
http://www.csg.lcs.mit.edu/6.827

L6

Arvind
Laboratory for Computer Science

M.I.T.

The Hindley-Milner Type System

September 25, 2002

- 1

L6-2
Arvind

Outline

• General issues

• Type instances

• Type Unification

• Type Generalization

• A formal type system

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

1

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6
Arvind

What are Types?

• A method of classifying objects (values) in
a language

x :: τ?

says object x has type τ??or object x
belongs to a type τ?

• τ denotes a set of values.

This notion of types is different from languages
like C, where a type is a storage class specifier.

-3

L6-4
Arvind

Type Correctness

•	 If x :: τ, then only those operations that are
appropriate to set τ may be performed on x.

•	 A program is type correct if it never performs
a wrong operation on an object.

- Add an Int and a Bool
- Head of an Int
- Square root of a list

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

2

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6
Arvind

Type Safety

• A language is type safe if only type
correct programs can be written in that
language.

• Most languages are not type safe, i.e.,
have “holes” in their type systems.

Fortran: Equivalence, Parameter passing
Pascal: Variant records, files
C, C++: Pointers, type casting

However, Java, CLU, Ada, ML, Id, Haskell, pH
etc. are type safe.

-5

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6
Arvind

Type Declaration vs Reconstruction

• Languages where the user must declare the types
– CLU, Pascal, Ada, C, C++, Fortran, Java

• Languages where type declarations are not needed
and the types are reconstructed at run time
– Scheme, Lisp

• Languages where type declarations are generally not
needed but allowed, and types are reconstructed at
compile time
– ML, Id, Haskell, pH

A language is said to be statically typed if type-checking
is done at compile time

-6

3

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6
Arvind

Polymorphism

• In a monomorphic language like Pascal,
one defines a different length function for
each type of list

• In a polymorphic language like ML, one
defines a polymorphic type (list t), where t
is a type variable, and a single function
for computing the length

• pH and most modern functional languages
have polymorphic objects and follow the
Hindley-Milner type system.

-7

L6-8
Arvind

Type Instances

The type of a variable can be instantiated
differently within its lexical scope.

let

id = \x.x

in

((id1 5), (id2 True))

id1 :: ?

id2 :: ?

Both id1 and id2 can be regarded as instances of type

?

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

4

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6
Arvind

Type Instances: another example

twice1 :: ?

twice2 :: ?

let
twice :: (t -> t) -> t -> t
twice f x = f (f x)

in
twice1 twice2(plus 3) 4

-9

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-10
Arvind

Type Instantiation:
λ-bound vs Let-bound Variables

Only let-bound identifiers can be instantiated
differently.

let
twice f x = f (f x)

in
twice twice (plus 3) 4

vs.

let
twice f x = f (f x)
foo g = (g g (plus 3)) 4

in
foo twice

Generic vs. Non-generic type variables

5

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-11
Arvind

A mini Language
to study Hindley-Milner Types

• There are no types in the syntax of the language!

• The type of each subexpression is derived by the
Hindley-Milner type inference algorithm.

Expressions
E ::= c constant

| x variable
| ??λx. E abstraction
| (E1 E2) application
| let x = E1 in E2 let-block

Types
τ ::= ι base types (Int, Bool ..)

| t type variables
| τ1 ? --> τ2 Function types

L6-12
Arvind

Type Inference Issues

•	 What does it mean for two types τa ?and τb to be equal?
–	 Structural Equality

Suppose τ = --> τ2
τ

a τ1

b = --> τ4
τ3 ?

Is τ = τb ?
a

•	 Can two types be made equal by choosing appropriate

substitutions for their type variables?

–	 Robinson’s unification algorithm

Suppose τ --> Bool
τ

a = t 1

b = Int ?
--> t2

Are τ and τb unifiable ?
a

Suppose τ = t 1--> Bool
τ
a

b = Int ?
--> Int

Are τ and τb unifiable ?
a

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

6

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-13
Arvind

Simple Type Substitutions

A substitution is a map
S : Type Variables --> Types

S = [τ?/ t1,..., τn ?/ t n]

τ’ = S τ τ’ is a Substitution Instance of τ
Example:

S = [(t --> Bool) / t1]
S(t1 --> t1) = ?

Types
τ ::= ι base types (Int, Bool ..)

| t type variables
| τ1 ? --> τ2 Function types

Substitutions can be composed, i.e., S2 S1
Example:

S1 = [(t --> Bool) / t1] ; S2 = [Int / t]

S2 S1 (t1 --> t1) = ?

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

def Unify(τ1, τ2) =
case (τ1, τ2) of

(τ1, t2) = [τ1 / t2]
(t1, τ2) = [τ2 / t1]
(ι1, ι2) = if (eq? ι1 ι2) then []

else fail
(τ11 --> τ12, τ21 --> τ22)

= let S1=Unify(τ11, τ21)
S2=Unify(S1(τ12), S1(τ22))

in S2 S1

otherwise = fail

Does the order
matter?

L6-14
Arvind

Unification
An essential subroutine for type inference

Unify(τ1, τ2) tries to unify τ1 and τ2 and returns a

substitution if successful

7

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-15
Arvind

Inferring Polymorphic Types

Constraints:

let
id = λx. x

in
... (id True) ... (id 1) ...

id :: t1 --> t1
id :: Int --> t2
id :: Bool --> t3

id :: ∀ 1. t1 --> t1

Different uses of a generalized type variable
may be instantiated differently

id2 : Bool --> Bool
id1 : Int --> Int

Solution: Generalize the type variable:

??t

Generalization is Restricted

L6-16
Arvind

f = λg. ...(g True) ... (g 1) ...

Can we generalize the type of g to ?

∀t 1 t 2. t1 --> t2 ?

There will be restrictions on g from the
environment, the place of use, which may
make this deduction unsound (incorrect)

Only generalize “new” type variables, the
variables on which all the restrictions are
visible.

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

8

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-17
Arvind

A Formal Type System

Note, all the ∀’s occur in the beginning of a type scheme,
i.e., a type τ cannot contain a type scheme σ

A type τ?is said to be polymorphic if it contains a type
variable

Types
τ? ::= ι base types

| t type variables
| τ?? --> τ2 Function types

Type Schemes
σ ::= τ?

| ∀ t. σ?

Type Environments
TE ::= Identifiers --> Type Schemes

{ + :: Int --> Int --> Int,
f :: ∀ t. t --> t --> Bool }Example TE

L6-18
Arvind

Free and Bound Variables

σ = ?∀t 1..t . τn

BV(σ) = { t1,..., t }n
FV(σ) = {type variables of τ} - { t1,..., t }n

The definitions extend to Type Environments in an
obvious way

Example:
σ ? = ∀?t 1. (t1 --> t2)

FV(σ) =
BV(σ) =

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

9

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-19
Arvind

Type Substitutions

A substitution is a map
S : Type Variables --> Types

S = [τ?/ t1?????????,..., τn ?/ t n]

τ’ = S τ τ’ is a Substitution Instance of τ

σ’ = S σ Applied only to FV(σ), with renaming of BV(σ)
as necessary

similarly for Type Environments

Examples:
S = [(t2 --> Bool) / t1]
S(t1 --> t1) = (t2 --> Bool) --> (t2 --> Bool)

S(∀t 1.t1 --> t2) = ?

S(∀t 2.t1 --> t2) = ?

Substitutions can be composed, i.e., S2 S1

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-20
Arvind

Instantiations

• Type scheme σ can be instantiated into a type τ’ by
substituting types for BV(σ), that is,

τ’ = S τ for some S s.t. Dom(S) ⊆ BV(σ)

-?τ’ is said to be an instance of σ (σ > τ’)

- τ’ is said to be a generic instance of σ?when S
maps variables to new variables.

σ = ∀ t 1..t n. τ

Example:
σ = ∀ t 1. t1 --> t2

a generic instance of σ?is ?

10

http://www.csg.lcs.mit
http://www.csg.lcs.mit

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

L6-21
Arvind

Generalization aka Closing

• Generalization introduces polymorphism

• Quantify type variables that are free in τ?
but not free in the type environment (TE)

• Captures the notion of new type variables
of τ

Gen(TE,τ) = ∀ t 1..t n. τ
where { t1...t n } = FV(τ) - FV(TE)

L6-22
Arvind

Type Inference

•	 Type inference is typically presented in two

different forms:

–	 Type inference rules: Rules define the type of each
expression

• Needed for showing that the type system is sound

–	 Type inference algorithm: Needed by the compiler
writer to deduce the type of each subexpression or to
deduce that the expression is ill typed.

•	 Often it is nontrivial to derive an inference
algorithm for a given set of rules. There can be
many different algorithms for a set of typing rules.

next lecture ...

September 25, 2002 http://www.csg.lcs.mit.edu/6.827

11

http://www.csg.lcs.mit
http://www.csg.lcs.mit

