Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

6.828 Operating System Engineering: Fall 2004
Quiz 2 Solutions

(Thanks to Eddie Kohler and David Mazieres for contributing many of the questions on this quiz.)

All problems are open-ended questions. In order to receive credit you must answer the question
as precisely as possible. You have 80 minutes to answer this quiz.

Write your name on this cover sheet AND at the bottom of each page of this booklet.

Some questions may be much harder than others. Read them all through first and attack them in
the order that allows you to make the most progress. If you find a question ambiguous, be sure
to write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t
give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.

1-4 (xx/35) | 5-6 (xx/15) | 7-8 (xx/20) | 9-11 (xx/15) | 12 (xx/10) | 13-14 (xx/5) | Total (xx/100)

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 2 of 17

I Labs

Ursula Unsafe is working on Lab 4, System Calls for Environment Creation. Here is her first version of the
SysS_Imem mapsystem call:

//

// Map the page of memory at ’srcva’ in srcenvid’s address space
// at ’'dstva’ in dstenvid’s address space with permission ‘perm’.
// Perm has the same restrictions as in sys mem alloc, except

// that it also must not grant write access to a read-only

// page.
//

// Return 0 on success, < 0 on error. Errors are:
// -E BAD ENV if srcenvid and/or dstenvid doesn’t currently exist,
// or the caller doesn’t have permission to change one of them.
// —E_INVAL if srcva >= UICP or srcva is not page—aligned,
// or dstva >= UICP or dstva is not page—aligned.
// -E_INVAL is srcva is not mapped in srcenvid’s address space.
// -E_INVAL if perm is inappropriate (see sys page alloc).
// -E_INVAL if (perm & PTE W), but srcva is read-only in srcenvid’s
// address space.
// -E_NO MEM if there’s no memory to allocate the new page,
// or to allocate any necessary page tables.
static int
sys_mem map(uint_t srcenvid, u int srcva,
uint_t dstenvid, u_int dstwva,
u_int perm)

struct Env* srcenv, *dstenv;
struct Page* pg;

Pte* pte;

int retval;

if ((retval = envidZ2env(srcenvid, &srcenv, 1)) < 0O
|| (retval = envid2env(dstenvid, &dstenv, 1)) < 0)

return retval;

if ((srcva & (BY2PG — 1)) || (dstva & (BYZ2PG — 1)))
return -k TNVAL;

if (!(pg = page_loockup(srcenv—>env_pgdir, srcva, &pte)))
return -E INVAL;

return page _insert(dstenv—>env_pgdir, pg, dstva, pem);

Name:

6.828 FALL 2004, Quiz 2 Solutions

1. [10 points]: Describe two different ways that Ursula’s SyS_mem mapwould let a user environ-
ment inject arbitrary code into the kernel. In particular, give two code fragments, including calls to
Sys_mem 1map, after which the statement “strcpy ((char*) UTEMP, "Ha ha!");” would

write the string “Ha ha!” at kernel virtual address 0xF0003000.

2.

Since the above implementation of SyS_Inen mapdoes not check either srcva or dstva
against UTOP, some of the possible ways are:

— Copy the kernel’s mapping for the page at virtual address OxF0003000 into a write-

able, user-accessible mapping at UTEMP:
sys mem map(0, 0xF0003000, O, UTEMP, PTE U|PTE W|PTE P);

— Allocate a new page at UTEMP and map this page into the kernel at virtual address

O0xF0003000:

sys_mem alloc(0, UTEMP, PIE U|PIE W|PTIE P);

sys_mem map(0, UTEMP, 0, O0xF0003000, PTE U|PTE W|PTE P);
Use sys mem mapro add PIE U permission to the KVPD mapping (the current
env’s page directory), or similarly add PTE_W permission to the UVPD mapping,
allowing the user env free write access to all of its own page tables. The user env can
then directly map the kernel’s page 0xF0003000 into its own space at UTEMP with
simple memory writes.

[10 points]: Describe one way that Ursula’s SyS_Imem map would let a user environment
change arbitrary pages in other user environments. In particular, sketch out code steps (possibly
using comments instead of actual C), including a call to SyS_mem map, after which the statement
“strcpy((char*) UTEMP, "Ha ha!");” would write the string “Ha ha!” at environment

€’s virtual address 0x80000. (Hint: Consider using envs[e].env_cr3.)

Name:

A few of the many possible ways:
— Since the kernel maps all (usable) physical memory at KERNBASE, the user can use

SYyS_Imem map fo obtain access to its own page directory by copying the kernel’s
mapping for address KERNBASE+envs[e].env_cr3 It can then similarly find
and map the page table for address 0x80000 in e, then finally find and map the page
for address 0x80000 in e itself at UTEMP writeable into its own space.

— A quicker but more subtle approach: Just use SyS_Iem 1mapto make the €Nvs|]

table page containing e’s ENv structure writeable in our address space, then change
envs|[e].env_parent idro our own envid. We can then use SyS_mem mapto
transfer arbitrary mappings between our space and e’s because e is now our “child”
and so the env2envidparent/child permission check will succeed.

— A more practically complex but totally general approach: patch some code into the

kernel itself, e.g., replacing a frequently-called kernel routine such as €NvV_XUn with
code that does whatever we want to do from within privileged mode. This uploaded
“kernel” code could then just 1Cr3() e’s page directory and write into e’s address
space using ordinary memory writes, for example.

Page 3 of 17

6.828 FALL 2004, Quiz 2 Solutions Page 4 of 17

Here’s a version of the user-level page fault handler you wrote in Lab 4.

// Page fault upcall entrypoint.

// This is where we ask the kernel

// to redirect us to whenever we cause a page fault in user space
; ; (see the call to sys_set pgfault_handler in pgfault.c).

// When a page fault actually occurs,

// the kernel switches our ESP to point to the user exception stack
// 1f we’re not already on the user exception stack,

// and then it pushes the following minimal trap frame

// onto our user exception stack:

// [5 spare words]
// trap-time eip

// trap-time eflags
// trap-time esp

// tf_err (error code)
// fault_va <— %esp

// We then have to save additional caller—saved registers
// and call up to the appropriate page fault handler in C code,
// pointed to by the global variable ’_pgfault_handler’ declared above.

.text
.globl _pgfault upcall
_pgfault upcall:
// Save the caller—saved registers.
movl %$eax, 28(%esp)
movl %$ecx, 24(%esp)
movl $edx, 20(%esp)

// Call the C page fault handler.
mov]l _pgfault handler, %eax
call *%eax

// Push trap-time %eip and %eflags onto the trap-time stack.
//

// Explanation:

// We must prepare the trap-time stack for our eventual return to

// re—execute the instruction that faulted.

// Unfortunately, we can’t return directly from this stack

// (the exception stack). Why not?

// We can’t call ’"jmp’, since that requires that we load the address
// into a register, and all registers must have their trap-time

// values after the return.

// We can’t call ’ret’ from the exception stack either, since if we
// did, %esp would have the wrong value.

// So instead, we push the trap—time %eip onto the *trap—time* stack!
// Below we’ll switch to that stack and call ’‘ret’, which will

// restore %esp to its pre-fault value.

// We'll also restore %eflags from the trap-time stack, in case an
// intervening instruction changes the flags. (’ret’ does not.)

// In the case of a recursive fault on the exception stack,
// note that the two words we’re pushing now will overlap with
// the current exception frame!

//

movl 8(%esp), %eax // trap-time esp in eax

subl $8, %eax // add space for eip and eflags
movl %eax, 8(%esp)

movl 16(%esp), %ecx // eip

movl %$ecx, 4(%eax) <——— CIRCLE HERE
movl 12(%esp), %ecx // eflags

movl %$ecx, 0(%eax) <——— CIRCLE HERE

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 5 of 17

// Restore the caller—saved registers.
movl 20(%esp), %edx
movl 24(%esp), %ecx
movl 28(%esp), %eax

// Switch back to the adjusted trap-time stack.
movl 8(%esp), %esp

// Restore eflags from the stack.
popf < SQUARE HERE

// Return to re—execute the instruction that faulted.
ret <——— SQUARE: HERE

3. [5 points]: Fill in the blanks in the following exception stack layout, referring to the code above.
The top two words are used only in case of a recursive fault (i.e., a fault in the page fault handler
itself); additionally circle the two instructions above that will set these two words, and draw a box
around the two instructions that will use them.

trap-time _eip

trap-time eflags

|

|

! { <— 36(%esp)
| |

| trap-time _eflags_ |

| : <— 32(%esp)
| |

| trap-time _eax |

| | <— 28(%esp)
| |

| trap-time _ecx |

| | <— 24(%esp)
| |

| trap-time _edx |

| | <— 20(%esp)
| trap-time eip |

: | <— 16(%esp)
|

<— 12(%esp)
| trap-time esp

4.
T
|
T
|
T

tf err (error code)

<— 4(%esp)

|
|
+ <— 8(%esp)
|
fault va |

<— %esp when handler is run

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 6 of 17

4. [10 points]: Fill in the following function, which implements simple shared memory.

// Allocate a page of memory at ’va’ that is shared with environment ’‘e’.
// Do not return until environment ‘e’ has also called shmget() with
// similar arguments.
// Don’t worry about race conditions.
// Assure that ‘e’ calls sys ipc recv only from shmget.
void shmget(void* va, envid t e, int perm)
{
assert(!((uint) va & (BY2PG — 1)));

// Is 'e' waiting in ipc recv?
if (envs[e].env_ipc recving) {

// allocate a page to share.
sys mem alloc(0, va, perm);

// Send a mapping of this page to env e.
ipc_send(e, va, va, pem);

} else {
// Receive a page from ’e’ mapped at ’'va’.
u_int va_from e = ipc recv(0, va, 0);
assert(va_from e = (u_int) va);

Here are some header comments for reference.

// BAllocate a page of memory and map it at ’‘va’ with permission

// 'perm’ in the address space of ‘envid’.

// The page’s contents are set to 0.

// If a page is already mapped at ‘va’, that page is urmapped as a
// side effect.

//

// perm — PTIE U | PTE P must be set, PIE AVATL | PIE W may or may not be set,
// but no other bits may be set.

//

// Return 0 on success, < 0 on error. ...
int sys page alloc(u int envid, u int va, int perm);

// Try to serd ‘value’ to the target env ’envid’.

// If va != 0, then also send page currently mapped at va,

// so that receiver gets a duplicate mapping of the same page.
//

// The send fails with a return value of -E IPC NOT RECV if the
// target has not requested IPC with sys ipc recv.

//

// Otherwise, the send succeeds, and the target’s ipc fields are
// updated as follows:

// env_ipc recving is set to 0 to block future sends

// env_ipc from is set to the sending envid

// env_ipc_value is set to the ’'value’ parameter
// The target enviromment is marked runnable again.
//

// Return 0 on success, < 0 on error.
Name:

6.828 FALL 2004, Quiz 2 Solutions Page 7 of 17

//

// If the sender sends a page but the receiver isn’t asking for one,
// then no page mapping is transferred but no error occurs.

//

// srcva and perm should have the same restrictions as they had

// in sys mem map.

// Hint: you will find envid2env() useful.
int sys_ipc can send(u int envid, u_int value,
u_int srcva, unsigned perm);

// Block until a value is ready. Record that you want to receive,
// mark yourself not runnable, and then give up the CPU.
//

// Bgain, dstva should have the same restrictions as it had in

// sys mem map. If it violates these restrictions, assume that it is
// zero.

static int sys ipc recv(u int dstva)

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 8 of 17

II Brief paper questions

5. [10 points]: shell Answer the following question with respect to “Es: A shell with higher-order
functions,” by Haahr and Rakitzis. What will the following code print in the es shell?

fn xxx first rest {
if {7 S#rest 0} {
return S$first

}

return <>{ xxx S$rest } S$first

}
echo <{ xxx a b c }

Answer: C b a

6. [5 points]: Synchronization primitives Professor Dumbo wants to demonstrate a variant of the
“ticket lock” to his class. Here’s what he comes up with:

int nwaiting;

void acquire lock() {
atomic inc(&nwaiting);
while (nwaiting != 1)
// wait for the other (nwaiting — 1) processes to finish
pause(nwaiting — 1);

}

void release lock() {
atomic dec(&nwaiting);
}

Give a specific scenario demonstrating that this implementaiton of the ticket lock is wrong.

There is more than one way this code can go wrong, but the simplest is probably:

1 nwaitingstarts at 0 (lock is not held).

2 Process 1 atomically increments nTwaitingto 1.

3 Process 2 atomically increments nwaitingto 2.

4 Process 1 tests twalting and goes into a loop because nwaiting = 2

5 Process 2 tests n'wailtingand similarly goes into a loop waiting for the lock.

6 The two processes are now deadlocked: neither of them can acquire the lock because
each is waiting for the other to release it.

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 9 of 17

IIT Microkernels

The paper “Improving IPC by Kernel Design,” by Jochen Liedtke, describes a number of optimizations the
author made to achieve good IPC performance in the L.3 kernel. One such optimization involved the addition
of new system calls. L3 contained two traditional calls for implementing IPC:

e send — send a message (asynchronously) to another process

e receive — wait for and return a message sent to a process

In addition, Liedtke added two more calls each of which combines the functionality of send and receive:

e call

e reply & receive next

7. [10 points]: Which of the following statements is true for the new call/reply & receive next
interface, compared to equivalent code that issues a receive immediately following a send system
call?

(Circle all that apply; there may be more than one answer.)

A. The new interface reduces the number of user-kernel crossings required for an IPC.

Yes: the total number of system calls for a typical client/server interaction is reduced
Sfrom four to two.

B. The new interface reduces the number of TLB flushes required during an IPC.

No: Either way, the TLB must be flushed once when switching from client to server,
then again on the switch from the server to client. With the old interface, a TLB flush
isn’t required on send (which doesn’t block or transfer control), only on receive
(which does).

C. The new interface lets L3 reduce the number of scheduler queue manipulations required during
an IPC.

Yes: with the old interface, on a send the kernel would have to add the receiving
thread to the scheduler queue, and then on the sender’s subsequent Yeceive call the
kernel would have to go back and find the receiving thread on the scheduler queue
(which it put there on the previous system call), remove it, and transfer control to
the receiving thread. With the new interface, the kernel can simply transfer control
atomically from the sender to the receiver during the single call or reply & receive
next system call, and avoid touching the scheduler queue at all.

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 10 of 17

D. When no processes are swapped out to disk, the new interface reduces the number of times the
kernel must copy IPC arguments and results that don’t fit in registers.

No: Either way the kernel copies messages directly from the sender’s address space
to the receiver’s, resulting in the same total amount of data copying. The receiver
window trick makes this direct cross-space data copying possible, but that’s a separate
optimization not directly related to the combined control transfer interface for IPC.

E. The new interface makes the scheduler less fair, and could even lead to starvation were it not for
the “long time wakeup list.”

No: The new interface doesn’t change the scheduler’s normal behavior in any way.
The optimization merely avoids the need to frequently put a thread onto the scheduling
queue (during a send) only to take it off again immediately (during a subsequent
receive), effectively reducing the total number of scheduling operations that need
to be done in the first place.

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 11 of 17

To optimize data transfers during IPC, the kernel copies straight from the sender’s address space into the
receiver’s, as follows. The kernel reserves a portion of virtual memory known as the communication window.
The kernel also restricts each IPC argument to a maximum of 4 Megabytes. To copy into the recipient’s
address space, the kernel takes two page directory entries from the recipient’s page directory and places them
into the sender’s at the virtual address of the communication window. (The kernel also clears the PTE_Ubit,
so that user code in the sender cannot access the memory mapped in the communications window.)

One concern is that, on the processor used by L3, it is expensive to flush TLB entries for a large virtual
address range. (You can only flush one page translation at a time, or else the whole TLB.) Thus, Liedtke
introduces the term window clean, to mean the TLB is guaranteed not to be caching any mappings for virtual
addresses in the communication window.

8. [10 points]: Describe a scenario in which, when the kernel must copy data between address
spaces, the TLB is not window clean. (Hint: feel free to use the old or the new system calls in your
scenario.)

There are at least two such possible scenarios, and probably others:

— Suppose that a thread performs several non-blocking SENds in succession (perhaps
to several different receivers) without intervening receivecalls. The first sSendwill
use the window trick to copy the message into the receiver’s address space, leaving the
sender’s TLB “dirty” with the temporary page mappings used to perform this copy.
However, since senddoes not block the sending thread and change address spaces, it
does not automatically flush the TLB. Thus the thread will not be window clean at the
start of the next send operation, and the kernel will have to flush the TLB explicitly
before re-using the window to copy the next message.

— Suppose that one thread sends a message and then blocks waiting for a reply. The TLB
is now “dirty” because the kernel mapped in memory for the send. If another thread
in the same address space is scheduled next, the TLB will not be flushed because the
kernel does not need to change address spaces. Now if this second thread calls send,
the kernel will need to manually flush the window to clean the TLB.

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 12 of 17

IV Disco

Answer questions in this section with respect to the paper “Disco: Running Commodity Operating Systems
on Scalable Multiprocessors” by Bugnion, Devine, and Rosenblum.

9. [5 points]: On page 11, the authors write, “The execution of the operating system in general and
critical section in particular is slower on disco, which increases the contention for semaphores and
spinlocks.” What is the intuition for why contention increases, and what experiment demonstrates it?

Executing operating system code is much slower under Disco than without because of the
virtualization overhead. In particular, the slowdown of OS code due to virtualization is
disproportionate to the slowdown of application code because OS code tends to execute
many privileged instructions and perform many low-level operations that require special
handling by the VMM, which is where the main performance penalty lies. For this reason,
when one processor holds a semaphore or spinlock while within the OS kernel, it will tend
to take much longer to release it under Disco, so other processors will be more likely to
come along during that time and create contention for the same semaphore or spinlock.

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 13 of 17

10. [5 points]: In Figure 5, why does “kernel time” decrease when running on Disco?

The Disco VMM performs some important tasks that the “stand-alone” IRIX kernel would
normally have to do itself. For example, Disco allocates and initializes machine pages,
thereby absorbing much of the memory access overhead that the IRIX kernel would nor-

mally incur performing these operations.

11. [S points]: In Figure 6, why does Irix data grow? Why does buffer cache stay the same size for
the M bar?

IRIX data grows because the kernel datastructures are now replicated in each instance of
the kernel. The buffer cache is shared among all instances and therefore stays the same

size.

Name:

6.828 FALL 2004, Quiz 2 Solutions

V File systems

12. [5 points]: After finishing a Window systems for JOS, Austin Ports is evaluating whether to use
soft-updates to improve the performance of the JOS file system. He keeps the layout and the basic file
structures the same, but he would like to arrange that the JOS file server writes as many disk blocks
asynchronously to the disk as possible, while maintaining file system consistency. Is there a scenario
in which the file server must undo file system modifications when writing blocks out to disk to ensure
file system consistency? If so, draw a picture with a dependency. (The next page shows the JOS file

system structures.)

Yes. For example, suppose we have a file £00 in some directory, and £OO has one data
block attached to it. We delete £OO, causing its one data block to be returned to the free
block bitmap. We then create a new file 0Ax in the same block of the same directory, then
write a few bytes to it, causing the data block previously attached to £00to be re-allocated
from the free block bitmap and attached to the new file oar. We now have a dependency
chain as follows:

Write directory block to remove £0O

4

Write bitmap block to mark £0O’s old data block free

J
Write directory block to create Ioar

4

Write bitmap block to mark 10ar’s new data block in-use

J
Write directory block to attach Yoaxr’s new data block to oar

Since the above logical writes alternate between two physical disk blocks, this sequence
creates circular dependencies requiring the later logical writes to be rolled back in order
to commit the earlier logical writes to disk. For example, the file system could roll back
all but the first two writes, commit those two in order, then roll forward the next two writes
and commit those in order, and finally roll forward the final write and commit that one.

13. [5 points]: What file system calls would add more dependencies? (Explain briefly why.)

Name:

The Unix rename operation, for example, removes a file from one directory block and
inserts it in another while ensuring that the file can never be “lost” if the system crashes
in the middle of the operation. Ensuring this property creates a dependency between the
insertion of the file in the new directory (which must happen first) and the removal of the
file from the old directory (which must happen afterwards).

Page 14 of 17

6.828 FALL 2004, Quiz 2 Solutions Page 15 of 17

// File nodes (both in-memory and on-disk)
// Bytes per file system block — same as page size

#define BY2BLK BY2PG
#define BIT2RLK (BY2BLK*8)

// Maximum size of a filename (a single path component), including null

#define MAXNAMELEN 128
// Maximum size of a corplete pathname, including null
#define MAXPATHLEN 1024
// Nurber of (direct) block pointers in a File descriptor
#define NDIRECT 10
#define NINDIRECT (BY2BLK/4)
#define MAXFILESIZE (NINDIRECT*BYZ2BIK)
#define BYZ2FILE 256
struct File
union
struct
uint8_t f_name[MAXNAMELEN] ; // filename
uint32_t f_size; // file size in bytes
uint32_t f type; // file type

uint32_t £ direct[NDIRECT];
uint32 t £ indirect;

struct File *f_dir; // valid only in memory

7

uint8 t f pad[BY2FILE]; // make sizeof (struct File) = BY2FILE
’
#define FILE2BLK (BY2BLK/sizeof (struct File))
// File types
#define FTYPE REG 0 // Regular file
#define FTYPE_DIR 1 // Directory

// File system super-block (both in-memory and on—disk)

#define FS MAGIC 0x68286097 // Everyone’s favorite OS class
struct Super
uint32_t s magic; // Magic nurber: FS MAGIC
uint32_t s_nblocks; // Total number of blocks on disk
struct File s root; // Root directory node

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 16 of 17

/* from fs/fs.h */

int file open(char *path, struct File **pfile);

int file get block(struct File *f, u_int blockno, void **pblk);
int file set size(struct File *f£, u_int newsize);

void file close(struct File *f);

int file remove(char *path);

void fs init(void);

int file dirty(struct File *f, u int offset);

void fs sync(void);

void file flush(struct File*);

/* fram inc/fd.h */
struct Dev

int dev_id;

char *dev_name;

int (*dev_read) (struct Fd*, void*, u int, u int);

int (*dev_write) (struct Fd*, const void*, u int, u int);

int (*dev_close) (struct Fd*);
((
((
()

int (*dev_stat) (struct Fd*, struct Stat*);
int (*dev_seek) (struct Fd*, u int);
int (*dev_trunc) (struct Fd*, u int);

7

struct Fd

u int fd dev id;
u_int fd offset;
uw int fd omode;

;
struct Stat
char st _name[MAXNAMELEN];
u_int st size;
u int st _isdir;
struct Dev *st _dev;
’
struct Filefd
struct Fd £ fd;

wint £ fileid;
struct File £ file;

Name:

6.828 FALL 2004, Quiz 2 Solutions Page 17 of 17

VI 6.828

We love to have your suggestions for improving 6.828. Please, answer the following question. (Any answer,
except no answer, will receive full credit!)

14. [2 points]: If you could change one aspect of 6.828, what would it be?

15. [3 points]: Are there any topics you’d like to see added to the class, or any topics you’d like to
see removed?

End of Quiz 2

Name:

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

