
http://www.csg.lcs.mit.edu/6.827

L13- 1

Jan-Willem Maessen
Laboratory for Computer Science

M.I.T.

Using Monads to Structure
Computation

Lecture 16

http://www.csg.lcs.mit.edu/6.827

L13-2
Maessen

Monadic I/O
IO a: computation which does some I/O,

then produces a value of type a.

(>>) -> IO b -> IO b
(>>=) -> (a -> IO b) -> IO b
return :: a -> IO a

Primitive actions:
getChar O Char
putChar har -> IO ()
openFile, hClose, ...

Monadic I/O is a clever, type-safe idea which has
become very popular in the FL community.

:: IO a
:: IO a

:: I
:: C

1

http://www.csg.lcs.mit.edu/6.827

L13-3
Maessen

Monadic sequencing

a >> b ≡ a >>= (_ -> b)

return a >>= \x -> m ≡ (\x -> m) a

m >>= \x -> return x ≡ m

(m >>= \x -> n) >>= \y -> o
≡ m >>= \x -> (n >>= \y -> o)

x ∉ FV(o)

A derived axiom:
m >> (n >> o) ≡ (m >> n) >> o

http://www.csg.lcs.mit.edu/6.827

L13-4
Maessen

Syntactic sugar: do

do e -> e

do e ; dostmts -> e >> do dostmts

do p<-e ; dostmts -> e >>= \p-> do dostmts

do let p=e ; dostmts -> let p=e in do dostmts

do a ; b ≡ do _ <- a ; b

do x <- return a ; b ≡ (\x -> do b) a

do x <- m ; return x ≡ m

do y <- (do x <- m ; n) ; o
≡ do x <- m; (do y <- n; o)

2

http://www.csg.lcs.mit.edu/6.827

L13-5
Maessen

Monads and Let

Monadic binding behaves like let:

do a ; b ≡ do _ <- a ; b
do x <- return a ; b ≡ (\x -> do b) a
do x <- m ; return x ≡ m
do y <- (do x <- m ; n) ; o

≡ do x <- m; (do y <- n; o)

let x = a in m ≡ (\x -> m) a
let x = m in x ≡ m
let y = (let x = m in n) in o

≡ let x = m in (let y = n in o)
x ∉ FV(o)

http://www.csg.lcs.mit.edu/6.827

L13-6
Maessen

Monads and Let
• Relationship between monads and let is deep
• Use this to embed languages inside Haskell
• IO is a special sublanguage with side effects

class Monad m where
return :: a -> m a
(>>=) a -> (a -> m b) -> m b
(>>) a -> m b -> m b
fail ring -> m a --*

:: m
:: m
:: St

3

http://www.csg.lcs.mit.edu/6.827

L13-7
Maessen

Outline
• Monadic operations and their properties
• Reasoning about monadic programs
• Creating our own monads:

Id: The simplest monad
State
Supplying unique names
Emulating simple I/O
Exceptions

• Composing monad transformers
• IO and ST: two very special monads
• Using ST for imperative computation
• Ordering issues

http://www.csg.lcs.mit.edu/6.827

L13-8
Maessen

Proving simple properties

putString [] = return ()
putString (c:cs) = putChar c >> putString cs

[] = bs
(a:as) ++ bs = a : (as ++ bs)

Show:

putString as >> putString bs
≡ putString (as++bs)

++ bs

4

http://www.csg.lcs.mit.edu/6.827

L13-9
Maessen

Base case

putString [] = return ()

[] = bs

putString [] >> putString bs
≡ return () >> putString bs
≡ putString bs
≡ putString ([]++bs)

++ bs

http://www.csg.lcs.mit.edu/6.827

L13-10
Maessen

Inductive case

putString (a:as) = putChar a >> putString as

(a:as) ++ bs = a : (as ++ bs)

putString (a:as) >> putString bs
≡ (putChar a>>putString as) >> putString bs
≡ putChar a >> (putString as>>putString bs)
≡ putChar a >> (putString (as ++ bs))
≡ putString (a : (as ++ bs))
≡ putString ((a:as) ++ bs)

5

http://www.csg.lcs.mit.edu/6.827

L13-11
Maessen

Representation Independence
• Our proof did not depend on the behavior of I/O!
• Uses properties of Monads
• Requires some function

putChar :: Char -> m ()

A monadic computation has two sets of operations:
• The monadic operations, with general properties
• Specific operations with unique properties

http://www.csg.lcs.mit.edu/6.827

L13-12
Maessen

Fib in Monadic Style
fib n = fib n =
if (n<=1) then n if (n<=1) then n
else else
let
n1 = n - 1 n1 <- return (n-1)
n2 = n - 2 n2 <- return (n-2)
f1 = fib n1 f1 <- fib n1
f2 = fib n2 f2 <- fib n2

in f1 + f2 return (f1+f2)

Note the awkward style: everything must be named!

do

6

http://www.csg.lcs.mit.edu/6.827

L13-13
Maessen

The Simplest Monad
newtype Id a = Id a

instance Monad Id where
return a Id a
Id a >>= f = f a

runId (Id a) = a

• This monad has no special operations!
• Indeed, we could just have used let
• The runId operation runs our computation

=

http://www.csg.lcs.mit.edu/6.827

L13-14
Maessen

The State Monad

• Allow the use of a single piece of mutable state

put :: s -> State s ()
get :: State s s

runState :: s -> State s r -> (s,r)

instance Monad (State s)

7

http://www.csg.lcs.mit.edu/6.827

L13-15
Maessen

Generating Unique Identifiers
type Uniq = Int
type UniqM = State Int

runUniqM :: UniqM r -> r
runUniqM comp = snd (runState 0 comp)

uniq :: UniqM Uniq
uniq = do u <- get

put (u+1)
return u

http://www.csg.lcs.mit.edu/6.827

L13-16
Maessen

State

newtype State s r = S (s -> (s,r))

instance Monad (State s) where
return r = S (\s -> (s,r))
S f >>= g = S (\s -> let (s’, r) = f s

S h = g r
in)

get = S (\s -> (s,s))
put s = S (\o -> (s, ())
runState s (S c) = c s

h s’

8

http://www.csg.lcs.mit.edu/6.827

L13-17
Maessen

Poor Man’s I/O

type PoorIO a = State (String, String)

putChar :: Char -> PoorIO ()
putChar c = do (in, out) <- get

put (in, out++[c])

getChar :: PoorIO Char
getChar = do (in, out) <- get

case in of
a:as -> do put (as, out)

return a
[] -> fail “EOF”

http://www.csg.lcs.mit.edu/6.827

L13-18
Maessen

Error Handling using Maybe
instance Monad Maybe where
return a = Just a
Nothing >>= f = Nothing
Just a f = f a
fail _ othing

Just a ` b = Just a
Nothing `mplus` b = b

do m’ <- matrixInverse m
y matrixVectMult m x
return y

>>=
= N

`mplus

<-

9

http://www.csg.lcs.mit.edu/6.827

L13-19
Maessen

Combining Monads

• To simulate I/O, combine State and Maybe.
• There are two ways to do this combination:

newtype SM s a = SM (s -> (s, Maybe a))
newtype MS s a = MS (s -> Maybe (s, a))

SM MS
([],””) ,””)

do putChar ‘H’ ([],”H”) ,”H”)
a <- getChar ([],”H”) hing
putChar ‘I’ skipped

`mplus` putChar ‘!’ ([],”H!”) ([],”!”)

([]
([]
Not

http://www.csg.lcs.mit.edu/6.827

L13-20
Maessen

Monad Transformers

• State and error handling are separate features
• We can plug them together in multiple ways
• Other monads have a similar flavor
• Monad Transformer: add a feature to a Monad.

instance (Monad m) => Monad (ErrorT m)
instance (Monad m) => Monad (StateT s m)

type ErrorM = ErrorT Id
type StateM s = StateT s Id
type SM s a = StateT s (ErrorT Id)
type MS s a = ErrorT (StateT s Id)

10

http://www.csg.lcs.mit.edu/6.827

L13-21
Maessen

Special Monads

• Operations inexpressible in pure Haskell

• IO Monad
Primitives must actually call the OS
Also used to embed C code

• State Transformer Monad
Embeds arbitrary mutable state
Alternative to M-structures + barriers

http://www.csg.lcs.mit.edu/6.827

L13-22
Maessen

The State Transformer Monad

instance Monad (ST s)

newSTRef a -> ST s (STRef s a)
readSTRef STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

runST :: (∀s. ST s a) -> a

• The special type of runST guarantees that an
STRef will not escape from its computation.

::
::

11

http://www.csg.lcs.mit.edu/6.827

L13-23
Maessen

Independent State Transformers

• In ST s t, the type s represents the “world.”

• We can have multiple independent worlds.
• The type of runST keeps them from interacting.

ST q t

ST s t

ST r t

http://www.csg.lcs.mit.edu/6.827

L13-24
Maessen

Mutable lists using ST

We can create as many mutable references as
we like, allowing us to build mutable
structures just as we would with I- and M-
cells.

data RList s t = RNil
| RCons t (STRef s t)

rCons :: t-> RList s t-> ST s (RList s t)
rCons t ts = do r <- newSTRef ts

return (RCons t r)

12

http://www.csg.lcs.mit.edu/6.827

L13-25
Maessen

Insert using RList

insertr RNil x = rCons x RNil
insertr ys@(RCons y yr) x =
if x==y then return ys
else do ys’ <- readSTRef yr

ys’’ <- insertr ys’ x
writeSTRef yr ys’’
return ys

http://www.csg.lcs.mit.edu/6.827

L13-26
Maessen

Graph traversal: ST notebook

data GNode = GNode NodeId Int [GNode]

rsum node = do
nb <- mkNotebook
let rsum’ (GNode x i nbs) = do

seen <- memberAndInsert nb x
if seen
then return 0
else do nbs’ <- mapM rsum’ nbs

return (i + sum nbs’)

13

http://www.csg.lcs.mit.edu/6.827

L13-27
Maessen

A traversal notebook

type Notebook s = STRef s (RList s Nodeid)

mkNotebook = newSTRef RNil

memberAndInsert nb id = do
ids <- readSTRef nb
case ids of

MNil -> do t <- rCons id MNil
writeSTRef nb t
return False

MCons id’ nb’
| id==id’
| otherwise = memberAndInsert nb’ id

= return True

http://www.csg.lcs.mit.edu/6.827

L13-28
Maessen

Problems with Monadic Style

• We need a new versions of common functions:

mapM f []
mapM f (x:xs) = do

a <- f x
as <- mapM f xs
return (a:as)

mapM’ f []
mapM’ f (x:xs) = do

as <- mapM’ f xs
a f x
return (a:as)

= return []

= return []

<-

14

http://www.csg.lcs.mit.edu/6.827

L13-29
Maessen

Monads and Ordering

• Monads aren’t inherently ordered (Id)
• But stateful computations must be ordered
• For ST and IO, at least the side-effecting

computations are ordered.
• The unsafeInterleaveIO construct relaxes

this ordering, but is impure.

• On the other hand, barriers order all
computation, including non-mondic execution.

There is still room for experimentation!

15

