
Department of Electrical Engineering and Computer Science 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.828 Operating System Engineering: Fall 2006 

Quiz I 

All problems are open-ended questions. In order to receive credit you must answer the question 
as precisely as possible. You have 80 minutes to answer this quiz. 

Write your name on this cover sheet AND at the bottom of each page of this booklet. 

Some questions may be much harder than others. Read them all through first and attack them in 
the order that allows you to make the most progress. If you find a question ambiguous, be sure 
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t 
give you credit! 

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ. 

1 (xx/20) 2 (xx/10) 3 (xx/25) 4 (xx/35) 5 (xx/10) Total (xx/100) 

Name: Solution Set 

Quiz score statistics: median 65, mean 67, maximum 100. 



I 

6.828 FALL 2006, Quiz 1 Page 2 of 9 

Processes and concurrency 

1. [10 points]: Ben Bitdiddle observes that releases and acquires of proc table lock are spread 
through proc.c, which makes it difficult to reason if the code is correct. He rereads the comment on 
line 2222, and proposes that the to-be-scheduled process doesn’t release proc table lock when 
it runs. That is, he removes all the acquire and release calls for proc table lock except 
the two already in scheduler. He recompiles xv6 and boots it. What will Ben observe? 

Only one processor at a time will be able to run a user process. 

Name: 



6.828 FALL 2006, Quiz 1 Page 3 of 9 

2. [10 points]: Dissatisfied with the simplification of the previous question, Ben Bitdiddle explores 
another altnerative. He undoes all his changes, and now he modifies the code so that during a context 
switch from one process to another, proc table lock isn’t held. That is, he makes the following 
changes: 

– release proc table lock before line 2262 and before line 2229; 

– acquire at 2231; 

– remove the releases in, for example, yield and sleep. 

Ben observes a race condition between one processor running scheduler and a second proces­
sor running yield (on behalf of a user process). Give a timeline of events with 2 processes that 
demonstrates the race condition. 

Process 1 Process 2 

2208: scheduler 2268: yield 
time 

2273: p−>state = RUNNABLE;
2253: sched ... 

2261: unlock(&proc_table_lock); 

2215: acquire(&proc_table_lock);
 
...
 
2219: notice p−>state == RUNNABLE
 
...
 
2230 longjmp(&p−>jmpbuf);
 

2262: setjmp(&p−>jmpbuf); 

In this scenario, the scheduler longjmps to the buffer before the process has initialized it 
with setjmp. Thus the re-started process will be running with a stale register set, i.e. with 
an incorrect stack pointer. 

Name: 



6.828 FALL 2006, Quiz 1 Page 4 of 9 

II System calls 

3. [10 points]: If one process kills a process that is sleeping, it calls proc kill, which sets 
p->killed and makes the target process runnable. In trap, the target process checks p->killed 
and exits. An alternative is for the target process to check p->killed when it comes out of sleep 
(e.g., right after line 2230), and call exit. Why is this alternative undesirable? That is, why wait with 
exiting until the return from trap? (Hint: think about system calls that invoke sleep several times, such 
as creating a file). Be specific in your answer by giving a concrete example. 

If the process has any data structures in inconsistent states, it needs to be given a chance 
to undo them. 

For example, at line 4024, if the process stopped executing during ide rw, the block it is 
holding would never be brelse’d (would be B BUSY forever). Other processes trying to read 
this block later would deadlock. 

Name: 



6.828 FALL 2006, Quiz 1 Page 5 of 9 

III Address spaces 

4. [10 points]: JOS uses the paging support of the x86 processor, while xv6 uses only the segmenta­
tion support. Clearly using paging in JOS required you to write more lines of code than xv6 requires 
for using segmentation. List 3 significant ways in which JOS is better than xv6 because of its use of 
paging. 

JOS does not require an environment’s memory to be laid out in contiguous physical memory. 

JOS can allow sharing of memory between environments at small granularity (individual 
pages). This is used, for example, to share the UENVS table with all environments. 

JOS can edit memory permissions at small granularity (individual pages). This is used, for 
example, to implement copy-on-write fork. 

(There are other correct answers as well. Some of these benefits could be realized with 
segmentation, but not the way xv6 uses segments, and probably not using C.) 

Name: 



6.828 FALL 2006, Quiz 1 Page 6 of 9 

In JOS page free is called when the reference count of a page reaches 0. It adds the page to the free 
list of pages. Of course, the kernel can reference the page via the mapping at KERNBASE (the one used by 
KADDR). 

5. [10 points]: To keep the kernel honest you might consider removing the KERNBASE mapping in 
page free. Assuming no other changes outside of page free, what would break as a result? 

After a page is freed, accesses to the KADDR mapping would cause extra page faults once 
the page was re-allocated and referenced by the kernel (for example, to zero the page before 
reusing it). 

6. [5 points]: How would you fix this problem while still removing the KERNBASE mapping in 
page free? 

Remap the page in page alloc. 

Name: 



6.828 FALL 2006, Quiz 1 Page 7 of 9 

IV File systems 

The xv6 cache implements a least recently-used cache replacement policy (i.e., it evicts the block from the 
cache that hasn’t been used for the longest time). 

7. [4 points]: What lines of code reorder the bufhead list to reflect the buffers’ usage pattern? 

4037–4042 

8. [6 points]: List the code changes necessary to make xv6 implement a most-recently used policy 
(i.e., evict the block from the cache that has been used most recently). (Give line numbers that would 
need to change, along with the changes.) 

Change line 3987 to traverse the list in the opposite direction. 

(Or change lines 4037-4042 to insert the released block at the other end of the list.) 

9. [10 points]: Identify one disk block that you expect to be in the cache frequently with the 
least-recently used policy. (Explain briefly.) 

The superblock (block 1) is used in every call to balloc, bfree, and ialloc. 

(There are other correct answers as well.) 

Name: 



6.828 FALL 2006, Quiz 1 Page 8 of 9 

In xv6 two child processes can communicate through pipes only if they have a common ancestor who 
created the pipe. To support communication between any two processes, some Unix operating systems 
provide named pipes, which are also called FIFO. A named pipe is durable and appears in the file system 
name space, and must be unlinked explicitly after use. One could use named pipes as follows. One process 
could do as follows: 

mkfifo pipe // make a named pipe
 
gzip < pipe > out // read from the named pipe, compress, and write to out
 

And, another process, unrelated to the first, could do as follows: 

cat file > pipe // write the contents to the named pipe
 

The result of opening a named pipe is a file descriptor that behaves exactly like one of the two file descriptors 
returned by the pipe call, depending on the open mode (for reading or for writing). 

10. [15 points]: Write up how you would change xv6 to support named pipes. List the functions 
that would have to be added or changed, with short descriptions of the new functionality or changes. 

Add a new system call sys mkfifo that uses mknod to create an inode with the new type 
T PIPE. 

Create a new in-memory table mapping inode numbers to struct file* pairs. 

In sys open, at line 5285, check whether ip->type is T PIPE. If so, look in the table for an 
entry for ip->inum. If there is not one there, allocate a new table entry and call pipe alloc 
to get a pair of struct file* for the new entry. Use the corresponding struct file* 
(either the read or write end) instead of calling filealloc at line 5286. 

Name: 



6.828 FALL 2006, Quiz 1 Page 9 of 9 

V 6.828 

11. [5 points]: Describe the most memorable error you have made so far in one of the labs. (Provide 
enough detail that we can understand your answer.) 

Some memorable bugs (in summary): 

Using M-x comment-region to comment out assembly in Emacs commented the lines 
with ;, which does not actually introduce a comment in x86 assembly. 

Setting the upcall function pointer to the C page fault handler instead of the assembly stub. 

Pointer arithmetic problems, especially adding a PDX to an integer address instead of to a 
pte t*. 

Adding ANSI text coloring but not changing the default (code zero) black on black. 

We would like to hear your opinions about 6.828, so please answer the following two questions. (Any 
answer, except no answer, will receive full credit!) 

12. [3 points]: What is the best aspect of 6.828? 

13. [2 points]: What is the worst aspect of 6.828? 

End of Quiz I
 

Name: 



MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



