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A mini Language 
to study Hindley-Milner Types 

• There are no types in the syntax of the language! 

• The type of each subexpression is derived by the 
Hindley-Milner type inference algorithm. 

Expressions 
E ::= c constant 

| x variable 
| λx. E abstraction 
| (E1 E2) application 
| let x = E1 in E2 let-block 
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Note, all the ∀’s occur in the beginning of a type scheme, 

i.e., a type τ cannot contain a type scheme σ 
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A Formal Type System 

Types 
τ ::= ι 

| t 
| τ--> τ2 

base types 
type variables 
Function types?? 

Type Schemes 
σ ::= τ


|  ∀t. σ?


Type Environments 
TE ::= Identifiers --> Type Schemes 
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Unification 
An essential subroutine for type inference 

def Unify(τ1, τ2) = 
case ( τ1, τ2) of 

( τ1, t2) = [τ1 / t2] 
(t1, τ2) = [τ2 / t1] 
( ι1, ι2) = if ( eq? ι1 ι2) then [ ] 

else fail 
( τ11 --> τ12, τ21 --> τ22) 

= let S1=Unify(τ11, τ21) 
S2=Unify(S1( τ12), S1( τ22)) 

in S2 S1 

otherwise = fail 

Unify(τ1, τ2) tries to unify τ1 and τ2 and returns a 
substitution if successful 

Order in which sub-expressions 
are unified does not matter. 
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Instantiations 

• Type scheme σ can be instantiated into a type τ’ by 
substituting types for the bound variables of σ, i.e., 

τ’ = S τ for some S s.t. Dom(S) ⊆ BV(σ) 

- τ’ is said to be an instance of σ ( σ >  τ’) 

- τ’ is said to be a generic instance of σ when S 
maps variables to new variables. 

σ =  ∀t 1...t n. τ 

Example: 
σ = ∀t 1. t1 --> t2 

t 3 --> t2 is a generic instance of σ 
Int --> t2 is a non generic instance of σ 

-6 
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Generalization aka Closing 

• Generalization introduces polymorphism 

• Quantify type variables that are free in τ 
but not free in the type environment (TE) 

• Captures the notion of new type variables 
of τ 

Gen(TE,τ) = ∀ t 1...t n. τ 
where { t1...t n } = FV(τ) - FV(TE) 
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Type Inference 

•	 Type inference is typically presented in two 

different forms: 


–	 Type inference rules: Rules define the type of each 
expression 

• Needed for showing that the type system is sound 

–	 Type inference algorithm: Needed by the compiler 
writer to deduce the type of each subexpression or to 
deduce that the expression is ill typed. 

•	 Often it is nontrivial to derive an inference 
algorithm for a given set of rules. There can be 
many different algorithms for a set of typing rules. 
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Type Inference Rules 
Typing: TE |-­ e : τ 

Suppose we want to assert (prove) that give some type 
environment TE, the expression (e1 e2) has the type τ’ . 

Then it must be the case that the same TE implies that e1 

has type τ--> τ’ and e2 has the type τ . 

-9 
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Type Inference Rules 

Typing: TE |-­ e : τ 

(App) TE |-- e1 : τ--> τ’ TE |-- e2 : τ 
? TE |-- (e1 e2) : τ’ 

(Abs) 
TE | λx.e :  τ > τ 

( Var) 
TE | x : τ 

(Const) 
TE | c : τ 

(Let) 
TE | ( let x = e1 in e2) : τ 
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( Var) (x : σ)  ε TE σ ≥ τ 
TE | x : τ 

(Let) TE+{x:τ} | τ TE+{x:Gen(TE,τ)} | τ’ 

TE | ( let x = e1 in e2) : τ 

(Gen) TE | e : τ t ∉ FV(TE) 
TE | e : ∀t.τ 

(Spec) TE |-- e : ∀t.τ 
TE |-- e : τ [t’/t] 

( Var) (x : τ)  ε TE 
TE |-- x : τ 

(Let) TE+{x:τ} | : τ TE+{x:τ} | : τ’ 

TE | ( let x = e1 in e2) : τ 
September 30, 2002 http://www.csg.lcs.mit.edu/6.827 
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Soundness 

• The proposed type system is sound, i.e. 
if e : τ then e indeed evaluates to a 
value in τ. 

• A method of proving soundness: 
– The semantics of the language is defined in 

terms of a value space that has integer 
values, Boolean values etc. as subspaces. 

– Any expression with a type error evaluates to 
a special value “wrong”. 

– There is no type expression that denotes the 
subspace “wrong”. 
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Inference Algorithm 

W(TE, e) returns (S,τ) such that S (TE) |-- e : τ 

The type environment TE records the most 
general type of each identifier while the 
substitution S records the changes in the type 
variables 

Def W(TE, e) = 
Case e of 

x = ... 
λx.e = ... 
(e1 e2) = ... 
let x = e1 in e2 = ... 
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Inference Algorithm (cont.) 

Def W(TE, e) = 
Case e of 

x = 
if (x ∉?Dom(TE)) then Fail 

else let ∀t 1...t n.τ = TE(x); 
in ( { }, [ui / t i] τ) 

λx.e = 
let (S1, τ1) = W(TE + { x : u }, e); 
in (S1, S1(u) --> τ1) 

(e1 e2) = ... 

let x = e1 in e2 

= ... 

u’s 
represent 
new type 
variables 
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Inference Algorithm (cont.) 

Def W(TE, e) = 
Case e of 

x = ... 
λx.e = ... 
(e1 e2) = u’s 

let (S1, τ1) = W(TE, e1); represent 
(S2, τ2) = W(S1(TE), e2) new type 
S3 = Unify(S2( τ1), τ2 --> u); variables 

in (S3 S2 S1, S3(u)) 

let x = e1 in e2 = 
let 	 (S1, τ1) = W(TE + {x : u}, e1); 

S2?= Unify(S1(u), τ1); 
σ?= Gen(S2 S1(TE), S2( τ1) ); 
(S3, τ2) = W(S2 S1(TE) + {x : σ}, e2); 

in	 (S3 S2 S1, τ2) 
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Properties of HM Type Inference 

•	 It is sound with respect to the type system. 
An inferred type is verifiable. 

•	 It generates most general types of expressions. 
Any verifiable type is inferred. 

•	 Complexity

PSPACE-Hard

DEXPTIME-Complete

Nested let blocks
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Extensions 

• Type Declarations 
Sanity check; can relax restrictions 

• Incremental Type checking 
The whole program is not given at the same 
time, sound inferencing when types of some 
functions are not known 

• Typing references to mutable objects 
Hindley-Milner system is unsound for a 
language with refs (mutable locations) 

• Overloading Resolution 
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Overloading ad hoc polymorphism 

A symbol can represent multiple values each with a 
different type. For example: 

+ represents
plusInt :: Int -> Int -> Int

plusFloat :: Float -> Float -> Float


The context determines which value is denoted. 

The overloading of an identifier is resolved when 
the unique value associated with the symbol in that 
context can be determined. 

Compiler tries to resolve overloading but sometimes 
can't. The user must declare the type explicitly in 
such cases. 
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Overloading vs. Polymorphism 

Both allow a single identifier to be used for 
multiple types. 

However, two concepts are very different: 

1. All specific types of a polymorphic identifier 
are instances of a most general type. 

2. A polymorphic identifier represents a 
single function semantically. 
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The Most General Type 
The most general type of twice is 

∀t.(t -> t) -> (t -> t) 

Any type can be substituted for t to get an instance 
of twice: 

(Int-> Int) -> (Int -> Int) 

(String -> String) -> (String -> String)


Overloaded + does not have a most general type. 

An overloaded function may perform semantically 
unrelated operations in different contexts. 
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Overloading in Haskell 
Haskell has one of the most sophisticated 
overloading mechanism called type classes 

Type classes allow overloading of user defined 
symbols 

sqr x = x * x 

Is the type of sqr intSqr or FloatSqr ? 

intSqr 
floatSqr :: Float -> Float 

In Haskell sqrcan be overloaded and resolved 
based on its use. 

:: Int -> Int 
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Type Classes 
making overloading less ad hoc 

Often a collection of related functions (e.g., +, - , 
*) need a common overloading mechanism and 
there is a collection of types (e.g., Int, Float) over 
which these functions need to be overloaded. 

Type classes bring these two concepts together 

class Num a where 
(==), (/=) :: a -> a -> Bool 
(+), (-), (*) :: a -> a -> a 
negate :: a -> a 
... 

instance Num Int where

x == y = integer_eq x y

x + y = integer_add x y

…


instance Num Float where ...
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Overloaded Constants 
(Num t) is read as a predicate 

“t is an instance of class Num” 

sqr :: (Num a) => a -> a 
sqr x = x * x 

What about constants? Consider 

plus1 x = x + 1 

If 1 is treated as an integer then plus1cannot be 
overloaded. In pH numeric literals are overloaded 
and considered a short hand for 

(fromInteger the_integer_1_value) 
where 

fromInteger :: (Num a) => Integer -> a 
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The Equality Operator 

Equality is an overloaded and not a polymorphic 
function 

classEq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool


Thus equality needs to be defined for each type of 
interest. 
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Read and Show Functions 
The raw input from a key board or output to the 
screen or file is usually a string. However, different 
programs interpret the string differently depending 
upon their type signature. 

A program to calculate monthly mortgage payments 
may assign the following signatures: 

read :: String -> Int - principal, duration 
read :: String -> Float - rate 
show :: Float -> String ­ monthly payments 

what is the type of read and show ? 

read :: String 
show :: a -> String 

Polymorphic ?-> a 
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Overloaded Read and Show 
Haskell has a type class Read of “readable” types 
and a type class Show of “showable” types 

read :: Read a => String -> a

show :: Show a => a -> String


September 30, 2002 http://www.csg.lcs.mit.edu/6.827 

13 

http://www.csg.lcs.mit
http://www.csg.lcs.mit


September 30, 2002 http://www.csg.lcs.mit.edu/6.827 

L7-27 
Arvind 

Ambiguous Overloading 

identity :: String -> String 
identity x = show (read x) 

What is the type of (read x) ? 

Cannot be resolved ! Many different types would do. 

Compiler requires type declarations in such cases. 

identity :: String -> String 
identity x = show ((read x) :: Int) 
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Implementation 

How does sqr find the correct function for * ? 
sqr :: (Num a) => a -> a

sqr x = x * x


An overloaded function is compiled assuming 
an extra “dictionary” argument. 

sqr’ = \class_inst x -> 

(class_inst.(*)) x x


Then (sqr 23) will be compiled as 

sqr’ IntClassInstance 23


Most dictionaries can be eliminated at compile 
time by function specialization. 
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