs to
modify a few bytes in the sector. She observes that log records would be much shorter if they described
the operation to be performed, rather than containing the entire modified sector. Alyssa modifies the xv6
logging system to use this idea, called “logical logging.” For example, when her balloc() allocates a data
block, it logs the setting of the bit in the block allocation bitmap with a “set bit” record. A “set bit” record
contains a constant indicating the record type, and the block number that was allocated. Alyssa’s recovery
code for this type of log record sets the relevant bit in the block allocation bitmap on disk. The “set bit”
record takes up only a few bytes in the log, rather than an entire sector.

While the “set bit” record works, it turns out that correct recovery from logical log records is not possible
for some operations.

6. [8 points]: Alyssa defines a “create file” log record containing the parent directory i-number
and the new file’s name. Recovery for this kind of record calls a version of create() (sysfile.c) that
does everything but the initial nameiparent(), and that uses bwrite for all modifications. Explain why
use of this “create file” log record will incorrectly handle some failure scenarios that the current xv6
handles correctly.

7. [8 points]: Consider a “delete directory entry” log record that contains the parent i-number and
the entry’s name. Recovery finds the named entry in the parent directory and overwrites it with nulls.
Explain if this works; if not, briefly explain why not.

Name: 6

IV Page Tables

Consider the following 32-bit x86 page table setup.

%cr3 holds 0x00001000.

The Page Directory Page at physical address 0x00001000:

PDE 0: PPN=0x00002, PTE_P, PTE_U, PTE_W
PDE 1: PPN=0x00003, PTE_P, PTE_U, PTE_W
PDE 2: PPN=0x00002, PTE_P, PTE_U, PTE_W
... all other PDEs are zero

The Page Table Page at physical address 0x00002000 (which is PPN 0x00002):

PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00006, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

The Page Table Page at physical address 0x00003000:

PTE 0: PPN=0x00005, PTE_P, PTE_U, PTE_W
PTE 1: PPN=0x00005, PTE_P, PTE_U, PTE_W
... all other PTEs are zero

8. [8 points]: List all virtual addresses that map to physical address 0x00005555.

9. [8 points]: Given the above page table, what virtual address (if any) should the kernel store to
in order to modify the mapping for virtual address 0x402000 (that’s 4*1024*1024 + 8192)?

10. [8 points]: Explain exactly what the above page table should contain in order to to allow the
kernel to write to the page directory page. There is more than one answer; you only have to explain
one.

.

Name: 7

V JOS memory mapping and fork

Here is a code snippet from Ben Bitdiddle’s lab 4. Ben is struggling to get user-mode fork to work. In his
fork, Ben invokes duppage for every virtual page number (vpn) below UTOP that is present in the current
environment’s address space, except for the exception stack.

static int duppage(envid_t envid, unsigned vpn) {
void *addr = (void *)(vpn << PGSHIFT);
pte_t pte = uvpt[vpn];
int r;
// if the page is just read-only, just map it in.
if (!(pte & (PTE_W|PTE_COW))) {

if ((r = sys_page_map(0, addr, envid, addr, pte & PTE_SYSCALL)) < 0)
panic("sys_page_map in child failed: %e", r);

return 0;

}

if ((r = sys_page_map(0, addr, 0, addr, PTE_P|PTE_U|PTE_COW)) < 0)

panic("sys_page_map in parent failed: %e", r);
if ((r = sys_page_map(0, addr, envid, addr, PTE_P|PTE_U|PTE_COW)) < 0)

panic("sys_page_map in child failed: %e", r);
return r;

}

11. [8 points]: Ben Bitdiddle could not pass the forktree test because the above code has a bug.
While debugging, he printed out the value of uvpt[vpn] at the end of the function, and found that
the parent environment’s user stack was not marked copy-on-write. Explain why this is happening,
and describe how to fix the bug. You should assume that his other code is free of bugs.

Name: 8

VI Exokernel exec

Ben Bitdiddle has chosen to implement UNIX-style exec as his challenge exercise for lab 5. exec replaces
the current environment’s memory with the desired executable, sets up a stack, and jumps to the entry point
of the executable.

Alyssa P. Hacker proposes the following design for exec in the user-space library operating system:

1. Unmap all pages in the current environment except for the stack and the code for exec.

2. Map in the pages (loaded from the ELF file on disk) for the new environment.

3. Unmap the code page for exec.

4. Jump to the new environment’s entry point.

12. [8 points]: Ben Bitdiddle sees a problem with Alyssa’s first and second steps. What might go
wrong? Assume the code for exec fits in a single page and doesn’t make any function calls (other
than system calls).

13. [8 points]: There are a few other problems with Alyssa’s plan. Please describe a new plan for
a working exec in user space. Your solution shouldn’t modify the kernel.

Name: 9

VII 6.828

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

14. [2 points]: This year we posted an improved draft of the xv6 commentary at the beginning of
the semester. Did you find the chapters useful? What should we do to improve them?

15. [2 points]: This year we continued code reviews and added rebuttals. Did you find them
useful? What should we do to improve them?

16. [1 points]: Did you find the in-class exercises useful? How would you suggest improving
them?

End of Quiz

Name: 10

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

