
6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

9. Atomic Semantics of Spec

This handout defines the semantics of the atomic part of the Spec language fairly carefully. It
tries to be precise about all difficult points, but is sloppy about some things that seem obvious in
order to keep the description short and readable. For the syntax and an informal account of the
semantics, see the Spec reference manual, handout 4.

There are three reasons for giving a careful semantics of Spec:

1. To give a clear and unambiguous meaning for Spec programs.

2.	 To make it clear that there is no magic in Spec; its meaning can be given fairly easily and
without any exotic methods.

3.	 To show the versatility of Spec by using it to define itself, which is quite different from the
way we use it in the rest of the course.

This handout is divided into two parts. In the first half we describe semi-formally the essential
ideas and most of the important details. Then in the second half we present the complete atomic
semantics precisely, with a small amount of accompanying explanation.

Semi-formal atomic semantics of Spec1

Our purpose is to make it clear that there is no arm waving in the Spec notation that we have
given you. A translation of this into fancy words is that we are going to study a formal semantics
of the Spec language.

Now that is a formidable sounding term, and if you take a course on the semantics of pro­
gramming languages (6.821—Gifford, 6.830J—Meyer) you will learn all kinds of fancy stuff
about bottom and stack domains and fixed points and things like that. You are not going to see
any of that here. We are going to do a very simple minded, garden-variety semantics. We are just
going to explain, very carefully and clearly, how it is that every Spec construct can be
understood, as a transition of a state machine. So if you understand state machines you should be
able to understand all this without any trouble.

One reason for doing this is to make sure that we really do know what we are talking about. In
general, descriptions of programming languages are not in that state of grace. If you read the
Pascal manual or the C manual carefully you will come away with a number of questions about
exactly what happens if I do this and this, questions which the manual will not answer
adequately. Two reasonably intelligent people who have studied it carefully can come to
different conclusions, argue for a long time, and not be able to decide what is the right answer by
reading the manual.

1 These semi-formal notes take the form of a dialogue between the lecturer and the class. They were originally
written by Mitchell Charity for the 1992 edition of this course, and have been edited for this handout.

There is one class of mechanisms for saying what the computer should do that often does answer
your questions precisely, and that is the instruction sets of computers (or, in more modern
language, the architecture). These specs are usually written as state machines with fairly simple
transitions, which are not beyond the power of the guy who is writing the manual to describe
properly. A programming language, on the other hand, is not like that. It has much more power,
generality, and wonderfulness, and also much more room for confusion.

Another reason for doing this is to show you that our methods can be applied to a different kind
of system than the ones we usually study, that is, to a programming language, a notation for
writing programs or a notation for writing specs. We are going to learn how to write a spec for
that particular class of computer systems. This is a very different application of Spec from the
last one we looked at, which was file systems. For describing a programming language, Spec is
not the ideal descriptive notation. If you were in the business of giving the semantics of
programming languages, you wouldn’t use Spec. There are many other notations, some of them
better than Spec (although most are far worse). But Spec is good enough; it will do the job. And
there is a lot to be said for just having one notation you can use over and over again, as opposed
to picking up a new one each time. There are many pitfalls in devising a new notation.

Those are the two themes of this lecture. We are going to get down to the foundations of Spec,
and we are going to see another, very different application of Spec, a programming language
rather than a file system.

For this lecture, we will only talk about the sequential or atomic semantics of Spec, not about
concurrent semantics. Consider the program:

x, y = 0

thread 1: thread 2:

<< x := 3 >> << z := x + y >>

<< y := 4 >>

In the concurrent world, it is possible to get any of the values 0, 3, or 7 for z. In the sequential
world, which we are in today, the only possible values are 0 and 7. It is a simpler world. We will
be talking later (in handout 17 on formal concurrency) about the semantics of concurrency,
which is unavoidably more complicated.

In a sequential Spec program, there are three basic constructs (corresponding to sections 5, 6, and
7 of the reference manual):

Expressions
Commands
Routines

For each of these we will give a meaning function, ME, MC, and MR, that takes a fragment of Spec
and yields its meaning as some sort of Spec value. We shall see shortly exactly what type of
values these are.

In order to describe what each of these things means, we first of all need some notion of what
kind of thing the meaning of an expression or command might be. Then we have to explain in
detail the exact meaning of each possible kind of expression. The basic technique we use is the

Handout 9. Atomic Semantics of Spec 1 Handout 9. Atomic Semantics of Spec 2

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

standard one for a situation where you have things that are made up out of smaller things:
structural induction.

The idea of structural induction is this. If you have something which is made up of an A and a B,
and you know the meaning of each, and have a way to put them together, you know how to get
the meaning of the bigger thing.

Some ways to put things together in Spec:

A , B

A ; B

a + b

A [] B

State

What are the meanings going to be? Our basic notion is that what we are doing when writing a
Spec program is describing a state machine. The central properties of a state machine are that it
has states and it has transitions.

A state is a function from names to values: State: Name -> Value. For example:

VAR x: Int

y: Int

If there are no other variables, the state simply consists of the mapping of the names "x" and "y"
to their corresponding values. Initially, we don’t know what their values are. Somehow the
meaning we give to this whole construct has to express that.

Next, if we write x := 1, after that the value of x is 1. So the meaning of this had better look
something like a transition that changes the state, so that no matter what the x was before, it is 1
afterwards. That’s what we want this assignment to mean.

Spec is much simpler than C. In particular, it does not have “references” or “pointers”. When
you are doing problems, if you feel the urge to call malloc, the correct thing to do is to make a
function whose range is whatever sort of thing you want to allocate, and then choose a new
element of the domain that isn’t being used already. You can use the integers or any convenient
sort of name for the domain, that is, to name the values. If you define a CLASS, Spec will do this
for you automatically.

So the state is just these name-to-value mappings.

Names

Spec has a module structure, so that names have two parts, the module name and the simple
name. When referring to a variable in another module, you need both parts.

MODULE M MODULE N

VAR x M.x := 3

x := 3

...

M.x := 3

To simplify the semantics, we will use M.x as the name everywhere. In other words, to apply the
semantics you first must go through the program and replace every x declared in the current
module M with M.x. This converts all references to global variables into these two part names, so
that each name refers to exactly one thing. This transformation makes things simpler to describe
and understand, but uglier to read. It doesn’t change the meaning of the program, which could
have been written with two part names in the first place.

All the global variables have these two part names. However, local variables are not prefixed by
the module name:

PROC

VAR i | ... i

This is how we tell the global state apart from the local state. Global state names have dots, local
state names do not.

Question: Can modules be nested?

No. Spec is meant to be suitable for the kinds of specs and code that we do in this course, which
are no more than moderately complex. Features not really needed to write our specs are left out
to keep it simpler.

Expressions

What should the meaning of an expression be? Note that expressions do not affect the state.

The type for the meaning of an expression is S -> V: an expression is a function from state to
value (we ignore for now the possibility that an expression might raise an exception). It can be a
partial function, since Spec does not require that all expressions be defined. But it has to be a
function—we require that expressions are deterministic. We want determinism so something like
f(x) = f(x) always comes out true. Reasoning is just too hard if this isn’t true. If a function is
nondeterministic then obviously this needn’t come out true. (The classic example of a
nondeterministic function is a random number generator.)

So, expressions are deterministic and do not affect state.

Question: What about assignments?

Assignments are not expressions. If you have been programming in C, you have the weird idea
that assignments are expressions. Spec, however, takes a hard line that expressions must be
deterministic or functional; that is, their values depend only on the state. This means that
functions, which are the abstraction of expressions, are not allowed to affect the state. The whole
point of an assignment is to change the state, so an assignment cannot be an expression.

Handout 9. Atomic Semantics of Spec 3 Handout 9. Atomic Semantics of Spec 4

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

There are three types of expressions:

Type Example Meaning

constant 1 (\ s | 1)

variable x (\ s | s("x"))

function invocation f(x) next sub-section

(The type of these lambda’s is not quite right, as we will see later).

Note that we have to keep the Spec in which we are writing the semantics separate from the Spec
of the semantics we are describing. Therefore, we had to write s("x") instead of just x, because
it is the x of the target Spec we are talking about, not the x of the describing Spec.

The third type of expression is function invocation. We will only talk about functions with a
single argument. If you want a function with two arguments, you can make one by combining the
two arguments into a tuple or record, or by currying: defining a function of the first argument
that returns a function of the second argument. This is a minor complication that we ignore.

What about x + y? This is just shorthand for T."+"(x, y), where T is the type of x. Everything
that is not a constant or a variable is an invocation. This should be a familiar concept for those of
you who know Scheme.

Semantics of function invocation

What are the semantics of function invocation? Given a function T -> U, the correct type of its
meaning is (T, S) -> U, since the function can read the state but not modify it. Next, how are
we going to attach a meaning to an invocation f(x)? Remember the rule of structural induction.
In order to explain the meaning of a complicated thing, you are supposed to build it out of the
meaning of simpler things. We know the meaning of x and of f. We need to come up with a map
from states to values that is the meaning of f(x). That is, we get our hands on the meaning of f
and the meaning of x, and then put them together appropriately. What is the meaning of f? It is
s("f"). So,

f(x) means ... s("f") ... s("x") ...

How are we going to put it together, remembering the type we want for f(x), which is S -> U?

f(x) means (\ s | s("f") (s("x"), s)))

Now this could be complete nonsense, for instance if s("f") evaluates to an integer. If s("f")
isn’t a function then this doesn’t typecheck. But there is no doubt about what this means if it is
legal. It means invoke the function.

That takes care of expressions, because there are no other expressions besides these. Structural
induction says you work your way through all the different ways to put little things together to
make big things, and when you have done them all, you are finished.

Question: What about undefined functions?

Then the (T, S) -> U mapping is partial.

Question: Is f(x) = f(x) if f(x) is undefined?

No, it’s undefined. But those are deep waters and I propose to stay out of them.

Commands

What is the type of the meaning of a command? Well, we have states and values to play with,
and we have used up S -> V on expressions. What sort of thing is a command? It’s a transition
from one state to another.

Expressions: S -> V

Commands: S -> S ?

This is good for a subset of commands. But what about this one?

x := 1 [] x := 2

Is its meaning a function from states to states? No, from states to sets of states. It can’t just be a
function. It has to be a relation. Of course, there are lots of ways to code relations as functions.
The way we use is:

Commands: (S, S) -> Bool

There is a small complication because Spec has exceptions, which are useful for writing many
kinds of specs, not to mention programs. So we have to deal with the possibility that the result of
a command is not a garden-variety state, but involves an exception.

To handle this we make a slight extension and invent a thing called an outcome, which is very
much like a state except that it has some way of coding that an exception has happened. Again,
there are many ways to code that. The way we use is that an outcome has the same type as a
state: it’s a function from names to values. However, there are a couple of funny names that you
can’t actually write in the program. One of them is $x, and we adopt the convention that if
o("$x") = "" (empty string), then o is a garden-variety state. If o("$x") = "exception-
name", then there is that exception in outcome o. Some Spec commands, in particular ";" and
EXCEPT, do something special if one of their pieces produces an exception.

How do we say that o is related to s? The function returns true. We are encoding a relation
between states and outcomes as a function from a state and outcome to a Bool. The function is
supposed to give back true exactly when the relation holds.

So the meaning of a command has the relation type (S, O) -> Bool. We call this type ATr, for
Atomic TRansition.

Now we just work our way through the command constructs (with an occasional digression).

Commands — assignment

x := 1

Handout 9. Atomic Semantics of Spec 5 Handout 9. Atomic Semantics of Spec 6

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

or in general

variable := expression

What we have to come up with for the meaning is an expression of the form

(\ s, o | ...)

So when does the relation hold for x := exp? Well, perhaps when o(x) = exp? (ME is the
meaning function for expressions.)

o("x") = ME(e)(s)

. This is a start, since the valid transition

x=0 x=1

->

y=0 y=0

would certainly be allowed. But what others would be allowed? What about:

x=0 x=1

->

y=0 y=94

It would also be allowed, so this can’t be quite right. Half right, but missing something
important. You have to say that you don’t mess around with the rest of the state. The way you do
that is to say that the outcome is equal to the state except at the variable.

o = s{"x" -> ME(e)(s)}

This is just a Spec function constructor, of the form f{arg -> value}. Note that we are using
the semantics of expressions that we defined in the previous section.

Aside—an alternate encoding for commands

As we said before, there are many ways to code the command relation. Another possibility is:

Commands: S -> SET S

This encoding seems to make the meanings of commands clumsier to write, though it is entirely
equivalent to the one we have chosen.

There is a third approach, which has a lot of advantages: write predicates on the state values. If x
and y are the state variables in the pre-state, and x' and y' the state variables in the post-state,
then

(x' = 1 /\ y' = y)

is another way of writing

o = s{"x" -> 1}

In fact, this approach is another way of writing programs. You could write everything just as
predicates. (Of course, you could also write everything in the ugly o = s{...} form, but that
would look pretty awful. The predicates don’t look so bad.)

Sometimes it’s actually nice to do this. Say you want to write the predicate that says you can
have any value at all for x. The Spec

VAR z | x := z

is just

(y' = y)

(in the simple world where the only state variables are x and y). This is much simpler that the
previous, rather inscrutable, piece of program. So sometimes this predicate way of doing things
can be a lot nicer, but in general it seems to be not as satisfactory, mainly because the y'=y stuff
clutters things up a lot.

That was just an aside, to let you know that sometimes it’s convenient to describe the things that
can go on in a spec using predicates rather than functions from state pairs to Bool.

Commands — routine invocation p(x)

What are the semantics of routine invocation? Well, it has to do something with s. The idea is
that p is an abstraction of a state transition, so its meaning will be a relation of type ATr. What
about the argument x? There are many ways to deal with it. Our way is to use another pseudo-
variable $a to pass the argument and get back the result.

The meaning of p(e) is going to be

(\ s, o | (s Take the state,
{"$a" -> ME(e)(s)} append the argument,

ME(p)(s) get p’s meaning
, o)) and invoke it

or, writing the whole thing on one line in the normal way,

(\ s, o | ME(p)(s)(s{"$a" -> ME(e)(s)}, o))

What does this say? This invocation relates a state to an outcome if, when you take that state, and
modify its $a component to be equal to the value of the argument, the meaning of the routine
relates that state to the outcome. Another way of writing this, which isn’t so nested and might be
clearer, would be to introduce an intermediate state s'. Now we have to use LAMBDA:

(LAMBDA (s, o)->Bool = VAR s' = s{"$a" -> ME(e)(s)} | RET ME(p)(s)(s', o))

These two are exactly the same thing. The invocation relates s to o iff the routine relates s' to o,
where s' is just s with the argument passing component modified. $a is just a way of
communicating the argument value to the routine.

Question: Why use ME(p)(s) rather than MR?

Handout 9. Atomic Semantics of Spec 7 Handout 9. Atomic Semantics of Spec 8

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

MR is the meaning function for routines, that is, it turns the syntax of a routine declaration into a
function on states and arguments that is the meaning of that syntax. We would use MR if we were
looking at a FUNC. But p is just a variable (of course it had better be bound to a routine value, or
this won’t typecheck).

Aside—an alternate encoding for invocation

Here is a different way of communicating the argument value to the function; you can skip this
section if you like. We could take the view that the routine definition

PROC P(i: Int) = ...

is defining a whole flock of different commands, one for every possible argument value. Then
we need to pick out the right one based on the argument value we have. If we coded it this way
(and it is merely a coding thing) we would get:

ME(p)(s)(ME(e)(s)) (s,o)

This says, first get ME(p), the meaning of p. This is no longer a transition but a function from
argument values to transitions, because the idea is that for every possible argument value, we are
going to get a different meaning for the routine, namely what that routine does when given that
particular argument value. So we pass it the argument value ME(e)(s), and invoke the resulting
transition.

These two alternatives are based on different choices about how to code the meaning of routines.
If you code the meaning of a routine simply as a transition, then Spec picks up the argument
value out of the magic $a variable. But there is nothing mystical going on here. Setting $a
corresponds exactly to what we would do if we were designing a calling sequence. We would
say “I am going to pass the argument in register 1”. Here, register 1 is $a.

The second approach is a little bit more mystical. We are taking more advantage of the won­
derful abstract power and generality that we have. If someone writes a factorial function, we will
treat it as an infinite supply of different functions with no arguments; one computes the factorial
of 1, another the factorial of 2, another the factorial of 3, and so forth. In
ME(p)(s)(ME(e)(s))(s, o), ME(p)(s) is the infinite supply, ME(e)(s) is the argument that
picks out a particular function, to which we finally pass (s, o).

However, there are lots of other ways to do this. One of the things which makes the semantics
game hard is that there are many choices you can make. They don’t really make that much
difference, but they can create a lot of confusion, because

• a bad choice can leave you in a briar patch of notation,

• you can get confused about what choice was made, and

• every author uses a slightly different scheme.

So, while this

RET ME(p) (S) (S("$a" -> ME(e) (s)),o)

and this

VAR s' := s{"$a" -> ME(e)(s)} | RET ME(p)(s) (s',o)

are two ways of writing exactly the same thing, this

RET ME(p)(s)(ME(e)(s)) (s,o)

is different, and only makes sense with a different choice about what the meaning of a function
is. The latter is more elegant, but we use the former because it is less confusing.

Stepping back from these technical details, what the meaning function is doing is taking an
expression and producing its meaning. The expression is a piece of syntax, and there are a lot of
possible ways of coding the syntax. Which exact way we choose isn’t that important.

Now we return to the meanings of Spec commands.

Commands — SKIP

(\ s, o | s = o)

In other words, the outcome after SKIP is the same as the pre-state. Later on, in the formal half of
the handout, we give a table for the commands which takes advantage of the fact that there is a
lot of boilerplate—the (\ s, o | ...) stuff is always the same, and so is the treatment of
exceptions. So the table just shows, for each syntactic form, what goes after the |.

Commands — HAVOC

(\ s, o | true)

In other words, after HAVOC you can have any outcome. Actually this isn’t quite good enough,
since we want to be able to have any sequence of outcomes. We deal with this by introducing
another magic state component $havoc with a Bool value. Once $havoc is true, any transition
can happen, including one that leaves it true and therefore allows havoc to continue. We express
this by adding to the command boilerplate the disjunct s("$havoc"), so that if $havoc is true in
s, any command relates s to any o.

Now for the compound commands.

Commands — c1 [] c2

MC(c1) MC(c2)

(s, o) (s, o)

\/

or on one line,

MC(c1)(s, o) \/ MC(c2)(s, o)

Non-deterministic choice is the ‘or’ of the relations.

Commands — c1 [*] c2

It is clear we should begin with

Handout 9. Atomic Semantics of Spec 9 Handout 9. Atomic Semantics of Spec 10

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

MC(c1)(s, o) \/ …

But what next? One possibility is

~ MC(c1)(s, o) /\ ...

This is in the right direction, but not correct. Else means that if there is no possible outcome of
c1, then you get to try c2. So there are two possible ways for an else to relate a state to an
outcome. One is for c1 to relate the state to the outcome, the other is that there is no possible way
to make progress with cl in the state, and c2 to relates the state to the outcome.

The correct encoding is

MC(cl)(s,o) \/ (ALL o' | ~ MC(cl) (s, o')) /\ MC(c2)(s,o))

Commands — c1 ; c2

Although the meaning of semicolon may seem intuitively obvious, it is more complex than one
might first suspect—more complicated than “or”, for instance, even though “or” is less familiar.
We interpreted the command c1 [] c2 as MC(cl) \/ MC(c2). Because semicolon is a
sequential composition, it requires that our semantics move through an intermediate state.

If these were functions (if we could describe the commands as functions) then we could simply
describe a sequential composition as (F2 (Fl s)). However, because Spec is not a functional
language, we need to compose relations, in other words, to establish an intermediate state as a
precursor to the final output state. As a first attempt, we might try:

(LAMBDA (s, o) -> Bool = RET

(EXISTS o' | MC(cl)(s, o') /\ MC(c2)(o', o)))

In words, this says that you can get from s to o via c1 ; c2 if there exists an intermediate state
o' such that c1 takes you from s to o' and c2 takes you from o' to o. This is indeed the
composition of the relations, which we can write more concisely as MC(c1) * MC(c2). But is
this always the meaning of ";"? In particular, what if c1 produces an exception?

When c1 produces an exception, we should not execute c2. Our first try does not capture that
possibility. To correct for this, we need to verify that o' is a normal state. If it is an exceptional
state, then it is the result of the composition and we ignore c2.

(EXISTS o' | MC(cl)(s, o') /\ (~IsX(o') /\ MC(c2)

\/ IsX(o') /\ o' = o))

Commands — c1 EXCEPT xs => c2

Now, what if we have a handler for the exception? If we assume (for simplicity) that all
exceptions are handled, we simply have the complement of the semicolon case. If there’s an
exception, then do c2. If there’s no exception, do not do c2. We also need to include an
additional check to insure that the exception considered is an element of the exception set—that
is to say, that it is a handled exception.

(EXISTS o' | MC(cl)(s, o') /\

(((~IsX(o') \/ ~o'("$x") IN xs) /\ o' = o)

\/ IsX(o') /\ o'("$x") IN xs) /\ MC(c2)(o'{"$x" -> ""}, o)

)

So, with this semantics for handling exceptions, the meaning of:

(c1 EXCEPT xs => c2); c3

is

if normal do c1, no c2, do c3

if exception, handled do c1, do c2, do c3

if exception and not handled do c1, no c2, no c3

Commands — VAR id: T | c0

The idea is “there exists a value for id such that c0 succeeds”. This intuition suggests something
like

(EXISTS v :IN T | MC(c0)(s{"id" -> v}, o))

However, if we look carefully, we see that id is left defined in the output state o. (Why is this
bad?) To correct this omission we need to introduce an intermediate state o' from which we may
arrive at the final output state o where id is undefined.

(EXISTS v :IN T, o' | MC(c0)(s("id" -> v}, o') /\ o = o'(id -> })

Routines

In Spec, routines include functions, atomic procedures, and procedures. For simplicity, we focus
on atomic procedures. How do we think about APROCs?

We know that the body of an APROC describes transitions from its input state to its output state.
Given this transition, how do we handle the results? We previously introduced a pseudo name $a
to which a procedure’s argument value is bound. The caller also collects the value from $a after
the procedure body’s transition. Refer to the definition of MR below for a more complete
discussion.

In reality, Spec is more complex because it attempts to make RET more convenient by allowing it
to occur anywhere in a routine. To accommodate this, the meaning of RET e is to set $a to the
value of e and then raise the special exception $RET, which is handled as part of the invocation.

Formal atomic semantics of Spec

In the rest of the handout, we describe the meaning of atomic Spec commands in complete detail,
except that we do not give precise meanings for the various expression forms other than lambda
expressions; for the most part these are drawn from mathematics, and their meanings should be
clear. We also omit the detailed semantics of modules, which is complicated and uninteresting.

Handout 9. Atomic Semantics of Spec 11 Handout 9. Atomic Semantics of Spec 12

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Overview

The semantics of Spec are defined in three stages: expressions, atomic commands, and non-
atomic commands (treated in handout 17 on formal concurrency). For the first two there is no
concurrency: expressions and atomic commands are atomic. This makes it possible to give their
meanings quite simply:

Expressions as functions from states to results, that is, values or exceptions.

Atomic commands as relations between states and outcomes: a command relates an initial
state to every possible outcome of executing the command in the initial state.

An outcome maps names (treated as strings) to values. It also maps three special strings that are
not program names (we call them pseudo-names):

$a, which is used to pass argument and result values in an invocation;
$x, which records an exceptional outcome;
$havoc, which is true if any sequence of later outcomes is possible.

A state is a normal outcome, that is, an outcome which is not exceptional; it has $x=noX. The
looping outcome of a command is encoded as the exception $loop; since this is not an identifier,
you can’t write it in a handler.

The state is divided into a global state that maps variables of the form m.id (for which id is
declared at the top level in module m) and a local state that maps variables of the form id (those
whose scope is a VAR command or a routine). Routines share only the global state; the ones
defined by LAMBDA also have an initial local state, while the ones declared in a routineDecl start
with an empty local state. We leave as an exercise for the reader the explicit construction of the
global state from the collection of modules that makes up the program.

We give the meaning of a Spec program using Spec itself, by defining functions ME, MC, and MR
that return the meaning of an expression, command, and routine. However, we use only the
functional part of Spec. Spec is not ideally suited for this job, but it is serviceable and by using it
we avoid introducing a new notation. Also, it is instructive to see how the task is writing this
particular kind of spec can be handled in Spec.

You might wonder how this spec is related to code for Spec, that is, to a compiler or interpreter.
It does look a lot like an interpreter. As with other specs written in Spec, however, this one is not
practical code because it uses existential quantifiers and other forms of non-determinism too
freely. Most of these quantifiers are just there for clarity and could be replaced by explicit
computations of the needed values without much difficulty. Unfortunately, the quantifier in the
definition of VAR does not have this property; it actually requires a search of all the values of the
specified type. Since you have already seen that we don’t know how to give practical code for
Spec, it shouldn’t be surprising that this handout doesn’t contain one.

Note that before applying these rules to a Spec program, you must apply the syntactic rewriting
rules for constructs like VAR id := e and CLASS that are given in the reference manual. You
must also replace all global names with their fully qualified forms, which include the defining
module, or Global for names declared globally (see section 8 of the reference manual).

Terminology

We begin by giving the types and special values used to represent the Spec program whose
meaning is being defined. We use two methods of functions, + (overlay) and restrict, that are
defined in section 9 of the reference manual.

TYPE 	V = (Routine + ...) % Value
Routine = aTr % defined as the last type below

Id = String % Identifer
SUCHTHAT (\ id | (EXISTS c: Char, s1: String, s2: String |

id = {c} + s1 + s2 /\ c IN letter + digit
/\ s1.rng <= letter\/digit\/{'_'} /\ s2.rng <= {'''}))

Name = String
SUCHTHAT (\ name | name IN ids \/ globals

\/ {"$a", "$x", "$havoc"})
X = 	String % eXception

SUCHTHAT (\ x | x IN ids \/ {noX, retX, loopX, typeX})
XS = SET X % eXception Set

O = Name -> V WITH {isX:=OIsX} % Outcome
S = O SUCHTHAT (\ o | ~ o.isX) % State
ATr = (S, O) -> Bool % Atomic Transition

CONST

letter := "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz".rng

digit := "0123456789".rng

ids := {id | true}

globals := {id1, id2 | id1 + "." + id2}

noX := ""

retX := "$ret"

loopX := "$loop"

typeX := "$type error"

trueV : V % the value true

FUNC OIsX(o) -> Bool = RET o("$x") # noX % o.isX

To write the meaning functions we need types for the representations of the main non-terminals
of the language: id, name, exceptionSet, type, exp, cmd, routineDecl, module, and
program. Rather than giving the detailed representation of these types or a complete set of
operations for making and analyzing their values, we write C« c1 [] c2 » for a command
composed from subcommands c1 and c2 with [], and so forth for the rest of the command
forms. Similarly we write E« e1 + e2 » and R« FUNC Succ(x: INT)->INT = RET x+1 » for
the indicated expression and function, and so forth for the rest of the expression and routine
forms. This notation makes the spec much more readable. Id, Name, and XS are declared above.

TYPE 	T = SET V % Type
E = [...] % Expression
C = [...] % Command
R = [id, ...] % RoutineDecl
Mod = [id, tops: SET TopLevel] % Module
TopLevel = (R + ...) % module toplevel decl
Prog = [ms: SET Mod, ts: SET TopLevel] % Program

Handout 9. Atomic Semantics of Spec 13 Handout 9. Atomic Semantics of Spec 14

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

The meaning of an id or var is just the string, of an exceptionSet the set of strings that are the
exceptions in the set, of a type the set of values of the type. For the other constructs there are
meaning functions defined below: ME for expressions and MC and MR for atomic commands and
routines. The meaning functions for module, toplevel, and program are left as exercises.

Expressions

An expression maps a state to a value or exception. Evaluating an expression does not change the

state. Thus the meaning of expressions is given by a partial function ME with type

E->S->(V + X); that is, given an expression, ME returns a function from states S to results

(values V or exceptions X). ME is defined informally for all of the expression forms in section 5 of

the reference manual. The possible expression forms are literal, variable, and invocation. We

give formal definitions only for invocations and LAMBDA literals; they are written in terms of the

meaning of commands, so we postpone them to the next section

Type checking

For type checking to work we need to ensure that the value of an expression always has the type
of the expression (that is, is a member of the set of values that is the meaning of the type). We do
this by structural induction, considering each kind of expression. The type checking of return
values ensures that the result of an invocation will have its declared type. Literals are trivial, and
the only other expression form is a variable. A variable declared with VAR is initialized to a value
of its type. A formal parameter of a routine is initialized to an actual by an invocation, and the
type checking of arguments (see MR below) ensures that this is a value of the variable’s type. The
value of a variable can only be changed by assignment.

An assignment var := e requires that the value of e have the type of var. If the type of e is not
equal to the type of var because it involves a union or a SUCHTHAT, this check can’t be done
statically. To take account of this and to ensure that the meaning of expressions is independent of
the static type checking, we assume that in the context var := e the expression e is replaced by
e AS t, where t is the declared type of var. The meaning of e AS t in state s is ME(e)(s) if
that is in t (the set of values of type t), and the exception typeX otherwise; this exception can't
be handled because it is not named by an identifier and is therefore a fatal error.

We do not give practical code for the type check itself, that is, the check that a value actually is a
member of the set of values of a given type. Such code would require too many details about
how values are represented. Note that what many people mean by “type checking” is a proof that
every expression in a program always has a result of the correct type. This kind of completely
static type checking is not possible for Spec; the presence of unions and SUCHTHAT makes it
undecidable. Sections 4 and 5 of the reference manual define what it means for one type to fit
another and for a type to be suitable. These definitions are a sketch of how to code as much static
type checking as Spec easily admits.

Command Predicate

SKIP o = s

HAVOC true

RET e o = s{"$x" -> retX, $a -> ME(e)(s)}

RET o = s{"$x" -> retX}

RAISE id o = s{"$x" -> "id"}

e1(e2) (EXISTS r: Routine |

r = ME(e1)(s) /\ r(s{"$a" -> ME(e2)(s)}, o))

var := e [1] o = s{var -> ME(e)(s)}

var := e1(e2) [1] MC(C« e1(e2); var := $a »)(s, o)

e => c0 ME(e)(s) = trueV /\ MC(c0)(s, o)

c1 [] c2 MC(c1)(s, o) \/ MC(c2)(s, o)

c1 [*] c2 MC(c1)(s, o) \/ (MC(c2)(s, o)

/\ ~(EXISTS o' | MC(c1)(s, o')))

c1 ; c2 MC(c1)(s, o) /\ o .isX

\/ (EXISTS o' | MC(c1)(s, o') /\ ~ o'.isX

/\ MC(c2)(o',o))

c1 EXCEPT xs => c2 MC(c1)(s, o) /\ ~ o ("$x") IN xs

\/ (EXISTS o' | MC(c1)(s, o') /\ o'("$x") IN xs

/\ MC(c2)(o'{"$x" -> noX}, o))

VAR id: T | c0 (EXISTS v, o' | v IN T

/\ MC(c0)(s {id -> v}, o')

/\ o = o'{id -> })

VAR id: T := e | c0 MC(C«VAR id: T | id = e => c0»)(s, o)

<< c0 >> MC(c0)(s, o)

IF c0 FI MC(c0)(s, o)

BEGIN c0 END MC(c0)(s, o)

DO c0 OD is the fixed point of the equation c = c0; c [*] SKIP

[1] The first case for assignment applies only if the right side is not an invocation of an
APROC. Because an invocation of an APROC can have side effects, it needs different treatment.

Table 1: The predicates that define MC(command)(s, o) when there are
no exceptions raised by expressions at the top level in command, and $havoc is false.

Handout 9. Atomic Semantics of Spec 15 Handout 9. Atomic Semantics of Spec 16

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Atomic commands

An atomic command relates a state to an outcome; in other words, it is defined by an ATr (atomic
transition) relation. Thus the meaning of commands is given by a function MC with type C->ATr,
where ATr = (S, O) -> Bool. We can define the ATr relation for each command by a
predicate: a command relates state s to outcome o iff the predicate on s and o is true. We give
the predicates in table 1 and explain them informally below; the predicates apply provided there
are no exceptions.

Here are the details of how to handle exceptions and how to actually define the MC function. You
might want to look at the predicates first, since the meat of the semantics is there.

The table of predicates has been simplified by omitting the boilerplate needed to take account of
$havoc and of the possibility that an expression is undefined or yields an exception. If a
command containing expressions e1 and e2 has predicate P in the table, the full predicate for the
command is

s("$havoc") % anything if $havoc
\/ ME(e1)!s /\ ME(e2)!s % no outcome if undefined

/\ (ME(e1)(s) IS V /\ ME(e2)(s) IS V /\ P

\/ ME(e1)(s) IS X /\ o = s{ "$x" -> ME(e1)(s) }

\/ ME(e2)(s) IS X /\ o = s{ "$x" -> ME(e2)(s) })

If the command contains only one expression e1, drop the terms containing e2. If it contains no
expressions, the full predicate is just the predicate in the table.

Once we have the full predicates, it is simple to give the definition of the function MC. It has the
form

FUNC MC(c) -> ATr =

IF

...

[] VAR var, e | c = «var := e» =>

RET (\ o, s | full predicate for this case)

...

[] VAR c1, c2 | c = «c1 ; c2» =>

RET (\ o, s | full predicate for this case)

...

FI

Now to explain the predicates. First we do the simple commands, which don’t have
subcommands. All of these that don’t involve an invocation of an APROC are deterministic; in
other words, the relation is a function. Furthermore, they are all total unless they involve an
invocation that is partial.

A RET produces the exception retX and leaves the returned value in $a.

A RAISE yields an exceptional outcome which records the exception id in $x.

An invocation relates s to o iff the routine which is the value of e1 (produced by
ME(e1)(s)) does so after s is modified to bind "$a" to the actual argument; thus $a is
used to communicate the value of the actual to the routine.

An assignment leaves the state unchanged except for the variable denoted by the left
side, which gets the value denoted by the right side. Recall that assignment to a
component of a function, sequence, or record variable is shorthand for assignment of a
suitable constructor to the entire variable, as described in the reference manual. If the
right side is an invocation of a procedure, the value assigned is the value of $a in the
outcome of the invocation; thus $a also communicates the result of the invocation back to
the invoker.

Now for the compound commands; their meaning is defined in terms of the meaning of their
subcommands.

A guarded command e => c has the same meaning as c except that e must be true.

A choice relates s to o if either part does.

An else c1 [*] c2 relates s to o if c1 does or if c1 has no outcome and c2 does.

A sequential composition c1 ; c2 relates s to o if there is a suitable intermediate state,
or if o is an exceptional outcome of c1.

c1 EXCEPT xs=>c2 is the same as c1 for a normal outcome or an exceptional outcome
not in the exception set xs. For an exceptional outcome o' in xs, c2 must relate o' as a
normal state to o. This is the dual of the meaning of c1 ; c2 if xs includes all
exceptions.

VAR id: t | c relates s to o if there is a value v of type t such that c relates (s with id
bound to v) to an o' which is the same as o except that id is undefined in o. It is this
existential quantifier that makes the spec useless as an interpreter for Spec.

<< ... >>, IF ... FI or BEGIN ... END brackets don’t affect MC.

The meaning of DO c OD can’t be given so easily. It is the fixed point of the sequence of longer
and longer repetitions of c.2 It is possible for DO c OD to loop indefinitely; in this case it relates s
to s with "$x"->loopX. This is not the same as relating s to no outcome, as false => SKIP
does.

The multiple occurrences of declInit and var in VAR declInit* and (varList):=exp are left
as boring exercises, along with routines that have several formals.

Routines

Now for the meaning of a routine. We define a meaning function MR for a routineDecl that
relates the meaning of the routine to the meaning of the routine’s body; since the body is a

2 For the details of this construction see G. Nelson, A generalization of Dijkstra’s calculus, ACM Trans.
Programming Languages and Systems 11, 4, Oct. 1989, pp 517-562.

Handout 9. Atomic Semantics of Spec 17 Handout 9. Atomic Semantics of Spec 18

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

command, we can get its meaning from MC. The idea is that the meaning of the routine should be
a relation of states to outcomes just like the meaning of a command. In this relation, the pseudo-
name $a holds the argument in the initial state and the result in the outcome. For technical
reasons, however, we define MR to yield not an ATr, but an S->ATr; a local state (static below)
must be supplied to get the transition relation for the routine. For a LAMBDA this local state is the
current state of its containing command. For a routine declared at top level in a module this state
is empty.

The MR function works in the obvious way:

1. Check that the argument value in $a has the type of the formal.

2. Remove local names from the state, since a routine shares only global state with its invoker.

3. Bind the value to the formal.

4. Find out using MC how the routine body relates the resulting state to an outcome.

5. Make the invoker's outcome from the invoker’s local state and the routine's final global state.

6. Deal with the various exceptions in that outcome.

A retX outcome results in a normal outcome for the invocation if the result has the result
type of the routine, and a typeX outcome otherwise.

A normal outcome is converted to typeX, a type error, since the routine didn’t supply a
result of the correct type.

An exception raised in the body is passed on.

FUNC MR(r) -> (S->ATr) = VAR id1, id2, t1, t2, xs, c0 |

r = R« APROC id1(id2: t1)->t2 RAISES xs = << c0 >> »

\/ r = R« FUNC id1(id2: t1)->t2 RAISES xs = c0 » =>

RET (\ static: S | (\ s, o |

s("$a") IN t1 % if argument typechecks
/\ (EXISTS g: S, s', o' |

g = s.restrict(globals) % g is the current globals
/\ s' = (static + g){id2 -> s("$a")} % s' is initial state for c0
/\ MC(c0)(s', o') % apply c0
/\ o = (s + o'.restrict(globals)) % restore old locals from s

{"$x" -> % adjust $x in the outcome
(o'("$x") = retX =>

(o'("$a") IN t2 => noX % retX means normal outcome
[*] typeX) % if result typechecks;

[*] o'("$x") = noX => typeX % normal outcome means typeX;
[*] o'("$x) % pass on exceptions

)
}

\/ ~ s("$a") IN t1 /\ o = s{"$x" -> typeX} % argument doesn't typecheck
)) % end of the two lambdas

We leave the meaning of a routine with no result as an exercise.

Invocation and LAMBDA expressions

We have already given in MC the meaning of invocations in commands, so we can use MC to deal
with invocations in expressions. Here is the fragment of the definition of ME that deals with an E
that is an invocation e1(e2) of a function. It is written in terms of the meaning MC(C«e1(e2)»)
of the invocation as a command, which is defined above. The meaning of the command is an
atomic transition aTr, a predicate on an initial state and an outcome of the routine. In the
outcome the value of the pseudo-name $a is the value returned by the function. The definition
given here discards any side-effects of the function; in fact, in a legal Spec program there can be
no side-effects, since functions are not allowed to assign to non-local variables or call
procedures.

FUNC ME(e) -> (S -> (V + X)) =

IF

...

[] VAR e1, e2 | e = E« e1(e2) » =>
% if E is an invocation its meaning is this function from states to values

VAR aTr := MC(C« e1(e2) ») |

RET (LAMBDA (s) -> V =

% the command must have a unique outcome, that is, aTr must be a
% function at s. See Relation in section 9 of the reference manual
VAR o := aTr.func(s) | RET (~o.isX => o("$a") [*] o("$x")))

...

FI

The result of the expression is the value of $a in the outcome if it is normal, the value of $x if it
is exceptional. If the invocation has no outcome or more than one outcome, ME(e)(s) is
undefined.

The fragment of ME for LAMBDA uses MR to get the meaning of a FUNC with the same signature and
body. As we explained earlier, this meaning is a function from a state to a transition function,
and it is the value of ME((LAMBDA ...)). The value of (LAMBDA ...), like the value of any
expression, is the result of evaluating ME((LAMBDA ...)) on the current state. This yields a
transition function as we expect, and that function captures the local state of the LAMBDA
expression; this is standard static scoping. .

IF

...

[] VAR signature, c0 | e = E« (LAMBDA signature = c0) » =>

RET MR(R« FUNC id1 signature = c0 »)

...

FI

Handout 9. Atomic Semantics of Spec 19 Handout 9. Atomic Semantics of Spec 20

