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I Paper questions 

1. [6 points]: Many disks have a cache of disk blocks inside the disk and reorder writes to get 
better performance. Such reordering could cause problems for the version of ext3 as described by 
Tweedie in “Journaling the Linux ext2fs Filesystem;” give a scenario that results in inconsistent file 
system metadata structures. 

Answer: A journal flush writes out a sequence of metadata blocks and then updates a header block to 
point to the new head of the journal. If the header block is flushed to disk before the others and then 
the power fails, upon recovery the file system will try to replay stale records from the journal. 

2. [6 points]: How could you extend ext3 to fix this problem without disabling the disk’s cache? 

Answer: We could extend the header block to include a hash of the metadata blocks added to the 
journal. Upon replay, we recompute the hash of the metadata blocks found in the journal and disregard 
the header block if the hash doesn’t match. 

3. [6 points]: KeyKOS’s use of capabilities is motivated by the “confused deputy” problem. Give 
an example of the confused deputy problem in Unix. Give an example how a KeyKOS application 
developer uses capabilities to avoid your example of the confused deputy problem in Unix. 

Answer: The paper gives an example of a compiler service that also tracks billing information. If the 
compiler is passed the path to the billing information as the output file, it can overwrite the billing 
information because the system can’t distinguish between the compiler operating as its own principle 
and it operating on behalf of the user’s principle. In KeyKOS, the compiler must provide a key for 
each file access, forcing the compiler-writer to specify the capability with the right permissions. 
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4. [6 points]: To track dependencies introduced by Unix system calls, BackTracker (as described 
in “Backtracking Intrusions” by King and Chen) maintains objects for processes, files, and filenames. 
Ben thinks it’s redundant to maintain both file objects, which identify files by inode numbers, and file­
name objects, which identify files by absolute path. He proposes modifying BackTracker to collapse 
the two into just filename objects, identifying files solely by their absolute path. Alyssa argues that 
this change will make BackTracker inaccurate (i.e., BackTracker could fail to identify an attack that 
influences a suspicious file or process). Give an example showing that Alyssa is correct. 

Answer: Consider a file with two hard-linked path names. The attacker could write to one of these 
path names and if a legitimate application then reads from the other path name, Ben’s BackTracker 
will miss this dependency. 

5. [6 points]: Louis Reasoner proposes to extend BackTracker to recover from attacks by undoing 
all the attacker’s actions, but not regular user actions. Using BackTracker, he can identify the starting 
event of an attack. He proposes to first use ReVirt to roll the system back to just before that starting 
event. For example, for the attack in Figure 1 of the paper, he would roll the system back to just before 
the “[sh,bash]” process was created. He would then selectively roll the system forward using ReVirt, 
skipping all the events that could have been influenced by the attacker, according to the dependencies 
that BackTracker has computed. For example, Louis’ extension would not replay any operation that 
depended on the “[sh,bash]” node. Ben points out that this approach may fail to re-execute regular 
user actions. Give an example showing that Ben is right. 

Answer: Just because an event depends on one of the events involved in the attack doesn’t mean that 
the attack depends on that event. Suppose the attacker creates a file in /tmp and then a legitimate 
user runs ls -l /tmp. This will create a dependency from the legitimate user’s actions to the file 
involved in the attack. ls only observed the attack; it did not partake in it. 

6. [6 points]: Figure 8 in the Klee paper (“Unassisted and automatic generation of high-coverage 
tests for complex systems programs”) shows an example of a bug found by Klee in the pr utility. 
Specially, executing pr -e t2.txt will result in a buffer overflow if t2.txt has the content: 

\b\b\b\b\b\b\b\t 

Explain how Klee is able to construct this input. 

Answer: Somewhere in pr, there must be a conditional in a loop that checks if the next character is 
\b. When KLEE encounters this conditional, it will fork the program and one fork will force the value 
of the character to be \b. Eventually, KLEE will construct a sequence of \b characters, encounter the 
conditional for the \t, and discover the buffer overflow in this symbolic execution path. 
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II Lock-free data structures
 

Joe Buck is increasing the performance of the the Linux physical page allocator using a lock-free LIFO data 
structure to track free pages. He reasons that recently freed pages will still be in on-chip hardware caches, 
so allocating those pages first will improve performance. Joe Buck’s code for the lock-free LIFO is below. 

// Compare the value at addr with oldval. If equal, store newval 
// at addr and return 1, otherwise return 0. Executes atomically. 
int cmpxchg(void *addr, uint32_t oldval, uint32_t newval); 

struct page { 
struct page *next; 
/* Other page metadata ... */ 

};
 
struct page *head;
 

void push(struct page *page) {
 
while (1) {
 

page->next = head;
 
if (cmpxchg(&head, (uint32_t)page->next, (uint32_t)page))
 

break; 
} 

} 

struct page * pop(void) { 
while (1) {
 

struct page *page = head;
 
if (page == NULL)
 

return NULL;
 
struct page *next = page->next;
 
if (cmpxchg(&head, (uint32_t)page, (uint32_t)next))
 

return page; 
} 

} 

7. [10 points]: Unfortunately Joe Buck’s code has a race condition. Describe a sequence of 
events for two CPUs that could cause the LIFO to be in an inconsistent state (that is, an allocated page 
appears in the LIFO or an unallocated page does not appear in the LIFO). For your convenience, we 
provided the first two events of a sequence; your job is to add the others. 

1. Initially, head → page A → page B → page C → NULL. 

2. CPU 1 starts to pop; it sets page = A and next = B. 

Answer: 

3. CPU 2 pops A, now head → page B → page C → NULL 

4. CPU 2 pops B, now head → page C → NULL 

5. CPU 2 pushes A, now head → page A → page C → NULL 

6. CPU 1 sees that head == A and sets head = B, now page B, which is allocated, appears in 
the LIFO. 4 



8. [10 points]: Some CPUs provide atomic instructions that make it easier to write lock-free 
code. For example, PowerPC CPUs provide the Load-Linked and Store-Conditional instructions. LL 
must be paired with a SC. LL loads a value from memory and the CPU remembers that the address is 
load-linked. SC stores a value to an address if the address has not been written to by any other CPU 
since the corresponding LL. Write a correct lock-free LIFO implementation that uses LL and SC. 

// Return the 32-bit value at addr and remember addr is load-linked.
 
uint32_t ll(void *addr);
 
// Store val at addr if *addr has not been written to since the last ll from addr.
 
// Return 0 on failure, 1 on success.
 
int sc(uint32_t val, void *addr);
 

void push(struct page *page) {
 

Answer: 
while (1) {
page->next = (struct page*)ll(&head); 
if (sc((uint32 t)page, &head)) 
break; 

} 

} 

struct page * pop(void) { 

Answer: 
while (1) {
struct page *page = (struct page*)ll(&head); 
if (p == NULL) 
return NULL;
 

if (sc((uint32 t)page->next, &head))
 
return page;
 

} 

} 
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III VMM
 

Many x86 CPUs now have support in hardware for CPU, MMU, and IO port virtualization. The CPU virtu­
alization features provide each guest VM with its own segment/interrupt descriptor tables, control registers, 
and segment registers. A virtual machine monitor (VMM) can use CPU virtualization to trap a VM when it 
executes an instruction or causes an event that could affect the VMM or other VMs. IO port virtualization 
allows VMMs to control VM access to IO ports, trapping into the VMM when the VM accesses certain IO 
ports. 

9. [6 points]: AMD virtualization hardware allows the VMM to intercept certain CPU instructions 
and events by setting bits in a bitmask. As discussed in Section 4.4 of “A Comparison of Software and 
Hardware for x86 Virtualization” the performance of a VMM depends on the frequency of exits from 
the VM. To help avoid frequent exits, AMD hardware copies (or shadows) CPU state into a Virtual 
Machine Control Block (VMCB). Guest instructions that manipulate CPU state (e.g. lcr0) operate 
on the shadow state instead of the real CPU state. Circle the instructions that the VMM must intercept, 
because it is not possible to shadow the state they manipulate. 

– Instructions that read or write control registers (e.g. cr3) 

– Instructions that cause the computer to shutdown 

– Instructions that load descriptor tables (e.g. lgdt) 

– Instructions that clears cache contents without writing back to memory 

– pushf and popf 

– iret 

10. [6 points]: You are unhappy with the performance of networking in JOS. On x86 hardware, 
port-based IO is not optimized and JOS’s e100 driver is executing many in and out instructions, 
which hurt performance. The e100 exposes all of the same control registers using memory-mapped 
IO, which is much faster than port-based IO. Suppose we’re running JOS in a virtual machine, but 
giving it direct access to our host’s e100 card. Describe how you might use dynamic binary translation 
in the VMM to transparently convert JOS’s e100 driver from using in and out port-based IO to using 
memory-mapped IO. 

Answer: When the binary translator encounters an in or out instruction, it should replace the in­
struction with the appropriate memory load or store from the corresponding memory-mapped register. 
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11. [10 points]: Modern MMU virtualization hardware works as described in Section 7.4 of “A 
Comparison of Software and Hardware for x86 Virtualization.” As usual, guest VMs create guest 
page tables that translate from guest virtual addresses to guest physical addresses. However, with 
MMU virtualization, guest physical addresses are then further translated through a nested page table, 
created by the VMM, which maps guest physical addresses to host physical addresses. 

When preparing a VM to run, the VMM must allocate physical pages for the guest’s memory and 
initialize this nested page table. Write the code to do this below. Your implementation should allo­
cate npages host physical pages and map them in the page table pgdir starting at guest physical 
address 0. Return 0 from the function on success, or return a negative value on an error. 

/* Helper functions from JOS */
 
int page_insert(pde_t *pgdir, struct Page *pp, void *va, int perm);
 
int page_alloc(struct Page **pp_store);
 
physaddr_t page2pa(struct Page *pp);
 

/* Guest permission bits */
 
#define PTE_GUEST (PTE_P|PTE_W|PTE_U)
 

int
 
vm_init_mem(unsigned int npages, pde_t *pgdir)
 
{
 

Answer: 
int i, r; 
for (i = 0; i < npages; i++) {
if ((r = page alloc(&p)) < 0) 
return r; 

if ((r = page insert(pgdir, p, (void*)(i*PGSIZE), PTE GUEST)) < 0) 
return r; 

}
return 0; 

} 
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IV High-performance JOS 

12. [10 points]: Ben, a little sleep-deprived from the network lab, dreams of turning JOS into the 
next big, high-performance web serving platform. He took the easy route in his network lab and made 
his receive syscall always return immediately, even if no packet is available, which is less than ideal 
for CPU utilization. He starts by making his receive syscall block, much like sys ipc recv. 

Ben keeps around his old non-blocking receive function for use in the new implementation. Now that 
he’s no longer polling, he configures the e100 to generate an interrupt whenever it puts a packet in the 
receive ring and installs e100 rx intr as the interrupt handler. Finally, since only one environment 
can receive at a time, he adds a few global variables to track the currently receiving environment. 

// Copy the next packet into dst and return the length of the packet.
 
// If the receive ring is empty, return 0.
 
int e100_recv_nonblocking(void *dst);
 

// Environment currently blocked on receive, or NULL if none.
 
struct Env *e100_receiver;
 
// Packet buffer of the currently receiving environment.
 
void *e100_receiver_dst;
 

Give pseudo-code for the new blocking syscall implementation and for e100 rx intr. You can 
assume dst is a valid pointer to a sufficiently large buffer. 

int sys_e100_recv(void *dst) { 

Answer: 
if (e100 receiver)
 
return -EINVAL;
 

if ((r = e100 recv nonblocking(dst)) > 0)
 
return r;
 

e100 receiver = curenv;
 
e100 receiver dst = dst;
 
curenv->env status = ENV NOT RUNNABLE;
 
sched yield();
 

} 

void e100_rx_intr(void) { 
// Acknowledge the interrupt. Otherwise, the e100 blocks further interrupts. 
e100_ack_rx(); 

Answer: 
if (!e100 receiver) return;
 
lcr3(e100 receiver->cr3);
 
e100 receiver->env tf.tf regs.tf eax =
 

e100 recv nonblocking(e100 receiver dst);
 
e100 receiver->env status = ENV RUNNABLE;
 
e100 receiver = NULL;
 
lcr3(curenv->cr3);
 

} 
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13. [6 points]: Is your solution susceptible to receive livelock? If so, give a scenario that 
demonstrates the livelock. If not, explain why not. 

Answer: No. If the user environment isn’t keeping up with the incoming packets, the receive ring 
will fill up, the e100 will start dropping packets, and will stop generating interrupts until space is freed 
up in the ring. Packets are only removed from the receive ring when the user environment is ready to 
process them, which puts back-pressure on card. At most one interrupt will be generated per packet 
fully processed by the user environment. 
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V 6.828 

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except 
no answer, will receive full credit.) 

14. [2 points]: The network lab took more time on average than we had intended. What would have 
saved you the most time? If it’s test cases, which test cases would you add? If it’s documentation, 
what would you like documentation on? 

15. [2 points]: What is the best aspect of 6.828? 

16. [2 points]: What is the worst aspect of 6.828? 

End of Quiz
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