
http://www.csg.lcs.mit.edu/6.827

L7

Arvind
Laboratory for Computer Science

M.I.T.

The Hindley-Milner Type System
(Continued)

September 30, 2002

- 1

L7-2
Arvind

Outline

• Hindley-Milner Type inference rules

• Type inference algorithm

• Overloading

• Type classes

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

1

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7
Arvind

A mini Language
to study Hindley-Milner Types

• There are no types in the syntax of the language!

• The type of each subexpression is derived by the
Hindley-Milner type inference algorithm.

Expressions
E ::= c constant

| x variable
| λx. E abstraction
| (E1 E2) application
| let x = E1 in E2 let-block

-3

Note, all the ∀’s occur in the beginning of a type scheme,

i.e., a type τ cannot contain a type scheme σ

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-4
Arvind

A Formal Type System

Types
τ ::= ι

| t
| τ--> τ2

base types
type variables
Function types??

Type Schemes
σ ::= τ

| ∀t. σ?

Type Environments
TE ::= Identifiers --> Type Schemes

2

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7
Arvind

Unification
An essential subroutine for type inference

def Unify(τ1, τ2) =
case (τ1, τ2) of

(τ1, t2) = [τ1 / t2]
(t1, τ2) = [τ2 / t1]
(ι1, ι2) = if (eq? ι1 ι2) then []

else fail
(τ11 --> τ12, τ21 --> τ22)

= let S1=Unify(τ11, τ21)
S2=Unify(S1(τ12), S1(τ22))

in S2 S1

otherwise = fail

Unify(τ1, τ2) tries to unify τ1 and τ2 and returns a
substitution if successful

Order in which sub-expressions
are unified does not matter.

-5

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7
Arvind

Instantiations

• Type scheme σ can be instantiated into a type τ’ by
substituting types for the bound variables of σ, i.e.,

τ’ = S τ for some S s.t. Dom(S) ⊆ BV(σ)

- τ’ is said to be an instance of σ (σ > τ’)

- τ’ is said to be a generic instance of σ when S
maps variables to new variables.

σ = ∀t 1...t n. τ

Example:
σ = ∀t 1. t1 --> t2

t 3 --> t2 is a generic instance of σ
Int --> t2 is a non generic instance of σ

-6

3

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7
Arvind

Generalization aka Closing

• Generalization introduces polymorphism

• Quantify type variables that are free in τ
but not free in the type environment (TE)

• Captures the notion of new type variables
of τ

Gen(TE,τ) = ∀ t 1...t n. τ
where { t1...t n } = FV(τ) - FV(TE)

-7

L7-8
Arvind

Type Inference

•	 Type inference is typically presented in two

different forms:

–	 Type inference rules: Rules define the type of each
expression

• Needed for showing that the type system is sound

–	 Type inference algorithm: Needed by the compiler
writer to deduce the type of each subexpression or to
deduce that the expression is ill typed.

•	 Often it is nontrivial to derive an inference
algorithm for a given set of rules. There can be
many different algorithms for a set of typing rules.

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

4

http://www.csg.lcs.mit
http://www.csg.lcs.mit

-- -- ’

--

--

-- ’

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7
Arvind

Type Inference Rules
Typing: TE |-­ e : τ

Suppose we want to assert (prove) that give some type
environment TE, the expression (e1 e2) has the type τ’ .

Then it must be the case that the same TE implies that e1

has type τ--> τ’ and e2 has the type τ .

-9

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-10
Arvind

Type Inference Rules

Typing: TE |-­ e : τ

(App) TE |-- e1 : τ--> τ’ TE |-- e2 : τ
? TE |-- (e1 e2) : τ’

(Abs)
TE | λx.e : τ > τ

(Var)
TE | x : τ

(Const)
TE | c : τ

(Let)
TE | (let x = e1 in e2) : τ

5

http://www.csg.lcs.mit
http://www.csg.lcs.mit

--

-- e1: -- e2:
-- ’

--
--

-- e1 -- e2

-- ’

L
A

Generalization is restricted!

7-11
rvind

(Var) (x : σ) ε TE σ ≥ τ
TE | x : τ

(Let) TE+{x:τ} | τ TE+{x:Gen(TE,τ)} | τ’

TE | (let x = e1 in e2) : τ

(Gen) TE | e : τ t ∉ FV(TE)
TE | e : ∀t.τ

(Spec) TE |-- e : ∀t.τ
TE |-- e : τ [t’/t]

(Var) (x : τ) ε TE
TE |-- x : τ

(Let) TE+{x:τ} | : τ TE+{x:τ} | : τ’

TE | (let x = e1 in e2) : τ
September 30, 2002 http://www.csg.lcs.mit.edu/6.827

Contrast:

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-12
Arvind

Soundness

• The proposed type system is sound, i.e.
if e : τ then e indeed evaluates to a
value in τ.

• A method of proving soundness:
– The semantics of the language is defined in

terms of a value space that has integer
values, Boolean values etc. as subspaces.

– Any expression with a type error evaluates to
a special value “wrong”.

– There is no type expression that denotes the
subspace “wrong”.

6

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-13
Arvind

Inference Algorithm

W(TE, e) returns (S,τ) such that S (TE) |-- e : τ

The type environment TE records the most
general type of each identifier while the
substitution S records the changes in the type
variables

Def W(TE, e) =
Case e of

x = ...
λx.e = ...
(e1 e2) = ...
let x = e1 in e2 = ...

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-14
Arvind

Inference Algorithm (cont.)

Def W(TE, e) =
Case e of

x =
if (x ∉?Dom(TE)) then Fail

else let ∀t 1...t n.τ = TE(x);
in ({ }, [ui / t i] τ)

λx.e =
let (S1, τ1) = W(TE + { x : u }, e);
in (S1, S1(u) --> τ1)

(e1 e2) = ...

let x = e1 in e2

= ...

u’s
represent
new type
variables

7

http://www.csg.lcs.mit
http://www.csg.lcs.mit

L7-15
Arvind

Inference Algorithm (cont.)

Def W(TE, e) =
Case e of

x = ...
λx.e = ...
(e1 e2) = u’s

let (S1, τ1) = W(TE, e1); represent
(S2, τ2) = W(S1(TE), e2) new type
S3 = Unify(S2(τ1), τ2 --> u); variables

in (S3 S2 S1, S3(u))

let x = e1 in e2 =
let 	 (S1, τ1) = W(TE + {x : u}, e1);

S2?= Unify(S1(u), τ1);
σ?= Gen(S2 S1(TE), S2(τ1));
(S3, τ2) = W(S2 S1(TE) + {x : σ}, e2);

in	 (S3 S2 S1, τ2)

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-16
Arvind

Properties of HM Type Inference

•	 It is sound with respect to the type system.
An inferred type is verifiable.

•	 It generates most general types of expressions.
Any verifiable type is inferred.

•	 Complexity

PSPACE-Hard

DEXPTIME-Complete

Nested let blocks

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

8

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-17
Arvind

Extensions

• Type Declarations
Sanity check; can relax restrictions

• Incremental Type checking
The whole program is not given at the same
time, sound inferencing when types of some
functions are not known

• Typing references to mutable objects
Hindley-Milner system is unsound for a
language with refs (mutable locations)

• Overloading Resolution

L7-18
Arvind

Overloading ad hoc polymorphism

A symbol can represent multiple values each with a
different type. For example:

+ represents
plusInt :: Int -> Int -> Int

plusFloat :: Float -> Float -> Float

The context determines which value is denoted.

The overloading of an identifier is resolved when
the unique value associated with the symbol in that
context can be determined.

Compiler tries to resolve overloading but sometimes
can't. The user must declare the type explicitly in
such cases.

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

9

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-19
Arvind

Overloading vs. Polymorphism

Both allow a single identifier to be used for
multiple types.

However, two concepts are very different:

1. All specific types of a polymorphic identifier
are instances of a most general type.

2. A polymorphic identifier represents a
single function semantically.

L7-20
Arvind

The Most General Type
The most general type of twice is

∀t.(t -> t) -> (t -> t)

Any type can be substituted for t to get an instance
of twice:

(Int-> Int) -> (Int -> Int)

(String -> String) -> (String -> String)

Overloaded + does not have a most general type.

An overloaded function may perform semantically
unrelated operations in different contexts.

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

10

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-21
Arvind

Overloading in Haskell
Haskell has one of the most sophisticated
overloading mechanism called type classes

Type classes allow overloading of user defined
symbols

sqr x = x * x

Is the type of sqr intSqr or FloatSqr ?

intSqr
floatSqr :: Float -> Float

In Haskell sqrcan be overloaded and resolved
based on its use.

:: Int -> Int

L7-22
Arvind

Type Classes
making overloading less ad hoc

Often a collection of related functions (e.g., +, - ,
*) need a common overloading mechanism and
there is a collection of types (e.g., Int, Float) over
which these functions need to be overloaded.

Type classes bring these two concepts together

class Num a where
(==), (/=) :: a -> a -> Bool
(+), (-), (*) :: a -> a -> a
negate :: a -> a
...

instance Num Int where

x == y = integer_eq x y

x + y = integer_add x y

…

instance Num Float where ...

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

11

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-23
Arvind

Overloaded Constants
(Num t) is read as a predicate

“t is an instance of class Num”

sqr :: (Num a) => a -> a
sqr x = x * x

What about constants? Consider

plus1 x = x + 1

If 1 is treated as an integer then plus1cannot be
overloaded. In pH numeric literals are overloaded
and considered a short hand for

(fromInteger the_integer_1_value)
where

fromInteger :: (Num a) => Integer -> a

L7-24
Arvind

The Equality Operator

Equality is an overloaded and not a polymorphic
function

classEq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Thus equality needs to be defined for each type of
interest.

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

12

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-25
Arvind

Read and Show Functions
The raw input from a key board or output to the
screen or file is usually a string. However, different
programs interpret the string differently depending
upon their type signature.

A program to calculate monthly mortgage payments
may assign the following signatures:

read :: String -> Int - principal, duration
read :: String -> Float - rate
show :: Float -> String ­ monthly payments

what is the type of read and show ?

read :: String
show :: a -> String

Polymorphic ?-> a

L7-26
Arvind

Overloaded Read and Show
Haskell has a type class Read of “readable” types
and a type class Show of “showable” types

read :: Read a => String -> a

show :: Show a => a -> String

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

13

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

L7-27
Arvind

Ambiguous Overloading

identity :: String -> String
identity x = show (read x)

What is the type of (read x) ?

Cannot be resolved ! Many different types would do.

Compiler requires type declarations in such cases.

identity :: String -> String
identity x = show ((read x) :: Int)

L7-28
Arvind

Implementation

How does sqr find the correct function for * ?
sqr :: (Num a) => a -> a

sqr x = x * x

An overloaded function is compiled assuming
an extra “dictionary” argument.

sqr’ = \class_inst x ->

(class_inst.(*)) x x

Then (sqr 23) will be compiled as

sqr’ IntClassInstance 23

Most dictionaries can be eliminated at compile
time by function specialization.

September 30, 2002 http://www.csg.lcs.mit.edu/6.827

14

http://www.csg.lcs.mit
http://www.csg.lcs.mit

