
--

--

Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.827 Multithreaded Parallelism: Languages and Compilers

Problem Set 2

In this problem set you will be making use of the pH compiler in order to run some simple pH
code. Because the pH compiler produces standalone executables, however, you’re going to need
to provide a main function which will be executed when the program starts up. Here’s a simple
example:

File fact.hs (.hs is the standard Haskell suffix):

a Haskell factorial program

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n - 1)

The main function designates what the program will output.
main = print (fact 5) >>

print (fact 15) >>
print (fact 27)

You can print arbitrary numbers of lines of output by separating them using the (>>) operator as
shown above. Many of the problems will ask you to turn in working code which uses a standard
main function so that we can automate testing; in the mean time, however, you are welcome to
use any main function you like to test and debug your code. Note that you can only print values
which are printable; in particular, functions can’t be printed, and types declared with a data
declaration will only be printable if you include a deriving (Text) declaration at the end of the
data declaration. See the Haskell manual in your reading packet for more details, but note that
the classes Read and Show are bundled together into Text in the pH compiler (due, ironically, to
the compiler-dependent nature of the deriving construct).

Later on you may discover that you’d like to get at intermediate results in your code to ensure that
they’re correct. There’s no officially-defined way to do this; however, every Haskell implementation
provides a Trace construct, and pH is no exception:

trace :: String -> a -> a

When invoked, trace prints its first argument and returns its second argument. You can use
show to convert printable objects into strings for trace. The dollar sign operator $ represents
right-associative function application (that’s backwards from the usual application) and provides a
handy way to insert traces unobtrusively:

fact 0 = 1

fact n = trace ("fact invoked at "++show n) $

n * fact (n - 1)

2 6.827 Problem Set 2

In order to invoke the pH compiler, you’ll need to use the makefile contained in /mit/6.827/ps­
data/Makefile-pH. To do that, you first need to add lockers 6.827 and gnu. Thus, if the above
example were in a file named fact.hs, we’d invoke the compiler as follows:

gmake -f /mit/6.827/ps-data/Makefile-pH fact

The 6.827 locker contains a script called phc which will run this command; alternatively, it should
be easy to set up an alias for it in your Athena dotfiles. The above makefile will build a .c file and
then compile that to a .o file, then produce an executable.

The pH compiler on Athena is only built for Sun workstations and can be slow to compile and run,
so we suggest you do your work on Sun Ultras. If the slowness becomes a real problem, you have
the option of using the Hugs and HBC Haskell compilers, which are installed in the 6.827 locker
(and available from www.haskell.org). This will only work for the simple problems on this problem
set which are just to get you familiar with programming in Haskell. Later problem sets will require
pH mechanisms which you cannot get with Hugs or HBC.

Finally, if you edit your Haskell programs in Emacs, you may find the elisp files in
/mit/6.827/emacs-files/ to be helpful. They define Haskell modes which help you format your
programs by tabbing over the right amounts and matching parentheses for you. These files are also
linked from the course home page under “Support Files.” To use a module, add a line like this to
your .emacs file:

;; Haskell
(load "/afs/athena/course/6/6.827/emacs-files/glasgow-haskell-mode.el")

Please Remember: 1) You can work in groups of up to three people; include the names of all
group members on all problems. 2) Turn in the answer to each problem as a separate packet. 3)
Comment your code carefully and include output from sample runs.

Problem 1 Basic Hindley-Milner typechecking

This problem focuses on basic Hindley-Milner typechecking, without overloading. We begin with a
few “finger exercises”, where you’re asked to find the types of some simple little programs. We then
go on to try and demonstrate what Hindley-Milner typing cannot do. Finally, there are function
types for which only a few possible functions can be defined. We show you a few such types, and
ask you to come up with corresponding functions.

Some things to remember as you go along:

• → is right-associative; that means you read a → b → c as a → (b → c).

• Tuples typecheck analogously to →.

•	 We read types in their most general form; thus when we write a → b we really mean
∀a.∀b.a → b.

6.827 Problem Set 2 3

•	 Watch out for non-generic type variables! If we write a type scheme with all its ∀’s in place,
non-generic type variables are not quantified. This is why you’re asked to indicate them
specially in Part a.

Part a:

Give the Hindley-Milner types for the following functions. Assume for the moment that all arith­
metic operations take arguments of type Int and that all comparisons return results of type Bool.
In the last part, give types for result and n_again as well—but distinguish the generic and non-
generic type variables:

det a b c = (b * b) - 4 * a * c

step (a,b) = (b,b+1)

loopy x = loopy x

repeat n f x =
if (n==0) then x

else repeat (n-1) f (f x)

sum f n =
if (n<0) then 0

else sum f (n-1) + f n

sumSum f n = sum (sum f) n

decrement n =
let (result, n_again) = repeat n step (-1,0)
in result

Part b:

Here are some simple terms which do not typecheck. Explain why.

f x = if x then x+3 else x*2

r g x y = if (g x)	 then g y
else 2+(g y)

s	 g =
let h x = g (g x)
in h (h 3, h 4)

4 6.827 Problem Set 2

fix f =
let func x = f (x x)
in func func

Part c:

Given a function type, there are often only a few functions we can define which have that type.
For example, we can only write one function which has the type a → a:

ident x = x

Notice that there is another function, loopy, which actually has a more general type (which you
found in the last exercise):

loopy x = loopy x

Try to come up with functions which have the following types. Be careful not to give functions
whose types are too general! A few of them have several possible answers; you only need to give
one.

1. a → Int

2. (a, b) → (b, a)

3. a → b → a

4. a → b → b

5. (b → c) → (a → b) → a → c

6. (a → b → c) → b → a → c

7. (a → b → c) → (a, b) → c

8. (a → c) → (b → d) → (a, b) → (c, d)

Problem 2 Typechecking using the class system

Now that you understand Hindley-Milner typechecking, it’s time to add overloading. Some of the
“finger exercises” use the same code; your answers will be different in the presence of overloading,
however.

You should assume the following declarations (which are a subset of Haskell’s functionality). Actual
code for the operations has been omitted for brevity (and because they’re all primitives anyhow).

6.827 Problem Set 2 5

class Eq a where
(==) :: a -> a -> Bool

class (Eq a) => Num a where
(+), (-), (*) :: a -> a -> a

class Bounded a where
minBound, maxBound :: a

instance Eq Bool
...

instance Eq Int
...

instance Eq Float
...

instance Num Int
...

instance Num Float
...

instance Bounded Bool
...

instance Bounded Int
...

Note that in Haskell numeric constants are overloaded; for the purposes of this exercise, assume
whole number constants such as 5 can have any numeric type (so 5 :: (Num a) => a), and floating-
point constants have type Float. (The real situation is a bit more complicated in both cases.) Make
the contexts you write as small as possible; the context (Eq a, Num a) is equivalent to the smaller
(Num a). Finally, don’t eliminate a context like (Num a, Bounded a) by rewriting a as Int; you
should assume other members of these classes exist (they do).

Part a:

Give Haskell types for the following functions.

det a b c = (b * b) - 4 * a * c

repeat17 n f =
if (n==0) then 17

6 6.827 Problem Set 2

else f (repeat (n-1) f)

spin x y = if x==y then 5
else 2.7

alleq	 a b c = if a==b then a==c
else False

similar a b c = if a==b then a==c
else c

r g x y = if (g x)	 then x==3
else y*2==minBound

Part b:

Here are some simple terms which do not typecheck. Explain why.

d a b = (a + minBound) * 0.5

f x = if minBound==maxBound then x else x+3

Problem 3 Programming with Maps and Folds

Higher order functions are one of the key features of Haskell and pH, and they permit writing very
concise programs. In this problem, you are to write all your solutions using a combination of the
functions map, foldl, and foldr, plus some of your own functions. This style of programming may
be foreign to some of you, so don’t be afraid to ask questions!

There is boilerplate code for problem 3 in /mit/6.827/ps-data/ps2-3.hs. You should turn in
your code using the boilerplate (and it should run without error when you do so). Naturally, you
may use other main functions as you go in order to debug your work.

Part a:

Write a function remdups to remove adjacent duplicate elements from a list. For example,

remdups [1,2,2,3,3,3,1,1] = [1,2,3,1]

Use foldl or foldr to define remdups.

Part b:

Write a function squaresum to compute the sum of the squares of the integers from 1 to n. For
example,

�

6.827 Problem Set 2 7

squaresum 3 = 14

Part c:

Write a function capitalize which capitalizes the first character of every word in a string. Re-
member a String in Haskell and pH is simply a type synonym for [Char]. Assume the strings you
will be given consist of letters, spaces, and punctuation marks. Note that if you import Char at
the top of your program you can use the Haskell functions isUpper, isLower, and toUpper.

capitalize "hello, there" = "Hello, There"

Part d:

The mathematical constant e is defined by:

1
e =

n!
n≥0

Write down an expression that can be used to evaluate e to some reasonable accuracy.

Note: Parts of this problem can be found in Richard Bird and Philip Wadler, “Introduction to
Functional Programming”.

Problem 4 Polynomials

In this problem, we’ll be looking at operations on polynomials of one variable. A polynomial will be
represented as a list of tuples such that each tuple represents a term. The first element of each tuple
is the coefficient of the term and the second element is the exponent. For example, the polynomial

91 − 6x 5 + 4x

is represented with the list:

[(1,0),(-6,5),(4,9)]

Notice that the elements of the list are sorted in order of increasing exponent. Throughout this
problem, your functions should maintain this invariant. Use the following type synonym to simplify
your code:

type Poly = [(Int,Int)]

There’s boilerplate in /mit/6.827/ps-data/ps2-4.hs.

Part a:

Implement a function addPoly that sums two polynomials. Here’s a template for addPoly:

8 6.827 Problem Set 2

addPoly :: Poly -> Poly -> Poly
addPoly p1 p2 = <your code here>

The type inference algorithm can deduce the type of addPoly without the type declaration. Still,
adding explicit type signatures is a sound software-engineering technique.

Part b:

Implement the function mulPoly that multiplies two polynomials. Make sure to remove terms
containing zero coefficients and make sure to maintain the sorted order invariant.

Part c:

Implement a function evalPoly :: Poly -> Int -> Int that evaluates a polynomial at a par­
ticular value. You’ll probably want to use the ^ exponentiation operator.

Problem 5 List Comprehensions

Part a:

To get you started with list comprehensions, we’ll work on the example in Section 6.4.2 of the pH
book. This section presents an interesting application of list comprehensions as a database query
language, similar to SQL (Structured Query Language).

Write a query that finds the names of all strongmen who toppled someone of the other side.

Write a function predecessor using list comprehensions that, given a strongman’s codename,
returns the codename of the strongman he toppled.

Use predecessor to write predecessors: a function that, given a strongman’s codename, returns
a list of all the strongmen that came before him.

Part b:

The classic Eight Queens chess puzzle is the focus of this part of the problem. Given a chessboard
and eight queens, the goal is to place the queens on the board so that no two queens are in check.
Since queens can move arbitrarily along rows, columns, and diagonals, this implies that no two
queens can share a row, column, or diagonal. The following is a valid solution to the Eight Queens
problem:

6.827 Problem Set 2 9

+-------------------------------+
8 | | | | | | Q | | |

|-------------------------------|
7 | | | | | | | | Q |

|-------------------------------|
6 | | Q | | | | | | |

|-------------------------------|
5 | | | | Q | | | | |

|-------------------------------|
4 | Q | | | | | | | |

|-------------------------------|
3 | | | | | | | Q | |

|-------------------------------|
2 | | | | | Q | | | |

|-------------------------------|
1 | | | Q | | | | | |

+-------------------------------+
1 2 3 4 5 6 7 8

Your goal is to design a function queens that takes a single argument n which is both the size
of the board and the number of queens to place on it. For the Eight Queens case, your function
should be invoked as queens 8. Your function is to return a list of chess boards showing all the
legal queen positions, and it should make use of list comprehensions as much as possible.

To represent a chess board, use a list of Int’s where each entry in the list corresponds to the row
position of a queen. The board pictured above can be represented as: [4,6,1,5,2,8,3,7]. The
fourth entry in this list, for example, is 5 since a queen is placed in the fifth row of the fourth
column in this configuration.

You are also to design a function displayBoard which takes a board configuration and returns a
“printable” version as a String, following the format given above. You needn’t worry about 0x0
boards!

In addition to your code, your write-up for this problem will include sample configurations generated
by your displayBoard routine as well as the total count of solutions for the Eight Queens problem.
The boilerplate code in /mit/6.827/ps-data/ps2-5.hs will do this for you.

Hint: There are 92 legal queen configurations for a board of size 8. The program should not take
more than a minute or so to run.

Problem 6 Text Justification

Editors (like emacs) and word-processors implement two important functions for making rag-tag
lines of text look like neat paragraphs: filling and justification. A filling function takes a piece of
text like:

In the chronicles of the ancient

10 6.827 Problem Set 2

dynasty of the Sassanidae,
who reigned for about

four hundred years, from Persia to the borders
of China, beyond the great river Ganges itself, we read the praises
of one of the kings of this race, who was said to be the best
monarch of his time.

and transforms it into

In the chronicles of the ancient dynasty of the Sassanidae, who
reigned for about four hundred years, from Persia to the borders of
China, beyond the great river Ganges itself, we read the praises of
one of the kings of this race, who was said to be the best monarch of
his time.

A justification function adds spaces between the words to align the right-hand sides of all lines,
except the last.

In the chronicles of the ancient dynasty of the Sassanidae, who
reigned for about four hundred years, from Persia to the borders of
China, beyond the great river Ganges itself, we read the praises of
one of the kings of this race, who was said to be the best monarch of
his time.

We define the input to this problem as a single string at the top-level of the Haskell program
(boilerplate to be found in /mit/6.827/ps-data/ps2-6.hs):

myText = "... the ancient \n dynasty of the Sassanidae, ..."

The first step in processing the text is to split an input string into words while discarding white
space. Words can then be arranged into lines of a desired width, and these lines can then be
justified to align their right-hand sides.

Part a:

We define a word as a sequence of characters that does not contain spaces, tabs, or newlines.
Haskell provides a function isSpace in the Char library which indicates whether a given character
is whitespace.

Write a function splitWord :: String -> (Word,String) that returns the first word in a string
and the remainder of the string. If the string begins with a whitespace character, the first word is
the empty string. For example,

splitWord " beyond the" = ("", " beyond the")
splitWord "kings of " = ("kings"," of ")

6.827 Problem Set 2 11

Given the type synonym

type Word = String

write a function splitWords :: String -> [Word] that splits a string into words, using
splitWord.

Part b:

Now we need to break a list of words into lines. We define

type Line = [Word]

and your job is to write a function splitLine :: Int -> [Word] -> (Line,[Word]). The first
argument to splitLine is the length of the line to be formed. Assume that this length is at least
as long as the longest word in the text. The second argument is the list of words we derived from
the input string.

To conclude this part, write splitLines :: Int -> [Word] -> [Line], a function that returns
a list of “filled” lines given a line width parameter and a list of words.

Part c:

To put it all together, write the functions

fill :: Int -> String -> [Lines]
joinLines :: [Line] -> String

fill takes a line width and a string and returns a list of filled lines. joinLines takes the filled lines
and puts them together into a single string. Lines are separated in the string by newline (’\n’)
characters.

Part d:

Modify joinLines to justify lines by adding the appropriate number of interword spaces. You
are free to choose where to add spaces in the line. Name the resulting functions justify and
justifyLines:

justify :: Int -> String -> [Lines]
justifyLines :: [Line] -> String

Note: This problem is adapted from Simon Thompson, “Haskell: The Craft of Functional Pro­

gramming”. We use the greedy filling algorithm here, which minimizes the shortfall on each line;
better systems try to minimize the squared shortfall on each line to give a more uniform margin.
This is why Meta-Q in emacs often reformats a properly-filled paragraph, for example. Good “listy”
algorithms for optimal filling have been derived in several papers.

