L18-1

Bluespec-2
Bluespec Compilation Model
& Introduction to programming

Arvind
Laboratory for Computer Science
M.L.T.

Lecture 18

[http://www.csqg.lcs.mit.edu/6.827]

L18-2
Arvind

Outline

* Bluespec compilation []

* Bluespec programming
— Example: Barrel shifter

http://web.mit.edu/6.827
http://web.mit.edu/6.827

From TRS to Synchronous CFSM

_| Collection
of
State
Elements

)
O

Transition
Logic

| http://www.csg.lcs.mit.edu/6.827 | ﬁ:h

L18-4
Arvind

TRS Execution Semantics

Given a set of rules and an initial terms

While (some rules are applicable tos)
¢ choose an applicable rule
(non-deterministic)
¢+ apply the rule atomically to s

The trick to generating good hardware is to schedule as
many rules in parallel as possible without violating the
sequential semantics given above

| http://www.csg.lcs.mit.edu/6.827 | o

http://web.mit.edu/6.827
http://web.mit.edu/6.827

Compiling a Rule

L18-5
Arvind

“Bz Taken”:

when (Bz rc ra) <- bu.first, rflrc ==

==> action pc := rflra

bu.clear
— enable
pc Tt
rf
current bf next
> 0 > state
State
values
1 = enabling condition
J &= action signals & values L .
(Rfp/www.csq s Mt edu/6.627] o
L18-6
Arvind
Combining State Updates
G ——
s from rules .
that update R
Tl:n"
latch
enable

, 61,R > .
o's from rules . : >
: . next state

that update R

Scheduler ensures that at most one @ is true

6n,R >

L0tp://www.csglcs mif.edu/o. 62/ |

value

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-7
Arvind

Executing Multiple Rules Per Cycle

“Fetch”:
when True
==> action pc = pc+1
bu.enqg (imem.read pc)
“Add”:
when (Add rd rs rt) <- bu.first
==> action rflrd := rflrs + rflrt
bu.deq

Can these rules be executed simultaneously?

These rules are “conflict free” because they
manipulate different parts of the state
(i.e., pc and rf), and enq and deq on a FIFO
can be done simultaneously.

[tip/Awww.csg lcs. mit edu/6.827] Ll

L18-8
Arvind

Conflict-Free Rules

Rule, and Rule, are conflict-free if

Os . m(s) Om(s) O
1. 1,(3(s)) UT,(34(S))
2. 5,(3,(S)) == 3,(34(5))

where [is a sort of LUB operator

Theorem: Conflict-free rules can be executed

concurrently without violating TRS’s sequential
semantics

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-9
Arvind

Conflict-Free Scheduler

* Partition rules into maximum number of
disjoint sets such that

— arule in one set may conflict with one or more
rules in the same set

— arule in one set is conflict free with respect to all
the rules in all other sets

(Best case: All sets are of size 1!1)

* Schedule each set independently
— Priority Encoder, Round-Robin Priority Encoder
— Enumerated Encoder

The state update logic remains unchanged

L18-10
Arvind

Multiple- Op- per-Cycle Scheduler

m — — O
m , Scheduler > @,
. e />
., ——>* Scheduler —— =«
. —> /> o«
J— B
—— » Scheduler —
T[n — ——> (pn
lL.gOTm

2mimd....0md ¢lUe O.... Og,

3. Multiple operations such that
@U@0 Ryand R, are conflict-free

[httpZ/www.csq Ics. mit.edu/6.827] j“ﬁ‘

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-11
Arvind

Multiple Rewrites Per Cycle

“Fetch”:
when True
==> action pc :=pc+l
bu.enqg (imem.read pc)
“Bz Taken”:

when (pc’, Bz rc ra) <- bu.first, rflrc ==
==> action pc :=rflra
bu.clear

Can these rules be executed simultaneously?

Yes, as long as the action of Bz Taken rule dominates!
many other possibilities for parallel execution ...

3

httg://www.csg.Ics.mit.edu/6.827| ﬁ:h
L18-12
Arvind
Outline

« Bluespec compilation

* Bluespec programming [
— Example: Barrel shifter

| http://www.csg.Ics.mit.edu/6.827| ﬁﬁ"

http://web.mit.edu/6.827
http://web.mit.edu/6.827

Left-shifting a value by 3

L18-13
Arvind

e Ll
T B R R R R

f3 :: (Bit 10) -> (Bit
f3 x =x<<3

More generally:
f3 :: (Bit n) -> (Bit n

|nttp://www.csg.lcs.mit.edu/6.827 |

10)

)

L18-14
Arvind

Shifting by a variable amount (0-7)

3 f

s f :: (Bit n) -> (Bit 3)
-> (Bit n)
o J
fOx =x<<0
—lf]
f7 x =x<<7
L1]
x v, mux ", f xs =
’ fxs case s of
0 ->1f0 x
1->1f1x
2 ->f2 x
HH 7 ->17 x

But this is an expensive solution !
[nttp.//www.csa.lcs. mitedu/6.62 /]

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-15
Arvind

Shifting by a variable amount:
solution 2

« three cascaded steps such that the jth step shifts
by O or 2i depending on the jt bit of s

f xs =let
x0 = if s[0:0] == 0 then x
else (x << (1 << 0))
x1 =if s[1:1] == 0 then x0
else (x0 << (1 << 1))
x2 = if s[2:2] == 0 then x1___ 22
el se (x1 <<
in
X2 S
http:/Avww.csg.lcs.mit.edu/6.827] ﬁv;h
L18-16
Arvind

Shifting by a variable amount:
generalization

m
f :: (Bit n) -> (Bit/B/) -> (Bit n) |generalize to

f xs =... m stages?
e In the ji step shift by O or 2i depending on the jth
bit of s
step s xj =if s[j:j]==0 then Xx

else (x << (1 << j))
* Apply this step m times to the initial value of x

f x s =foldl (step s) x (upto 0 (m— 1))‘

| http://www.csg.lcs.mit.edu/6.827 | ,J";:h

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-17
Arvind

Barrel Shifter: a“types” issue

f :: (Bit n) -> (Bit m -> (Bit n)
f xs =let

step s xj =if s[j:j]==0 then x
else (x << (1 << j))

foldl (step s) x (upto O (- 1))
val ueo (m

m in (Bit m) has something to do with types. We need to
use valueOf(m) for m in expressions.

| httg://www.csg.Ics.mit.edu/6.827| ﬁ:h
L18-18
Arvind

Pipelined shifter

So

v

ISZTO 21m-

+ n
;[Is

* In the ji step
— shift by O or 2i depending on the jt bit of s

step s xj =if s[j:j]==0 then x
else (x << (1 << j))

— given the input FIFO fln, produce the circuit and
the FIFO fOut

http://www.csg.Ics.mit.edu/6.827] ;EQT‘

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-19
Arvind

Pipelined shifter continued

nkLsStep:: FIFO (Bit n,Bit m -> (Bit m ->
-> Mdule (FIFO (Bit n,Bit m)
nmkLsStep fln j =

nodul e
State —{fQut :: FIFO (Bit n,Bit m <- nkFlFO]
rul es
Internal when (x,s) <- fln.first

behavior ==> action fln.deq

fQut.enq (step s x j, s

External
——{return fQut
interface]

 Iterate mkLsStep m times:
start by supplying the leftmost FIFO
nmkLs fifoO =
foldl M nkLsStep fifoO (upto O (valuedf m-— 1))

|httg://www.csg.Ics.mitedu/6.82Z| ﬁ:h

L18-20
Arvind

Pipelined shifter remarks

 The program to generate the circuit is
parametric
— n bits represent the datawidth in the FIFO
— m represents the number of bits needed to specify

the shift (= log n)

* The language scaffolding needed to
express, for example, iteration disappears
after the first phase of compilation

— no “circuit” penalty for using high-level language
constructs

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-21
Arvind

Monadic Fold

foldl :: (tz ->tx ->tz) ->tz ->

(List tx) ->1tz
foldl f z Nil =
foldl f z (Cons X xs) = foldl f (f z x) xs

foldiM:: (tz ->tx -> Mddule tz) ->tz ->
(List tx) -> (Module tz)

foldiMf z Nl

foldiMf z (Nil x xs)

return z

nodul e
z' <= (f z x)
foldiMf z' xs

| http://www.csg.lcs.mit.edu/6.827| ﬁ:h
L18-22
Arvind

Unfolding during Compilation

=return z

Cons x xs) = nodul e

z' <- (f z x)
foldlMf z' xs

~Z

Suppose the list is {x1,x2,x3]. The compiler will unfold
foldIM as follows:

nodul e
z1 <- f z x0
nodul e

modul e
z1 <- f z x0
z2 <- f z1 x1

z2 <- f z1 x1 >
modul e z3 <- f z2 x2
z3 <- f z2 x2 return
return z3
z3

IattpZfwww csg ics mit edu/6 827 F3

http://web.mit.edu/6.827
http://web.mit.edu/6.827

Compilation of Pipelined shifter

L18-23
Arvind

nkLs fifo0 =
foldl M nkLsStep fifoO (upto O (valued m-— 1))

Suppose m is 3. The compiler will unfold foldIM as follows:

nodul e
fifol <- nkLsStep fifoO O
fifo2 <- nkLsStep fifol 1
fifo3 <- nkLsStep fifo2 2
return
fifo3

Compilation of Pipelined shifter
continued

L18-24
Arvind

nmodul e
fifol <-
nmodul e
fout <- nkFl FO
rul es
when (x,s) <- fifoO.first
==> action fifo0.deq
fQut.enqg (step s x 0, s)
return fQut

fifo2 <- nkLsStep fifol 1
fifo3 <- nkLsStep fifo2 2
return

fifo3

12

http://web.mit.edu/6.827
http://web.mit.edu/6.827

L18-25

Arvind
Compilation of Pipelined shifter
continued- 2
nodul e

let fifol = fCQut

faut <- nkFl FO

rul es

when (x,s) <- fifoO.first
==> action fifo0.deq
fQut.enqg (step s x 0, s)

fifo2 <- nkLsStep fifol 1

fifo3 <- nkLsStep fifo2 2

return

fifo3

(NP //WWW,CSQLICS. MIt.edu/b.o2 (| ﬁ 1

http://web.mit.edu/6.827

