
Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Fall 2009

Quiz I Solutions

Mean 70.6 Median 73 Std. dev. 17.9

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

1

I Concurrency

1. [8 points]: In xv6, the interrupt handler ideintr uses the lock idelock to ensure that it
executes atomically. For example, if processor 0 runs iderw and processor 1 runs the interrupt han­
dler ideintr, then the lock idelock ensures that their critical sections are appropriately ordered.
Why is it important that acquire(&idelock) also turns off interrupts, in addition to marking the
lock as acquired?

Answer: Suppose an IDE interrupt occurred on processor 0 while iderw held the idelock on
processor 0. If acquire did not disable interrupts, this interrupt would be serviced immediately,
resulting in a call to ideintr, which would try to acquire the idelock. This would panic because
the lock is already held on processor 0. (If acquire did not check for this situation, it would simply
deadlock, waiting for the lock to be released while blocking the very processor holding the lock.)

2. [8 points]: bget (and thus bread) returns a locked block to its caller. Why is it important that
xv6 locks blocks? Consider ialloc (line 3802). What could go wrong from line 3811 through 3817
if the block returned by bread wasn’t locked?

Answer: Without this, simultaneous calls to ialloc might allocate the same inode for two different
files.

3. [8 points]: bget (line 3566) uses an integer flags stored in the returned block to indicate
whether a thread is holding the lock on the block, instead of a spinlock. What could go wrong if we
replaced the per-block B BUSY flag used by bget with a per-block spinlock?

Answer: sched would panic. Specifically, when bread calls iderw, iderw puts the I/O in the
IDE queue and puts the current process to sleep while waiting for an IDE completion interrupt. How­
ever, holding the block’s spinlock disables interrupts, so it will never receive this interrupt. sched
(called by sleep), will panic if any spinlocks are held, precisely to catch such mistakes.
Note that bget can check whether or not a per-block spinlock is held just as readily as it can check
the B BUSY flag, so it is not the case that bget will block while trying to allocate a fresh block.

4. [4 points]: What ensures that setting flags in bget (line 3566) is an atomic operation?

Answer: bget holds the buffer cache lock, bcache.lock, which protects modifications to flags.

2

II File systems

5. [8 points]: Ben wants to speed up the rate at which xv6 can write to the disk. He notices that
iderw can have only one outstanding disk write per user process; xv6 puts the caller of iderw to
sleep until the dirty bit is cleared by ideintr. Ben proposes to modify iderw to not call sleep, but
instead return immediately. If a process issues multiple writes, all these writes will end up in the IDE
queue, and the driver and disk controller can optimize performing a batch of writes. Ben makes all
the required changes to xv6; he observes that write throughput improves for large files and that the
system works correctly when there are no failures. Unfortunately, when Ben runs fsck after a system
failure, he finds he cannot repair the disk into a consistent state anymore. What has gone wrong?

Answer: Ben’s change allows metadata writes to be reordered. The consistency of the file system’s
on-disk structures depends on specific ordering of metadata writes. For example, suppose you deleted
a file and then created a new file. If the new file’s inode is written to disk before the removal is written
to disk, and the system failed between these two writes, then the two files could potentially share the
same data blocks.

6. [6 points]: Ben obsesses about performance and proposes a design to speed up directory listings.
He stores the inode for each file in the struct dirent, a scheme called embedded inodes. When
a user types “ls -l” to get a detailed directory listing, xv6 can avoid reading the inode for each file
in the directory, because it is stored with the directory. Ben makes the change, and observes that xv6
is faster for running “ls -l”. He also notices that hard links don’t work correctly any more. Give
a sequence of shell commands that will work incorrectly with Ben’s embedded inodes and briefly
describe what will go wrong.

Answer: Here’s one of many possible solutions
echo a > a
ln a b
echo bbb > b
ls -l
will yield a directory listing where a has size 2 and b has size 4 (including the newlines produced by
echo), even though they should be the same file and thus the same size.

7. [6 points]: Suggest a solution to the link problem that achieves the performance benefits of
embedded inodes without sacrificing correctness.

Answer: If a file has a link count greater than 1, don’t embed the inode. Alternative solutions include
tracking the entire set of directories where a given file is linked and updating all copies of the inode
when any one of them changes, but this would be very slow and poses serious challenges for file
system recovery. Simply using symbol links instead of hard links is not a solution, since the semantics
of hard links and symbolic links differ significantly.

3

III Stacks

8. [8 points]: Suppose you wanted to change the system call interface in JOS so that, instead of
returning the system call result in EAX, the kernel pushed the result on to the user space stack. Fill
in the code below to implement this. For the purposes of this question, you can assume that the user
stack pointer points to valid memory.

static void
trap_dispatch(struct Trapframe *tf)
{

// ...
if (tf->tf_trapno == T_SYSCALL) {

r = syscall(tf->tf_regs.reg_eax, ...);
// QUIZ: Your code here

Answer:	 tf->tf esp -= 4;

(int)tf->tf esp = r;

}
// ...

}

9. [8 points]: xv6’s initcode invokes the exec system call to replace itself with /init.
exec allocates a stack for /init and carefully initializes it, starting from line 5080. Draw the stack
it builds, giving the values that are on the stack and a brief explanation of each value. For pointers,
simply draw an arrow or describe where they point to.

Answer:
“nit\0”

“\0\0/i” First argument
0

&argv[0] Argument pointer array
argp Argument pointer array pointer

1 Argument count
0xffffffff Fake return PC

10. [2 points]: While debugging xv6, Alyssa notices the value 0x7b70 in the ESP register. Which

kernel thread is running on the processor?

Answer: The scheduler thread (on processor 0, to be exact).

4

IV Virtual Memory

Ben Bitdiddle wants to add a debugger for user programs to his implementation of JOS. He decides to write
this debugger as a regular user program, and realizes that he’s going to need to add some system calls to
support debugging. He starts with a system call that lets the debugger copy a page of memory between its
own environment and any other environment.

Ben first implements his new syscall, sys copy page, by switching to the source environment’s address
space and copying the data into a scratch buffer, then switching to the destination environment’s address
space and copying the data back out of the scratch buffer. Ben’s code is as follows:

static char scratch[PGSIZE];

static int
sys_copy_page(envid_t srcenvid, void *srcva,

envid_t dstenvid, void *dstva)
{

struct Env *srcenv, *dstenv;
int r;

if ((r = envid2env(srcenvid, &srcenv, 0)) < 0)

return r;

if ((r = envid2env(dstenvid, &dstenv, 0)) < 0)

return r;

if (srcenv != curenv && dstenv != curenv)

return -E_INVAL;

lcr3(srcenv->env_cr3);

memmove(scratch, srcva, PGSIZE);

lcr3(dstenv->env_cr3);

memmove(dstva, scratch, PGSIZE);

lcr3(curenv->env_cr3);
return 0;

}

11. [8 points]: Louis Reasoner is troubled by Ben’s approach. He points out that Ben is copying
data in to the scratch buffer while running in one environment’s address space, then expecting to read
that data back after switching to a different address space. Ben assures Louis that this is alright. Why
is it okay for Ben’s implementation to switch between address spaces like this?

Answer: scratch is stored in the kernel BSS, and thus above KERNBASE. All mappings above
ULIM are identical in every environment’s address space, so switching address spaces does not affect
the mapping of scratch.

5

12. [6 points]: Having addressed Louis’ concerns, Ben starts boasting about his understanding of
address spaces and protection. Alyssa decides to put his kernel to the test and discovers that, not only
can she crash Ben’s kernel by passing the virtual address of an unmapped page to sys copy page,
but she can write a user program that writes to arbitrary kernel memory. How can Ben fix these two
problems?

Answer: Ben should check that srcva is mapped with permissions PTE P|PTE U in

srcenv->env pgdir and that dstva is mapped with permissions PTE P|PTE U|PTE W in

dstenv->env pgdir. A convenient way to do this is with user mem assert:

user mem assert(srcenv, srcva, PGSIZE, 0);

user mem assert(dstenv, dstva, PGSIZE, PTE W);

13. [6 points]: Ben decides to change his strategy to copy data directly from the source page to
the destination page without switching address spaces. His new implementation of sys copy page
starts by finding the struct Page* of the source page and the physical address of the destination
page. Why does this approach let Ben avoid switching address spaces in sys copy page?

Answer: All physical memory is directly mapped starting at KERNBASE in every environment’s ad­
dress space. Thus, the kernel can convert a physical address to a virtual address that is valid regardless
of the current address space.

14. [8 points]: Ben uses a helper function to copy data between the source and destination pages
that he looked up in his new sys copy page. Implement this function below.

void
copy_physical_page(physaddr_t dst, struct Page* src)
{

Answer: memmove(KADDR(dst), page2kva(src), PGSIZE);

}

6

V 6.828

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except
no answer, will receive full credit.)

15. [2 points]: This year we posted draft chapters that provide a commentary on xv6. Did you
read them? If so, did you find the chapters useful? What should we do to improve them?

16. [2 points]: What is the best aspect of 6.828?

17. [2 points]: What is the worst aspect of 6.828?

End of Quiz

7

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

