
http://www.csg.lcs.mit.edu/6.827

L8

Arvind
Laboratory for Computer Science

M.I.T.

Lists and Algebraic Types

October 2, 2002

- 1

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Algebraic types

• Algebraic types are tagged unions of products
• Example

data Shape = Line Pnt Pnt
| Triangle Pnt Pnt Pnt
| Quad Pnt Pnt Pnt Pnt

keyword

new type

- new "constructors" (a.k.a. "tags", "disjuncts", "summands")
- a k­ary constructor is applied to k type expressions

"union"

"products“ (fields)

-2

1

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Constructors are functions

• Constructors can be used as functions to
create values of the type

let
l1 :: Shape
l1 = Line e1 e2

t1 :: Shape = Triangle e3 e4 e5
q1 :: Shape = Quad e6 e7 e8 e9

in
...

where each "eJ" is an expression of type "Pnt"

-3

L8-4
Arvind

Pattern-matching on algebraic types

•	 Pattern-matching is used to examine values
of an algebraic type

anchorPnt :: Shape -> Pnt

anchorPnt s = case s of

Line p1 p2 -> p1

Triangle p3 p4 p5 -> p3

Quad p6 p7 p8 p9 -> p6

•	 A pattern-match has two roles:
–	 A test: "does the given value match this pattern?"
–	 Binding ("if the given value matches the pattern, bind

the variables in the pattern to the corresponding parts
of the value")

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

2

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Pattern-matching scope & don’t cares

• Each clause starts a new scope: can re­
use bound variables

• Can use "don't cares" for bound variables

anchorPnt s = case s of
Line p1 _ -> p1
Triangle p1 _ _ -> p1
Quad p1 _ _ _ -> p1

-5

anchorPnt :: Shape -> Pnt

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Pattern-matching more syntax

• Functions can be defined directly using
pattern-matching

• Pattern-matching can be used in list
comprehensions (later)

anchorPnt (Line p1 _) = p1
anchorPnt (Triangle p1 _ _) = p1
anchorPnt (Quad p1 _ _ _) = p1

(Line p1 p2) <- shapes

-6

anchorPnt :: Shape -> Pnt

3

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Pattern-matching Type safety

• Given a "Line" object, it is impossible to
read "the field corresponding to the third
point in a Triangle object“ because:

– all unions are tagged unions
– fields of an algebraic type can only be examined

via pattern-matching

-7

L8-8
Arvind

Special syntax

• Function type constructor
Int -> Bool

Conceptually:
Function Int Bool

i.e., the arrow is an "infix" type constructor

• Tuple type constructor
(Int, Bool)

Conceptually:
Tuple2 Int Bool

Similarly for Tuple3, ...

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

4

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8
Arvind

Type Synonyms

data

versus

type ,Int)

Type Synonyms do not create new types. It is just a
convenience to improve readability.

move :: Point - , -> Point

)

versus

)

-9

Point = Point Int Int

Point = (Int

> (Int Int)
move (Point x y) (sx,sy) =

Point (x + sx) (y + sy

move (x,y) (sx,sy) =
(x + sx, y + sy

L8-10
Arvind

Abstract Types

A rational number is a pair of integers but suppose we want
to express it in the reduced form only. Such a restriction
cannot be enforced using an algebraic type.

module Rationalpackage

(Rational,rational,rationalParts) where

data Rational = RatCons Int Int

rational :: Int -> Int -> Rational

rational x y = let

d = gcd x y

in RatCons (x/d) (y/d)

rationalParts :: Rational -> (Int,Int)

rationalParts (RatCons x y)= (x,y)

No pattern matching on abstract data types

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

5

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-11
Arvind

Examples of Algebraic types

data Bool = False | True

data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Node (Tree a) (Tree a)

data Tree’ a b = Leaf’ a
| Nonleaf’ b (Tree’ a b) (Tree’ a b)

data Course = Course String Int String (List Course)

name number description pre­ reqs

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-12
Arvind

Lists

A list data type can be constructed in two
different ways:

an empty list Nil
or a non-empty list Cons x xs

- All elements of a list have the same type

- The list type is recursive and polymorphic

the first element the rest of
the elements

data List t = Nil | Cons t (List t)

6

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-13
Arvind

Infix notation

Cons x xs

This list may be visualized as follows:

2 3 6

2:3:6:Nil 2:(3:(6:Nil)) [2,3,6]

x:xs

L8-14
Arvind

Simple List Programs

Sum of numbers in a list

sum [] = 0

sum (x:xs) = ?

Last element in a list

last [] = x

last (x:xs) = ?

All but the last element in a list

init [] = []

init (x:xs) = ?

What do the following do?
init (a:xs)

(a:(init xs))

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

7

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-15
Arvind

Example: Split a list
data

Split a list of tokens into two lists ­ a list words
and a list of numbers.

split :: (List Token)->

split [] = ([],[])
?

Token = Word String | Number Int

((List String),(List Int))

split (t:ts) =

L8-16
Arvind

Higher-order List abstractions

map f [] = []

map f (x:xs) = ?

foldl f z [] = z

foldl f z (x:xs) = ?

foldr f z [] = z

foldr f z (x:xs) = ?

filter p [] = []

filter p (x:xs) = ?

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

8

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-17
Arvind

Using maps and folds
1. Write sum in terms of fold

2. Write split using foldr
split :: (List Token) -

3. What does function fy do?

second (x,y) = y

> ((List String),(List Int))

fy xys = map second xys

fy ::

L8-18
Arvind

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

Flattening a List of Lists

flatten :: (List (List t)) -> (List t)
flatten [] = []

: (concat xss)

append :: (List t) -> (List t) -> (List t)

= ys

) ys

flatten (xs xss) = append xs

append [] ys

append (x:xs = (x:(append xs ys))

9

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-19
Arvind

Zipping two lists

= []
?

- - ->
->
-)

What does f do?

Suppose xs is:
x0 , x1 , x2 , ... , xn

zipWith f [] []
zipWith f (x:xs) (y:ys) =

zipWith :: (tx > ty > tz)
(List tx)
(List ty) > (List tz

f xs = zipWith append xs (init ([]:xs))

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-20
Arvind

Arithmetic Sequences: Special Lists

[1 .. 4] [1,2,3,4]

[1,3 .. 10] [1,3,5,7,9]

[5,4 .. 1] [5,4,3,2,1]

[5,5 .. 10] ?

[5 ..] ?

[5,5,5,...]

[5,6,7,...]

10

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-21
Arvind

List Comprehensions
a convenient syntax

[e |

Examples

[f x | x <- xs]

means map f xs

[x | x <- xs, (p x)]

means

[f x y | x <- - ys]

means the list

which is defined by
flatten (map (\ x -> (map (\ y -)

gen, gen, ...]

filter p xs

xs, y <

[(f x1 y1),...(f x1 yn),
(f x2 y1),......(f xm yn)]

> e) ys xs))

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-22
Arvind

Three-Partitions

Generate a list containing all three-partitions
(nc1, nc2, nc3) of a number m, such that

• nc1 < nc2 < nc3
• nc1 + nc2 + nc3 = m

three_partitions m =

[(nc1,nc2,nc3) | nc1 <- [0..m],
nc2 <- [0..m],

?

11

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-23
Arvind

Efficient Three-Partitions

three_partitions m =

[(nc1,nc2,nc3) | nc1 <- [0..floor(m/3)],
nc2 <­ ?

L8-24
Arvind

The Power of List Comprehensions

[(i,j) | i <- [1..n], j <- [1..m]]

using map

point i j = (i,j)

points i = map (point i) [1..m]

all_points = map points [1..n] ?

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

12

http://www.csg.lcs.mit
http://www.csg.lcs.mit

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

L8-25
Arvind

Infinite Data Structures
1. ints_from i = i:(

if n == 1 then x
else nth (n -

> ?

2. ones = 1:ones
nth 50 ones --> ?

3. xs = [f x | x <-]

--> ?

These are well defined but deadly programs in
pH. You will get an answer but the program may
not terminate.

ints_from (i+1))

nth n (x:xs) =
1) xs

nth 50 (ints_from 1) --

a:xs

nth 10 xs

L8-26
Arvind

Primes: The Sieve of Eratosthenes

primes = sieve [2..]

sieve (x:xs) = x:(sieve (filter (p x) xs))

p x y = (y mod x) ≠ 0

nth 100 primes

October 2, 2002 http://www.csg.lcs.mit.edu/6.827

13

http://www.csg.lcs.mit
http://www.csg.lcs.mit

