éy , 113-1

&

Using Monads for Input and
Output

Arvind
Jan-Willem Maessen
Laboratory for Computer Science
M.LT.

Lecture 15

http://www.csg.lcs.mit.edu/6.827

L13-2
Arvind
Maessen

Functional Languages and I/O

z := £(x) + g(y):

In a functional language f and g can be
evaluated in any order but not in a language
with side-effects.

Consider inserting print statements (say for
debugging) in f and g.

An imperative language must take a position
on evaluation order; if there is any doubt,

must write it as
a := £(x); b :=g(y); z := a+b;

I/0 is all about side-effects.
Is I/O incompatible with FL?

4
http://www.csg.lcs.mit.edu/6.827 él;

L13-3
Arvind
Maessen

What other languages do

e Execute programs in a fixed order:

(define (hello)
(princ “Hello %)
(princ “World %))

e Sequentiality simplifies the problem
e Weaker equational behavior:

(let ((a (£ x))) (let ((b (g ¥)))
(let ((b (g ¥))) (let ((a (£ x)))
(+ a b))) (+ a b)))

mg 2
.

http://www.csg.Ics.mit.edu/6.827

L13-4
Arvind
Maessen

Print string

printString :: String -> ()
printString “Hello World!”

but what about

let
printString “Hello ”
printString “World!”

in ()
The string may be printed all jumbled up.

alternatives:
Output convention
Forced sequencing (Usually not available
in pure FL's)

http://www.csg.Ics.mit.edu/6.827

Need for Sequencing

L13-5
Arvind
Maessen

echo :: () -> ()
echo () =
let ¢ = getChar()
in if c==‘\n’ then ()
else let putChar c
>>>
echo ()

in ()

http://www.csg.Ics.mit.edu/6.827

mg 2
-

What about modularity?

L13-6
Arvind
Maessen

Barriers are too coarse-grained:

myProgram () =
let input = produceAllThelInput ()
consumeAndOutput input

in ()

Interleave producer and consumer
Very complex in general

http://www.csg.Ics.mit.edu/6.827

mg 2
-

L13-7
Arvind
Maessen

Magic return value

getChar returns a magic value in addition to the
character indicating that further I/0 is safe.

echo :: World -> World

echo world0 =
let (c, worldl) = getChar worldO

in if c==‘\n’ then ()
else let world2 = putChar c worldl
world3 = echo world2
in world3

Used in Id and Clean

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-8
Arvind
Maessen

The Mind-Body Problem

RTS/OS provides the initial state of the world

main :: World -> World

Link Computation with Action:
Computation: parallel, data constrains
I/O Action: world imposes order

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-9
Arvind
Maessen

Role of Program Driver

Suppose by convention

main :: [string]
main = [“Hello”, “world!”]
or
main = let a = “Hello”
b = “World!”
in [a,Db]

Program is a specification of intended effect to be
performed by the program driver

The driver, a primitive one indeed, takes a string
and treats it as a sequence of commands to print.

A5
http://www.csg.Ics.mit.edu/6.827 %

L13-10
Arvind
Maessen

Monadic I/O in Haskell and pH

Monadic I/0O treats a sequence of I/O commands
as a specification to interact with the outside world.

The program produces an actionspec , which the
program driver turns into real I/O actions.

A program that produces an actionspec remains
purely functional!

main :: IO ()
putChar :: Char -> IO ()
getChar :: IO Char

main = putChar ‘a’
is an actionspec that says that character “a” is to be
output to some standard output device
How can we sequence actionspecs? s
http://www.csg.Ics.mit.edu/6.827 i \%

L13-11
Arvind
Maessen

Sequencing

We need a way to compose actionspecs:
(>>) :: I0 () -> I0 () -> I0 ()
Example:

putChar ‘H’ >> putChar ‘i’ >>
putChar ‘!’ :: IO ()

putString :: String -> IO ()
putString “” = done
putString (c:cs) =

putChar c >> putString cs

- ¥l

http://www.csg.Ics.mit.edu/6.827

L13-12
Arvind
Maessen

Monads: Composing Actionspecs

We need some way to get at the results of getChar
(>>=) :: I0a -> (a->I0b) ->I0Db
We read the “bind” operator as follows:

x; >>= \a -> x,

e Perform the action represented by x,,
producing a value of type “a”

e Apply function \a -> x, to that value,
producing a new actionspec x, :: IO b

e Perform the action represented by x,,
producing a value of type b

Example: getChar >>= putChar

the same as getChar >>= \c¢ -> putChar c
http://www.csg.lcs.mit.edu/6.827 él

L13-13
Arvind
Maessen

An Example

main =
let
islc ¢ = putChar (if (‘a’<=c) &&(c<=‘z’')
then ‘y’
else '‘n’)
in

getChar >>= islc

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-14
Arvind
Maessen

Turning expressions into actions

return :: a -> IO a
getlLine :: IO String

getLine = getChar >>= \c ->
if (¢ == ‘\n’) then
return “”
else getlLine >>= \s ->
return (c:s)

where ‘\n’ represents the newline character

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-15
Arvind

Monadic I/O

Separate computation from sequencing

I0 a:/computation which does some I/0O,
then produces a value of type a.

(>>) :: I0a ->I0b ->I0Db
(>>=) :: I0a -> (a ->I0Db) ->I0Db
return :: a -> I0 a

Primitive actionspecs:
getChar :: IO Char
putChar :: Char -> IO ()
openFile, hClose,

Monadic I/O is a clever, type-safe idea which has
become very popular in the FL community. i
http://www.csg.Ics.mit.edu/6.827 %L

L13-16
Arvind
Maessen

Syntactic sugar: do

do e -> e
do e ; dostmts -> e >> do dostmts
do p<-e ; dostmts -> e >>= \p-> do dostmts

do let p=e ; dostmts -> let p=e in do dostmts

getLine = do ¢ <- getChar

if (¢ == ‘\n’) then
return “”
else

do s <- getLline
return (c:s)

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-17
Arvind
Maessen

Example: Word Count Program

type Filepath = String
data IOMode = ReadMode | WriteMode |

data Handle = ... implemented as built-in type
openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO ()

hIsEOF :: Handle -> IO Bool

hGetChar :: Handle -> IO Char

we :: String -> IO (Int,Int,Int)
wc filename =
do h <- openFile filename ReadMode
(nc,nw,nl) <- wch h False 0 0 O
hClose h

return (nc,nw,nl)
http://www.csg.Ics.mit.edu/6.827

mg 2
-

L13-18
Arvind
Maessen

Word Count Program cont.

wch :: Handle -> Bool -> Int -> Int -> Int
-> IO (Int,Int,Int)
wch h inWord nc nw nl =
do eof <- hIsEOF h
if eof then return (nc,nw,nl)
else
do c <- hGetChar h
if (c==‘\n’) then
wch h False (nc+l) nw (nl+l)
else if (isSpace c) then
wch h False (nc+l) nw nl
else if (not inWord) then
wch h True (nc+l) (nw+l) nl
else
wch h True (nc+l) nw nl

mg 2
-

http://www.csg.Ics.mit.edu/6.827

Calling WC

L13-19
Arvind
Maessen

main :: IO ()

main = do [filename] <- getArgs
(nc,nw,nl) <- wc filename
putsStr “ "
putStr (show nc)
putStr “ "
putStr (show nw)
putStr “ "
putStr (show nl)
putStr “ "
putStr filename
putStr “\n”

http://www.csg.Ics.mit.edu/6.827

mg 2
-

Error Handling

L13-20
Arvind
Maessen

Monad can abort if an error occurs.
Can add a function to handle errors:

catch :: IO a -> (IOError -> IO a) -> IO
ioError :: IOError -> IO a
fail :: String -> IO a

catch echo (\err ->
fail (“I/O error: ”"++show err))

http://www.csg.Ics.mit.edu/6.827

a

mg 2
-

L13-21
Arvind
Maessen

An Example

processFile fileName =
getContents fileName >>= \inp ->
print (processInput inp)

main =
putStrLn “Give me a file name” >>
getLine >>= \fileName ->
catch (processFile f)
(\err ->
print err >>
main)

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-22
Arvind

The Modularity Problem

Inserting a print (say for debugging):
sgrt :: Float -> Float
sgrt x =
let

a = (putStrLn ...) :: IO String
in result

The binding does nothing!
The I/0 has to be exposed to the caller:

sgrt :: Float -> IO Float
sgrt x =
let
a = (putStrLn ...) :: IO String

in a >> return result

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-23
Arvind
Maessen

Monadic I/O is Sequential

do (ncl,nwl,nll) <- wc filenamel
(nc2,nw2,nl2) <- wc filename2
return (ncl+nc2, nwl+nw2, nll+nl2)

The two wc calls are totally independent but the
IO they perform must be sequentialized!
We can imagine doing them in parallel:

parIO :: IO a -> a

let (ncl,nwl,nll) = parIO (wc filenamel)
(nc2,nw2,nl12) = parIO (wc filename2)
in (ncl+nc2, nwl+nw2, nll+nl2)

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-24
Arvind
Maessen

Overcoming the Problems

The limitations are fundamental and can be over-
come only by abandoning the purely functional
character of the language.

let (ncl,nwl,nll) = doIO (wc filename)
writeFile filename “Hello World!'\n”
(nc2,nw2,nl2) = doIO (wc filename)
in (ncl+nc2, nwl+nw2, nll+nl2)

let (ncl,nwl,nll) = doIO (wc filename)
writeFile filename “Hello World!\n”
(nc2,nw2,nl2) = (ncl,nwl,nll)

in (ncl+nc2, nwl+nw2, nll+nl2)

Suddenly program semantics are much more fuzzy!
http://www.csg.lcs.mit.edu/6.827 é/%

L13-25
Arvind
Maessen

Monadic sequencing

return a >>= \x ->m (\x -> m) a

m >>= \x -> return x m

(m >>= \x -> n) >>= \y -> o
=m >>= \x -> (n >>= \y -> o)
x ¢ FV (o)
True in every monad by definition.

A derived axiom:

m>> (n >> o) = (m >> n) >> o

mg 2
-

http://www.csg.Ics.mit.edu/6.827

L13-26
Arvind
Maessen

Monads and Let

Monadic binding behaves like let:

return a >>= \x ->m = (\x -> m) a
m >>= \x -> return x = m
(m >>= \x -> n) >>= \y -> o
=m >>= \x -> (n >>= \y -> 0)
x ¢ FV(o)

let x = a inm (\x -> m) a
let x m in X m
let y (let x = m in n) in o
= let x = m in (let y = n in o)
x ¢ FV (o)

A
http://www.csg.lcs.mit.edu/6.827 éﬂ;

