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6.827 Multithreaded Parallelism: Languages and Compilers 

Problem Set 3 

Please Remember: 1) You can work in groups of up to three people; include the names of all 
group members on all problems. 2) Turn in the answer to each problem as a separate packet. 3) 
Comment your code carefully and include output from sample runs. 

We believe this problem set is rather challenging, but you should have no serious difficulties if you 
start early! We’ll continue to use pH to write some larger functional programs than in Problem Set 
2. The first problem asks you to implement the Huffman coding algorithm to compress files. This 
problem combines algebraic types, arrays, and a bit of I/O. In the second problem, we explore the 
concept of generalized arrays and make extensive use of the Haskell/pH array data type. In the 
final two problems, we implement an applicative interpreter and a basic type-checker for a “core” 
version of pH. We have provided basic templates to get you started on these problems in the files 
/mit/6.827/ps-data/ps3-n.hs. 

Problem 1 Huffman Codes 
Huffman codes are variable-length codes used to compress data. Fixed-length codes like ASCII 
use a fixed number of bits to represent characters. Huffman codes use a variable number of bits to 
represent characters, and the encoding is chosen according to the frequency of occurrences of the 
characters in the data. 

Huffman codes are often depicted as trees. Suppose we have an alphabet containing only the three 
symbols a, b, c and that our algorithm has produced the encoding shown in the figure. The 
encoding of a character according to this particular Huffman code is the path followed to reach the 
character from the root of the tree. For example, the code for a is L since we go down the left 
subtree from the root to reach a. Similarly, the codes for b and c are RL and RR respectively. 

a 

L R 

L R 

b c 

Figure 1: Tree. 

Throughout this problem, you should assume that alphabets contain at least two symbols and that 
data to be encoded uses at least two different symbols. 

Part a: 
In this first part, we’ll look at the process of encoding and decoding data using a Huffman code. 
We define the following data types for this purpose: 
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data Bit = L | R deriving Show 
type HCode = [Bit] 
type Table = Array Char HCode 
data Tree = Left Char Int | Node Int Tree Tree deriving (Read,Show) 

The Bit data type represents the components of the route down the encoding tree, and the HCode 
data type represents the encoding of a particular character or characters.1 Next, the Table data 
type defines a mapping from characters to Huffman encodings via an array. Finally, the Tree data 
structure is used to map codes to characters; ignore the Int field in each disjunct for now. In our 
example, the code corresponds to the following Tree and Table objects. 

encoding = array (’a’,’c’) [(’a’,[L]),(’b’,[R,L]),(’c’,[R,R])]

decoding = Node 0 (Leaf ’a’ 0) (Node 0 (Leaf ’b’ 0) (Leaf ’c’ 0))


Write the functions 

encodeData :: Table -> String -> HCode

decodeData :: Tree -> HCode -> String


that encode and decode data. Try these out using the encoding and decoding objects give 
above. 

Part b: 

Now we consider the problem of building Huffman coding trees and encoding tables. We give the 
algorithm in several steps: 

1.	 The first step in this process is to build a histogram of the number of occurrences of each 
symbol in the data to be encoded. Write a function 

countChars :: String -> Array Char Int


that creates the histogram. Assume that the alphabet is composed of all characters in the 
Haskell/pH Char data type. Characters can be represented using single quotes as in ’a’ or 
they can be created using the integers 0-255 and the toEnum method of the Enum typeclass, 
a class that has Char as one of its members. For the message aabcccaba, the counts 
for characters a, b, and c are 4, 2, and 3, respectively. Your job will be much easier if 
you use Haskell’s accumulator comprehension accumArray (which is implemented using 
M-structures as shown in lecture). 

2.	 Given the character counts, we build a separate coding tree, containing only a leaf node, 
for each character that occurs at least once in the input. As you may have guessed by 
now, the count for a character is entered into the Int field we ignored above. For the data 
aabcccaba, the set of encoding trees can be represented as the list (sorted by increasing 
count): 

1Huffman codes are prefix codes so parsing is unambiguous. 
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[ Leaf ’b’ 2 , Leaf ’c’ 3 , Leaf ’a’ 4 ]


3. We then start combining the two trees with the lowest counts into a new tree by making the 
two trees subtrees of a new Node. The character count field for the new node is the sum of 
the counts of its subtrees. The process continues until a single tree results. In the example 
above, the set of trees resulting from the first combination, again sorted by count, would be: 

[ Leaf ’a’ 4, Node 5 (Leaf ’b’ 2) (Leaf ’c’ 3) ]


And the final tree would be: 

Node 9 (Leaf ’a’ 4) (Node 5 (Leaf ’b’ 2) (Leaf ’c’ 3))


Write a function 

makeCodingTree :: Array Char Int -> Tree


that takes as input the frequency histogram of the characters in the file and produces a single 
coding tree. 

As you can see, the key to the Huffman coding algorithm is that characters that occur most 
often in the input data are pushed to the top of the encoding tree. In this way, their encoding 
will require fewer bits. Less frequent characters are pushed to deeper levels in the tree and 
will require more bits to encode. 

4. Finally, write a function 

makeCodeTable :: Tree -> Table


that converts an encoding tree into an encoding table suitable for the encodeData routine. 
If a particular character does not appear in an input file, make sure that its entry in the Table 
is []. 

Part c: 
Now that we’ve got the tools to create encodings from inputs, we need a way to represent encoded 
messages (lists of Bits) as real bit streams. Such a representation will allows us to output encoded 
data compactly to files. The idea is to divide a list of Bits into chunks of eight Bits; to convert 
each chunk into an integer; and then to use the integer with toEnum to create a Char. Assume 
the L constructor represents a 0 bit while R represents a 1 bit. Write a function 

hCodeToString :: HCode -> String


to perform the conversion.


What happens if the length of the Huffman encoding of your input data (the list of Bits) is not a

multiple of eight? Make sure you handle this case properly so that you can write the function


stringToHCode :: String -> HCode
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to perform the inverse operation of hCodeToString. The function stringToHCode takes a 
string (a list of Char) and decodes it into an HCode (a list of Bits). Assume that all the inputs 
to stringToHCode have been generated using your version of hCodeToString. In other 
words, hCodeToString and stringToHCode must agree on a way to handle encodings with 
lengths that are not multiples of eight bits. 

Part d: 
Write two functions 

encode :: String -> (Tree,String)

decode :: (Tree,String) -> String


to serve as the top-level interface to your Huffman coding routines. The encode function takes 
a string as input, encodes it, and returns the encoding tree and the encoded string. The decode 
function takes an encoding tree and an encoded string and produces a decoded string as output. 
These functions are called by 

encodeFile :: FilePath -> FilePath -> IO ()

decodeFile :: FilePath -> FilePath -> IO ()


which we have provided for you. The parameters to encodeFile and decodeFile are the 
name of an input file and the name of an output file (both are strings). 

Try encoding and decoding several files, including the sample files (ps3-sample{1-3}) in the 
/mit/6.827/ps-data directory. However, don’t try to encode or decode very large files as 
pH will run out memory (Why?). 

How much compression do you get? All the sample files contain the same information, but 
ps3-sample2 and ps3-sample3 have been preprocessed in special ways. Can you guess 
how? 

Problem 2 Generalized Arrays 
Dr. Bunsen Honeydew2 of Jee-whiz Projects Laboratories (JPL) grabs you in the hallway one 
morning... the conversation goes something like this: 

Hey, your name here, you’re a pH wizard, but I think pH is terrible... and I’ll tell 
you why. I need to compute some Fourier transforms—sometimes of a vector, some-
times of a matrix, sometimes even of a cube or an object with still more dimensions! 
Furthermore, in some cases I need to use an entire vector—row or column—and some-
times I need to use only part of a vector. In pH, I need to write a bunch of Fast Fourier 
Transforms (FFT’s), one for each of these cases. 

Even FORTRAN handles all my FFT needs with one routine because it allows me 
to treat rows and columns of matrices as vectors, and it even allows me to select pieces 
of vectors. 

Hummmph.... 

2All names have been altered to protect the innocent. 
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At this point, Dr. Honeydew walks off mumbling something about the evils of functional program­
ming... 

In a flash of inspiration, you remember generalized arrays (see the pH book), and you think “hey, 
these would do the trick!” The algorithms to do these transformations all use the basic 1D FFT, 
sometimes on rows, sometimes on columns. You realize that if you implement the 1D FFT algo­
rithm using generalized arrays, the doctor will be able to use it to compute 2D and 3D FFTs. 

The 1D FFT of an N-vector x of complex numbers is the vector y = FN x, where FN is 
  

1 1 1 . . . 1 
  
 1 ω ω2 . . . ωN −1 

 
  

1 ω2 ω4 . . . ω2(N −1) 
 

 



 1 ω3 ω6 . . . ω3(N −1) 


 
  
 . . . . . . . 
  
  . . . . . . . 
  

1 ωN −1 ω2(N −1) ω(N −1)(N −1). . . 

In general, the (i, j)th entry of the matrix is ωij , 0 ≤ i, j ≤ N − 1, where ω = ωN is a principal 
Nth root of unity, wN = 1 and for 0 < j < N,wj �= 1. For this problem, we will assume that N 
is a power of 2. 

Though the FFT transformation is expressed as a matrix multiply, we can design a much more 
efficient algorithm using a divide-and-conquer strategy. This algorithm works by dividing the 
input array into two equal parts, applying itself recursively and finally combining the results of the 
two halves to yield the FFT of the original array. 

A pH implementation of this algorithm is given in the file /mit/6.827/ps-data/ps3-2.hs. 
This implementation uses ordinary arrays. Your task is to write the same algorithm using two 
different generalized array representations: the first is the one given in the pH book, and second is 
developed below. 

Part a:


Write the function fft which takes two arguments:


• The input array (in generalized form). 

• The roots of unity array roU. 

and returns the FFT in a normal array (you needn’t generalize the result). 

Your function should do the following steps: 

• If the size of the input array is 4, it computes the FFT directly. 

• If not, it solves the problem recursively: 
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–	 It shuffles the input generalized array into two generalized arrays of half the size, 
one consisting of odd elements v left and the other consisting of even elements 
v right. 

– Arrays fft left, fft right are computed using recursive calls to fft. 

– The final result is returned using the function combine which combines these arrays. 

Part b: 

You show your solution to the doctor, and he spots an efficiency problem with generalized arrays. 
He points out that a single access of an array element at the bottom of the recursion takes many 
(how many?) function applications to yield the value of that array element. You want to improve 
the efficiency of the program by making sure that the number of applications needed to access an 
array element is bounded by a constant (irrespective of the input array size). You think hard and 
come up with a more general vector representation which achieves this goal. Re-implement your 
FFT functions using this new representation and measure the reduction count. Are we doing better 
than before? How do we compare with the array copying version of FFT? Which implementation 
is the best? 

Hint: The new generalized array is of the form (low,n,stride,f). The array has n elements 
and is accessed by array indices 1 through n. The first element is (f l). What is stride? 

Part c: 

You might also notice that the fft function requires a lot of storage, as the FFT array is computed 
and discarded at each stage of the recursion. We will need to make a tradeoff between parallelism 
and storage use in order to use machine resources effectively. We can circumvent this problem 
in several ways, but the simplest is to use an IVector. Rewrite the FFT code so that only a single 
IVector is allocated to hold the result of the transform. 

Problem 3 Core pH: Type Checker 
In this problem, you will implement the type-checking algorithm described in class. This process 
is somewhat long, but it will be broken down into small steps. Debugging your program will be 
much easier if you have a thorough understanding of the algorithm. You should work out the 
algorithm by hand on several examples before trying to program it. However, you need to submit 
only your program with its test cases. 

Types in our language are represented as follows. Types are either type variables, type constants 
or function types. 

data Type = TVar TIdent | TConst BaseType | Arrow Type Type

deriving (Eq,Show)


data TIdent = TName Int deriving (Eq,Show)

data BaseType = IntType | BoolType deriving (Eq,Show)
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Type schemes are generalized types. The type is generalized with respect to the variables in the 
list. 

data TScheme = TScheme [TIdent] Type deriving (Eq,Show)


A type environment is a list of (variable,type) scheme pairs. In our algorithm, we use the environ­
ment to store types of variables seen “before” in the program. 

type TEnv = [(Ident,TScheme)]


A substitution is a list of (type-variable, type) pairs. The substitution is actually applied on a type 
in the reverse order, i.e. the substitution last in the list is the one which is applied first. 

type Subst = [(TIdent,Type)]


Part a: 
The first step in writing the type-checking algorithm is to write functions to manipulate environ­
ments. We need two functions: 

extendEnv :: TEnv -> Ident -> TScheme -> TEnv

-- This function extends the environment with the

-- (variable, type scheme) pair.


getEnv :: TEnv -> Ident -> TScheme

-- This function looks up the environment for the variable, generates

-- an error if it is not present.


Part b: 
That was easy! Next, we need functions to manipulate type variables. In particular, we will be 
dealing with sets of type variables. For this, you will want to use the List library which provides 
functions to treat lists as sets. Write the following functions: 

freeVars :: Type -> [TIdent]

-- Returns free variables of a type.


freeVarsScheme :: TScheme -> [TIdent]

-- Returns free variables of a type scheme.


freeVarsEnv :: TEnv -> [TIdent]

-- Returns free variables of a type environment.


newTypeVar :: NameSupply -> TIdent

-- Generates a new type variable, not used anywhere before.


Note that you will need to provide a “name supply” for your code—a means of generating new 
type variables. It is up to you how you choose to implement this. 

Part c: 
Now, we will write functions to apply substitutions on the various entities in the type system. 
You need to write the following functions. Note that these type signatures omit any mention of 
a NameSupply—you should add arguments and results to deal with this “plumbing” where it is 
necessary. Later on we will discuss nice ways of encapsulating such plumbing. 
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applySubToT :: Type -> Subst -> Type

-- Apply a substitution to a type.


applySubToScheme :: TScheme -> Subst -> TScheme

-- Apply a substitution to a type scheme. Be careful to avoid

-- variable capture!


applySubToEnv :: TEnv -> Subst -> TEnv

-- Apply a substitution to a type environment.


combine :: Subst -> Subst -> Subst

-- Combine two substitutions. Note that (combine s2 s1)

-- is the substitution which applies s1 first and then s2.


Part d: 
Next, we write functions which convert type schemes to types and vice versa. 

instantiate :: TScheme -> Type

-- This function instantiates the type scheme, i.e. it replaces

-- the generalized type variables by new type variables.


generalize :: TEnv -> Type -> TScheme

-- This function generalizes (or closes) a type to generate a type

-- scheme.


Part e: 
The next step in the algorithm is to write the unification procedure. 

unify :: Type -> Type -> Subst

-- This function returns a substitution which unifies the argument

-- types. If the types are not unifiable, it generates an error.


Part f:

Finally, we are ready to write the type inference algorithm w.


w :: TEnv -> Exp -> (Subst,Type)

-- This implements the inference algorithm.


In addition to these functions given above, you can write “glue” functions to make your program 
more readable. You’ll want to use the features of the List library and the prelude extensively 
in your code; functions like foldr, foldl, map, lookup etc. are very helpful in writing 
concise programs. 

Test out your type inference function on the following inputs: 

let

k = \x -> \y -> x


in

k 1 (k True 2)
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\k -> k 1 (k True 2)


\k ->

let


k1 = k

in


k1 1 (k1 True 2)


\x -> \y -> plus x y


You do not need to parse these functions, just convert them by hand to the expression representation 
(Exp) used by your program. Feel free to include any other test cases. 


