
http://www.csg.lcs.mit.edu/6.827

L22- 1

Arvind
Laboratory for Computer Science

M.I.T.

Term Rewriting Systems

Lecture 22

http://www.csg.lcs.mit.edu/6.827

L22-2
Arvind

Outline

• Motivation for rewriting
• TRS Syntax

– applicative TRS

• Some properties of TRS’s
– Strong normalization

– Confluence

• Some special TRS’s
– underlined TRS
– orthogonal TRS

– Recursive Program Schemes (RPS)

– Applicative RPS

1

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-3
Arvind

Equational Specifications

A(x,0) = x
A(x,S(y)) = S(A(x,y))
M(x,0) = 0
M(x,S(y)) = A(M(x,y),x)

E

E is an equational specification of natural numbers.

An equation is between terms

The signature Σ??for E
Function symbol Arity

0 0 aka Constants
S 1
A 2
M 2

http://www.csg.lcs.mit.edu/6.827

L22-4
Arvind

Equational Theory
"E |-- t = s" means that t = s can be derived from the
equations in E by the following rules:

Substitution:
E | -- t (x1, ... , xn) = s (x1, ... ,xn)

E | -- t (t1, ... , tn) s (t1, ... ,tn)

Forming Contexts:
E | -- t = s &

E | -- C[t] = C[s]

Symmetry, Reflexivity and Transitivity of "=" :
E | -- t = s ⇒ E | -- s = t
E | -- t = t
E | -- t = s & E | -- s = t' ⇒ E | -- t = t'

=

] is a context C[

2

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-5
Arvind

Decision Procedure

Is there a procedure to decide

if E | -- t1 = t2

In general ,

The notion of reduction or rewriting was originally
developed to understand questions regarding
decision procedures.

NO!

http://www.csg.lcs.mit.edu/6.827

L22-6
Arvind

A TRS is a (Σ?, R)
where Σ?is a signature and

R is a set of rewrite rules for terms over Σ

A(x,0) → x
R → S(A(x,y))

M(x,0) → 0
M(x,S(y)) → A(M(x,y),x)

Σ??for R
Function symbol Arity

0 0 Constants
S 1
A 2
M 2

A(S(0),S(0)) →

Term Rewriting Systems (TRS)

A(x,S(y))

aka

3

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-7
Arvind

Syntax: Terms

A signature Σ consists of a set of constants,
function symbols and infinitely many variables.

terms over Σ

t = x | c | Fk(t1, ...,t k)

variable

Open term: A term that contains a variable.

Closed term: A term without a variable.
a.k.a. Ground term

application constant

http://www.csg.lcs.mit.edu/6.827

L22-8
Arvind

Rewrite Rules

t1 → t2

1. t1 must not be a variable;
2. Free variables of t2 must be contained in

in the free variables of t1

Examples of illegal rules
x → A(x,0)

F(x) → y

Sometimes it is convenient to disallow rules to
rewrite constants, the 0-arity function symbols.

Variables of a rule are sometimes called the meta
variables and range over all terms in the signature.

4

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-9
Arvind

Substitution
A(x,0) → x (1)
A(x,S(y)) → S(A(x,y)) (2)
M(x,0) → 0 (3)
M(x,S(y)) → A(M(x,y),x) (4)

Does any rule apply to the term
M(S(S(0)),S(0)) ?

http://www.csg.lcs.mit.edu/6.827

L22-10
Arvind

Pattern of a Rule

A(x,0) → x
A(x,S(y)) → S(A(x,y))
M(x,0) → 0
M(x,S(y)) → ??A(M(x,y),x)

Replace variables on the LHS by Δ

?????A M

Δ????????0 Δ S Δ????????0 Δ S

Δ Δ
A rule applies to a term if the rule pattern matches some
node in the syntax tree of the term (Δ?matches any node)

M A

5

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-11
Arvind

Rewriting

One-step rewriting →

Application of one rule in a context

Multiple-step rewriting

t ≡?t1?→ ?t2 → ?...?→ ?tn ≡?s

may be rewritten as s

Rewriting can be thought of as
on terms, thus

= Transitive, reflexive closure of →

In any semantic model, the terms t1, t2, ..., tn
must have the same meaning!

t

inducing a relation

http://www.csg.lcs.mit.edu/6.827

L22-12
Arvind

Applicative TRS

A TRS that consists of a one special binary operator
called application (Ap), and some constants.

Example: Combinatory Logic

Constants: S, K
Rewrite rules:

Ap(Ap(Ap(S,x),y),z) → Ap(Ap(x,z),Ap(y,z))
Ap(Ap(K,x),y) → x

6

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-13
Arvind

Special Notation for Applicative TRS
An infix version of Ap

((S.x).y).z → (x.z).(y.z)
(K.x).y → x

The "." is often suppressed in programming

((S → (x
(K → x

and by convention parentheses associative to the left

S → x
K → x

z y) x) z) z) (y
y x)

z y x z) z (y
y x

http://www.csg.lcs.mit.edu/6.827

L22-14
Arvind

The S­K Combinatory System

S → x
K → x

Any computable function can be expressed
using S’s and K’s !

Example: Identity function “I → x”

S K K x →

z y x z) z (y
y x

x

7

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-15
Arvind

Mixed Notation

We can mix applicative and functional notation

S → x
K → x
D(x,x) → E

The above system is very different from

S → x
K → x
D x x → E

where D is a constant, that is,

Ap(Ap(D,x),x) → E

z y x z) z (y
y x

z y x z) z (y
y x

http://www.csg.lcs.mit.edu/6.827

L22-16
Arvind

Arity - some bad terminology

A bad terminology is to say that

the "arity" of S is 3,
or the "arity" of S is variable.

S is a constant, or a zero arity function symbol;
Ap has arity 2, and the rewrite rule for S requires
three Ap symbols and three arguments

S → t5 t4 t3 t2 t1

8

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-17
Arvind

Normal Form

Let (Σ , R) be a TRS and t be a term

t is in normal form if it cannot be reduced any further.

Term t is strongly normalizing (SN) if every reduction
sequence starting from t terminates eventually.

R is strongly normalizing (SN) if for all terms every
reduction sequence terminates eventually.

R is weakly normalizing (WN) if for all terms there is
some reduction sequence that terminates.

http://www.csg.lcs.mit.edu/6.827

L22-18
Arvind

Strongly Normalizing?

1. Arb(x,y) → x
Arb(x,y) → y

2. → F(x,x,x)

3. Arb(x,y) → x
Arb(x,y) → y
F(0,1,x) → F(x,x,x)

F(0,1,x)

9

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-19
Arvind

Underlined Version of a TRS

Combinatory Logic

S → x
K → x

Its underlined version
-- Extend the signature by S and K

S x → x
K x → x

Is the underlined version SN ?

z y x z) z (y
y x

z y z) z (y
y

http://www.csg.lcs.mit.edu/6.827

L22-20
Arvind

Underlined TRS

Given a TRS R, its underlined version R is defined as
follows:

1. The signature of R contains all the symbols of R
and the underlined version of each symbol of R.

2. For each rule in R, R contains a rule gotten by
replacing the left most symbol of the rule in R by
its underlined version.

10

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-21
Arvind

Underlining and Development

Underline some redexes in a term.

Development is a reduction of the term such that only
underlined redexes are done.

Complete Development is a reduction sequence such
that all the underlined redexes have been performed.

(S K K y

→ (S K → K K y K y

→ K y → K K y

→ K y

By underlining redexes we can distinguish between old
and newly created redexes in a reduction sequence.

(x z))

y) x (((x z) z))

y) (x ((x y z))

y) (x

http://www.csg.lcs.mit.edu/6.827

L22-22
Arvind

Underlined TRS

Theorem: For every TRS R, R is strongly normalizing.

The proof is based on assigning weights to each rule
such that there is a Decreasing weight property for
each redex.

11

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-23
Arvind

Confluence aka Church-Rosser Property

A reduction system R is said to be confluent (CR),
if t t 1 and t t 2 then there exits a t3 such that
t 1 t 3 and t2 t 3.

t 2 t 3

Fact: In a confluent system, if a term has a normal form
then it is unique .

Are all TRS’s confluent?

http://www.csg.lcs.mit.edu/6.827

L22-24
Arvind

Confluence is difficult to Prove

A(x,0) → x
A(x,S(y)) → S(A(x,y))
M(x,0) → 0
M(x,S(y)) →??A(M(x,y),x)

Ack(0,x) → S(x)
Ack(S(y),0) → Ack(x,S(0))
Ack(S(x),S(y)) → Ack(x,Ack(S(x),y))

S → x
K → x

z y x z) z (y
y x

12

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-25
Arvind

Orthogonal TRSs

A TRS is Orthogonal if it is:

1. Left Linear: has no multiple occurrences of a
variable on the LHS of any rule, and

2. Non Interfering: patterns of rewrite rules are
pairwise non- interfering

Theorem: An Orthogonal TRS is Confluent.

http://www.csg.lcs.mit.edu/6.827

L22-26
Arvind

Orthogonal TRS: Examples

A(x,0) → x
A(x,S(y)) → S(A(x,y))
M(x,0) → 0
M(x,S(y)) →??A(M(x,y),x)

Ack(0,x) → S(x)
Ack(S(y),0) → Ack(x,S(0))
Ack(S(x),S(y)) → Ack(x,Ack(S(x),y))

S → x
K → x

z y x z) z (y
y x

13

http://web.mit.edu/6.827
http://web.mit.edu/6.827

 http://www.csg.lcs.mit.edu/6.827

L22-27
Arvind

Recursive Program Scheme (RPS)
An RPS is a TRS such that

G = { G1, ... , Gn } are base functions with non- interfering
rules

F = { F1, ... , Fm } are user-defined functions such that

1. G ∩?F = Φ
??2. There is at most one rule for each Fi in F

Fi (x1, ... , xk) = t i
where each xi is distinct and each t i is built
from x1,...,x k, and symbols from F and G

Fact: An RPS is an orthogonal TRS.

⇒ ??RPS is confluent!

http://www.csg.lcs.mit.edu/6.827

L22-28
Arvind

Applicative RPS

It is the same as a functional RPS except that it is defined
using applicative format.

We can generating an applicative TRS Rap from a functional
TRS R as follows:

For each rule t1 → t2 in R, Rap contains the rule
t1ap → t2ap where tap means

F (t1,..., tn) ap ⇒?????F ap... tnap

Theorem: If R is confluent then so is Rap.

t1

14

http://web.mit.edu/6.827
http://web.mit.edu/6.827

