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8. Generalizing Abstraction Functions 

In this handout, we give a number of examples of specs and code for which simple abstraction 
functions (of the kind we studied in handout 6 on abstraction functions) don’t exist, so that the 
abstraction function method doesn’t work to show that the code satisfies the spec. We explain 
how to generalize the abstraction function method so that it always works. 

We begin with an example in which the spec maintains state that doesn’t actually affect its 
behavior. Optimized code can simulate the spec without having enough state to generate all the 
state of the spec. By adding history variables to the code, we can extend its state enough to 
define an abstraction function, without changing its behavior. An equivalent way to get the same 
result is to define an abstraction relation from the code to the spec. 

Next we look at code that simulates a spec without taking exactly one step for each step of the 
spec. As long as the external behavior is the same in each step of the simulation, an abstraction 
function (or relation) is still enough to show correctness, even when an arbitrary number of 
transitions in the spec correspond to a single transition in the code. 

Finally, we look at an example in which the spec makes a non-deterministic choice earlier than 
the choice is exposed in the external behavior. Code may make this choice later, so that there is 
no abstraction relation that generates the premature choice in the spec’s state. By adding 
prophecy variables to the code, we can extend its state enough to define an abstraction function, 
without changing its behavior. An equivalent way to get the same result is to use an abstraction 
relation and define a backward simulation from the code to the spec. 

If we avoided extra state, too few or too many transitions, and premature choices in the spec, the 
simple abstraction function method would always work. You might therefore think that all these 
problems are not worth solving, because it sounds as though they are caused by bad choices in 
the way the spec is written. But this is wrong. A spec should be written to be as clear as possible 
to the clients, not to make it easy to prove the correctness of code for. The reason for these 
priorities is that we expect to have many more clients for the spec than implementers. The 
examples below should make it clear that there are good reasons to write specs that create these 
problems for abstraction functions. Fortunately, with all three of these extensions we can always 
find an abstraction function to show the correctness of any code that actually is correct. 

A statistical database 

Consider the following spec of a “statistical database” module, which maintains a collection of 
values and allows the size, mean, and variance of the collection to be extracted. Recall that the 

∑db(i) 
mean m of a sequence db of size n > 0 is just the average i , and the variance is 

n 

∑ (db(i) − m)2 ∑ db(i) 2 

i = i − m 2 . (We make the standard assumptions of commutativity, 
n n 

associativity, and distributivity for the arithmetic here.) 

MODULE StatDB [ V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V, 

"/": (V,Int)->V} ] 


EXPORT Add, Size, Mean, Variance = 


VAR db : SEQ V := {} % a multiset; we don’t care about the order 

APROC Add(v) = << db + := {v}; RET >> 


APROC Size() -> Int = << RET db.size >> 


APROC Mean() -> V RAISES {empty} = << 

IF db = {} => RAISE empty [*] VAR sum := (+ : db) | RET sum/Size() FI >> 


APROC Variance() -> V RAISES {empty} = << 

IF db = {} => RAISE empty 

[*] VAR avg := Mean(), sum := (+ : {v :IN db | | (v - avg)**2}) | 


RET sum/Size() 

FI >> 


END StatDB 


This spec is a very natural one that follows directly from the definitions of mean and variance. 

The following code for the StatDB module does not retain db. Instead, it keeps track of the size, 
sum, and sum of squares of the values in db. Simple algebra shows that this is enough to 
compute the mean and variance incrementally, as StatDBImpl does. 

MODULE StatDBImpl % implements StatDB 
[ V WITH {Zero: ()->V, "+": (V,V)->V, (V,V)->V, "-": (V,V)->V, 

"/": (V,Int)->V} ] 
EXPORT Add, Size, Mean, Variance = 

VAR count := 0 

sum := V.Zero() 

sumSquare := V.Zero() 


APROC Add(v) = << count + := 1; sum + := v; sumSquare + := v**2; RET >> 


APROC Size() -> Int = << RET count >> 


APROC Mean() -> V RAISES {empty} = 

<< IF count = 0 => RAISE empty [*] RET sum/count FI >> 


APROC Variance() -> V RAISES {empty} = << 

IF count = 0 => RAISE empty 

[*] RET sumSquare/count – Mean()**2 

FI >> 


END StatDBImpl 


StatDBImpl implements StatDB, in the sense of trace set inclusion. However we cannot prove 
this using an abstraction function, because each nontrivial state of the code corresponds to many 
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states of the spec. This happens because the spec contains more information than is needed to 
generate its external behavior. In this example, the states of the spec could be partitioned into 
equivalence classes based on the possible future behavior: two states are equivalent if they give 
rise to the same future behavior. Then any two equivalent states yield the same future behavior 
of the module. Each of these equivalence classes corresponds to a state of the code. 

To get an abstraction function we must add history variables, as explained in the next section. 

History variables 

The problem in the StatDB example is that the spec states contain more information than the 
code states. A history variable is a variable that is added to the state of the code T in order to 
keep track of the extra information in the spec S that was left out of the code. Even though the 
code has been optimized not to retain certain information, we can put it back in to prove the code 
correct, as long as we do it in a way that does not change the behavior of the code. What we do is 
to construct new code TH (T with History) that has the same behavior as T, but a bigger state. If 
we can show that TH implements S, it follows that T implements S, since traces of T = traces of 
TH ⊆ traces of S. 

In this example, we can simply add an extra state component db (which is the entire state of 
StatDB) to the code StatDBImpl, and use it to keep track of the entire collection of elements, 
that is, of the entire state of StatDB. This gives the following module: 

MODULE StatDBImplH ... = % implements StatDB 

VAR count := 0 % as before 
sum := V.Zero() % as before 
sumSquare := V.Zero() % as before 
db : SEQ V := {} % history: state of StatDB 

APROC Add(v) = << 

count + := 1; sum + := v; sumSquare + := v**2; 

db + := {v}; RET >> 


% The remaining procedures are as before 

END StatDBImplH 


All we have done here is to record some additional information in the state. We have not 
changed the way existing state components are initialized or updated, or the way results of 
procedures are computed. So it should be clear that this module exhibits the same external 
behaviors as the code StatDBImpl given earlier. Thus, if we can prove that StatDBImplH 
implements StatDB, then it follows immediately that StatDBImpl implements StatDB. 

However, we can prove that StatDBImplH implements StatDB using an abstraction function. 
The abstraction function, AF, simply discards all components of the state except db. The 
following invariant of StatDBImplH describes how db is related to the other state: 

INVARIANT 

count = db.size 


/\ sum = (+ : db) 

/\ sumSquare = (+ : {v :IN db | | v**2}) 


That is, count, sum and sumSquare contain the number of elements in db, the sum of the 
elements in db, and the sum of the squares of the elements in db, respectively. 

With this invariant, it is easy to prove that AF is an abstraction function from StatDBImplH to 
StatDB. This proof shows that the abstraction function is preserved by every step, because the 
only variable in StatDB, db, is changed in exactly the same way in both modules. The interesting 
thing to show is that the Size, Mean, and Variance operations produce the same results in both 
modules. But this follows from the invariant. 

In general, we can augment the state of code for with additional components, called history 
variables (because they keep track of additional information about the history of execution), 
subject to the following constraints: 

1. Every initial state has at least one value for the history variables. 

2. No existing step is disabled by the addition of predicates involving history variables. 

3.	 A value assigned to an existing state component does not depend on the value of a history 
variable. One important case of this is that a return value does not depend on a history 
variable. 

These constraints guarantee that the history variables simply record additional state information 
and do not otherwise affect the behaviors exhibited by the module. If the module augmented with 
history variables is correct, the original module without the history variables is also correct, 
because they have the same traces. 

This definition is formulated in terms of the underlying state machine model. However, most 
people think of history variables as syntactic constructs in their own particular programming 
languages; in this case, the restrictions on their use must be defined in terms of the language 
syntax. 

In the StatDB example, we have simply added a history variable that records the entire state of 
the spec. This is not necessary; sometimes there might be only a small piece of the state that is 
missing from the code. However, the brute-force strategy of using the entire spec state as a 
history variable will work whenever any addition of history variables will work. 

Abstraction relations 

If you don’t like history variables, you can define an abstraction relation between the code and 
the spec; it’s the same thing in different clothing. 

An abstraction relation is a simple generalization of an abstraction function, allowing several 
states in S to correspond to the same state in T. An abstraction relation is a subset of 
states(T) × states(S) that satisfies the following two conditions: 

1. If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈ R. 
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2.	 If t and s are reachable states of T and S respectively, with (t, s) ∈ R, and (t, π, t') is a step of 
T, then there is a step of S from s to some s', having the same trace, and with (t', s') ∈ R. 

The picture illustrates the idea; it is an elaboration of the picture for an abstraction function in 
handout 6. It shows t related to s1 and s2, and an action π taking each of them into a state 
related to t'. 

It turns out that the same theorem holds as for abstraction functions: 

Theorem 1: If there is an abstraction relation from T to S, then T implements S, that is, every 
trace of T is a trace of S. 

The reason is that for T to simulate S it isn’t necessary to have a function from T states to S 
states; it’s sufficient to have a relation. A way to think of this is that the two modules, T and S, 
are running in parallel. The execution is driven by module T, which executes in any arbitrary 
way. S follows along, producing the same externally visible behavior. The two conditions above 
guarantee that there is always some way for S to do this. Namely, if T begins in any initial state t, 
we just allow S to begin in some related initial state s, as given by (1). Then as T performs each 
of its transitions, we mimic the transition with a corresponding transition of S having the same 
externally visible behavior; (2) says we can do so. In this way, we can mimic the entire execution 
of T with an execution of S. 

An abstraction relation for StatDB 

Recall that in the StatDB example we couldn’t use an abstraction function to prove that the code 
satisfies the spec, because each nontrivial state of the code corresponds to many states of the 
spec. We can capture this connection with an abstraction relation. The relation that works is 
described in Spec1 as: 

TYPE 	T = [count: Int, sum: V, sumSquare: V] % state of StatDBImpl 
S = [db: SEQ V] % state of StatDB 

FUNC AR(t, s) -> Bool = 


1 This is one of several ways to represent a relation, but it is the standard one in Spec. Earlier we described the 
abstraction relation as a set of pairs (t, s). In terms of AR, this set is {t, s | AR(t, s) | (t, s)} or simply 
AR.set, using one of Spec’s built-in methods on predicates. Yet another way to write it is as a function T -> 
SET S. In terms of AR, this function is (\ t | {s | AR(t, s)} or simply AR.setF, using another built-in 
method. These different representations can be confusing, but different aspects of the relation are most easily 
described using different representations. 

RET db.size = count 

/\ (+ : db)) = sum 

/\ (+ : {v :IN db | | v**2}) = sumSquare 


The proof that AR is an abstraction relation is straightforward. We must show that the two 
properties in the definition of an abstraction relation are satisfied. In this proof, the abstraction 
relation is used to show that every response to a size, mean or variance query that can be given 
by StatDBImpl can also be given by StatDB. The new state of StatDB is uniquely determined by 
the code of StatDB. Then the abstraction relation in the prior states together with the code 
performed by both modules shows that the abstraction relation still holds for the new states. 

An abstraction relation for MajReg 

Consider the abstraction function given for MajReg in handout 5. We can easily write it as an 
abstraction relation from MajReg to Register, not depending on the invariant to make it a 
function. Recall the types: 

TYPE 	P = [V, N] % Pair of value and sequence number 
M = C -> P % Memory: a pair at each copy 

FUNC AR(m, v) -> Bool = VAR n := m.rng.max.n | RET (P{v, n} IN m.rng) 


For (1), suppose that t is any initial state of MajReg. Then there is some default value v such that 
all copies have value v and n = 0 in t. Let s be the state of Register with value v; then s is an 
initial state of Register and (t, s) ∈ AR, as needed. 

For (2), suppose that t and s are reachable states of MajReg and Register, respectively, with (t, 
s) ∈ AR, and (t, π, t') a step of MajReg. Because t is a reachable state, it must satisfy the 
invariants given for MajReg. We consider cases, based on π. Again, the interesting cases are the 
procedure bodies. 

Abstraction relations vs. history variables 

Notice that the invariant for the history variable db above bears an uncanny resemblance to the 
abstraction relation AR. This is not an accident—the same ideas are used in both proofs, only 
they appear in slightly different places. The following table makes the correspondence explicit. 

Abstraction relation to history variable History variable to abstraction relation 

Given an abstraction relation AR, define TH by 
adding the abstract state s as a state variable to 
T. AR defines an invariant on the state of TH: 
AR(t, s). 

Given TH, T extended with a history variable h, 
there’s an invariant I(t, h) relating h to the 
state of T, and an abstraction function 
AF(t, h) -> S such that TH simulates S. 

Define AF((t, s)) = s Define AR(t, s) = 
(EXISTS h | I(t, h) /\ AF(t, h) = s) 

That is, t is related to s if there’s a value for h 
in state t that AF maps to s. 
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For each step (t, π, t') of T, and s such that 
AR(t, s) holds, the abstraction relation gives 
us s' such that (t, π, t') simulates (s, π, 
s'). Add ((t, s), p, (t', s')) as a 
transition of TH. This maintains the invariant. 

For each step (t, π, t') of T, and h such that 
the invariant I(t, h) holds, TH has a step 
((t, h), π, (t', h')) that simulates (s, 
π, s') where s = AF(t, h) and s' = 
AF(t', h'). So AR(t', s') as required. 

This correspondence makes it clear that any code that can be proved correct using history 
variables can also be proved correct using an abstraction relation, and vice-versa. Some people 
prefer using history variables because it allows them to use an abstraction function, which may 
be simpler (especially in terms of notation) to work with than an abstraction relation. Others 
prefer using an abstraction relation because it allows them to avoid introducing extra state 
components and explaining how and when those components are updated. Which you use is just 
a matter of taste. 

Taking several steps in the spec 

A simple generalization of the definition of an abstraction relation (or function) allows for the 
possibility that a particular step of T may correspond to more or less than one step of S. This is 
fine, as long as the externally-visible actions are the same in both cases. Thus this distinction is 
only interesting when there are internal actions. 

Formally, a (generalized) abstraction relation R satisfies the following two conditions: 

1.  If t is any initial state of T, then there is an initial state s of S such that (t, s) ∈ R. 

2.	  If t and s are reachable states of T and S respectively, with (t, s) ∈ R, and (t, π, t') is a step of 
T, then there is an execution fragment of S from s to some s', having the same trace, and with 
(t', s') ∈ R. 

Only the second condition has changed, and the only difference is that an execution fragment (of 
any number of steps, including zero) is allowed instead of just one step, as long as it has the 
same trace, that is, as long as it looks the same from the outside. We generalize the definition of 
an abstraction function in the same way. The same theorem still holds: 

Theorem 2: If there is a generalized abstraction function or relation from T to S, then T 
implements S, that is, every trace of T is a trace of S. 

From now on in the course, when we say “abstraction function” or “abstraction relation”, we will 
mean the generalized versions. 

Some examples of the use of these generalized definitions appear in handout 7 on file systems, 
where there are internal transitions of code that have no counterpart in the corresponding specs. 
We will see examples later in the course in which single steps of code correspond to several 
steps of the specs. 

Here, we give a simple example involving a large write to a memory, which is done in one step 
in the spec but in individual steps in the code. The spec is: 

MODULE RWMem [A, V] EXPORT BigRead, BigWrite =


TYPE M = A -> V 

VAR memory : M 


FUNC BigRead() -> M = RET memory 


APROC BigWrite(m: M) = << memory := m; RET >> 


END RWMem 


The code is: 

MODULE RWMemImpl [A, V] EXPORT BigRead, BigWrite =


TYPE M = A -> V 

VAR memory : M 


pending : SET A := {}


FUNC BigRead() -> M = pending = {} => RET memory 


PROC BigWrite(m) = 

<< pending := memory.dom >>; 

DO << VAR a | a IN pending => memory(a) := m(a); pending - := {a} >> OD; 

RET 


END RWMemImpl 


We can prove that RWMemImpl implements RWMem using an abstraction function. The state of 
RWMemImpl includes program counter values to indicate intermediate positions in the code, as 
well as the values of the ordinary state components. The abstraction function cannot yield partial 
changes to memory; therefore, we define the function as if an entire abstract BigWrite occurred 
at the point where the first change occurs to the memory occurs in RWMemImpl. (Alternative 
definitions are possible; for instance, we could have chosen the last change.) The abstraction 
function is defined by: 

RWMem.memory = RWMemImpl.memory unless pending is nonempty. In this case 
RWMem.memory = m, where BigWrite(m) is the active BigWrite that made pending non-
empty. RWMem’s pc for an active BigRead is the same as that for RWMemImpl. RWMem’s pc for 
an active BigWrite is before the body if the pc in RWMemImpl is at the beginning of the body; 
otherwise it is after the body. 

In the proof that this is an abstraction function, all the atomic steps in a BigWrite of RWMemImpl 
except for the step that writes to memory correspond to no steps of RWMem. This is typical: code 
for usually has many more transitions than a spec, because the code is limited to the atomic 
actions of the machine it runs on, but the spec has the biggest atomic actions possible because 
that is the simplest to understand. 

Note that the guard in RWEMemImpl.BigRead prevents a BigRead from returning an intermediate 
state of memory, which would be a transition not allowed by the spec. Of course this can’t happen 
unless there is concurrency. 
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In this example, it is also possible to interchange the code and the spec, and show that RWMem 
implements RWMemImpl. This can be done using an abstraction function. In the proof that this is 
an abstraction function, the body of a BigWrite in RWMem corresponds to the entire sequence of 
steps comprising the body of the BigWrite in RWMemImpl. 

Exercise: Add crashes to this example. The spec should contain a component OldStates that 
keeps track of the results of partial changes that could result from a crash during the current 
BigWrite. A Crash during a BigWrite in the spec can set the memory nondeterministically to 
any of the states in OldStates. A Crash in the code simply discards any active procedure. Prove 
the correctness of your code using an abstraction function. Compare this to the specs for file 
system crashes in handout 7. 

Premature choice 

In all the examples we have done so far, whenever we have wanted to prove that one module 
implements another (in the sense of trace inclusion), we have been able to do this using either an 
abstraction function or else its slightly generalized version, an abstraction relation. Will this 
always work? That is, do there exist modules T and S such that the traces of T are all included 
among the traces of S, yet there is no abstraction function or relation from T to S? It turns out that 
there do—abstraction functions and relations aren't quite enough. 

To illustrate the problem, we give a very simple example. It is trivial, since its only point is to 
illustrate the limitations of the previous proof methods. 

Example: Let NonDet be a state machine that makes a nondeterministic choice of 2 or 3. Then it 
outputs 1, and subsequently it outputs whatever it chose. 

MODULE NonDet EXPORT Out = 


VAR i := 0 


APROC Out() -> Int = << 

IF i = 0 => BEGIN i := 2 [] i := 3 END; RET 1 

[*] RET i FI >> 


END NonDet 


Let LateNonDet be a state machine that outputs 1 and then nondeterministically chooses whether 
to output 2 or 3 thereafter. 

MODULE LateNonDet EXPORT Out = 


VAR i := 0 


APROC Out() -> Int = << 

IF i = 0 => i := 1 [*] i = 1 => BEGIN i := 2 [] i := 3 END [*] SKIP FI;

RET i >> 


END LateNonDet 


Clearly NonDet and LateNonDet have the same traces: Out() = 1; Out() = 2; ... and 
Out() = 1; Out() = 3; .... Can we show the implements relationships in both directions 
using abstraction relations? 

Well, we can show that NonDet implements LateNonDet with an abstraction function that is just 
the identity. However, no abstraction relation can be used to show that LateNonDet implements 
NonDet. The problem is that the nondeterministic choice in NonDet occurs before the output of 1, 
whereas the choice in LateNonDet occurs later, after the output of 1. It is impossible to use an 
abstraction relation to simulate an early choice with a later choice. If you think of constructing an 
abstract execution to correspond to a concrete execution, this would mean that the abstract 
execution would have to make a choice before it knows what the code is going to choose. 

You might think that this example is unrealistic, and that this kind of thing never happens in real 
life. The following three examples show that this is wrong; we will study code for all of these 
examples later in the course. We go into a lot of detail here because most people find these 
situations very unfamiliar and hard to understand. 

Premature choice: Reliable messages 

Here is a realistic example (somewhat simplified) that illustrates the same problem: two specs for 
reliable channels, which we will study in detail later, in handout 26 on reliable messages. A 
reliable channel accepts messages and delivers them in FIFO order, except that if there is a crash, 
it may lose some messages. The straightforward spec drops some queued messages during the 
crash. 

MODULE ReliableMsg [M] EXPORT Put, Get, Crash =


VAR q : SEQ M := {} 


APROC Put(m) = << q + := {m} >> 

APROC Get() -> M = << VAR m := q.head | q := q.tail; RET m >> 


APROC Crash() = << VAR q' | q' <<= q => q := q' >> 

% Drop any of the queued messages (<<= is non-contiguous subsequence)


END ReliableMsg 


Most practical code (for instance, the Internet’s TCP protocol) has cases in which it isn’t known 
whether a message will be lost until long after the crash. This is because they ensure FIFO 
delivery, and get rid of retransmitted duplicates, by numbering messages sequentially and 
discarding any received message with an earlier sequence number than the largest one already 
received. If the underlying message transport is not FIFO (like the Internet) and there are two 
undelivered messages outstanding (which can happen after a crash), the earlier one will be lost if 
and only if the later one overtakes it. You don’t know until the overtaking happens whether the 
first message will be lost. By this time the crash and subsequent recovery may be long since 
over. 

The following spec models this situation by ‘marking’ the messages that are queued at the time 
of a crash, and optionally dropping any marked messages in Get. 

MODULE LateReliableMsg [M] EXPORT Put, Get, Crash = 
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VAR q : SEQ [m, mark: Bool] := {} 


APROC Put(m) = << q + := {m} >> 

APROC Get() -> M = 


<< DO VAR x := q.head | q := q.tail; IF x.mark => SKIP [] RET x.m FI OD >> 


APROC Crash() = << q := {x :IN q | | x{mark := true}} >> 

% Mark all the queued messages. This is a sequence, not a set constructor, so it doesn’t reorder the messages. 

END LateReliableMsg 


Like the simple NonDet example, these two specs are equivalent, but we cannot prove that 
LateReliableMsg implements ReliableMsg with an abstraction relation, because ReliableMsg 
makes the decision about what messages to drop sooner, in Crash. LateReliableMsg makes this 
decision later, in Get, and so does the standard code. 

Premature choice: Consensus 

For another examples, consider the consensus problem of getting a set of process to agree on a 
single value chosen from some set of allowed values; we will study this problem in detail later, 
in handout 18 on consensus. The spec doesn’t mention the processes at all: 

MODULE Consensus [V] EXPORT Allow, Outcome =


VAR outcome : (V + Null) := nil % Data value to agree on 

APROC Allow(v) = << outcome = nil => outcome := v [] SKIP >> 

FUNC Outcome() -> (V + Null) = RET outcome [] RET nil 


END Consensus 


This spec chooses the value to agree on as soon as the value is allowed. Outcome may return nil 
even after the choice is made because in distributed code it’s possible that not all the participants 
have heard what the outcome is. Code for almost certainly saves up the allowed values and does 
a lot of communication among the processes to come to an agreement. The following spec has 
that form. It is more complicated than the first one (more state and more operations), and closer 
to code, using an internal Agree action to model what the processes do in order to choose a 
value. 

MODULE LateConsensus [V] EXPORT Allow, Outcome =


VAR 	outcome : (V + Null) := nil % Data value to agree on 
allowed : SET V := {} 

APROC Allow(v) = << allowed \/ := {v} >> 


FUNC Outcome() -> (V + Null) = RET outcome [] RET nil 


APROC Agree() = << VAR v | v IN allowed /\ outcome = nil => outcome := v >>


END LateConsensus 


It should be clear that these two modules have the same traces: a sequence of Allow(x) and 
Outcome() = y actions in which every y is either nil or the same value, and that value is an 

argument of some preceding Allow. But there is no abstraction relation from LateConsensus to 
Consensus, because there is no way for LateConsensus to come up with the outcome before it 
does its internal Agree action. 

Note that if Outcome didn’t have the option to return nil even after outcome # nil, these 
modules would not be equivalent, because LateConsensus would allow the behavior 

Allow(1); Outcome()=nil, Allow(2), Outcome()=1 

and Consensus would not. 

Premature choice: Multi-word clock 

Here is a third example of premature choice in a spec: reading a clock. The spec is simple: 

MODULE Clock EXPORT Read =


VAR t : Int % the current time 

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t 

PROC Read() -> Int = << RET t >> 


END Clock 


This is in a concurrent world, in which several threads can invoke Read concurrently, and Tick is 
a demon thread that is entirely internal. In that world there are three transitions associated with 
each invocation of Read: entry, body, and exit. The entry and exit transitions are external because 
Read is exported. 

We may want code for that allows the clock to have more precision than can be carried in a 
single memory location that can be read and written atomically. We could easily achieve this by 
locking the clock representation, but then a slow process holding the lock (for instance, one that 
gets pre-empted) could block other processes for a long time. A clever ‘wait-free’ code for Read 
(which appears in handout 17 on formal concurrency) reads the various parts of the clock 
representation one at a time and puts them together deftly to come up with a result which is 
guaranteed to be one of the values that t took on during this process. The following spec 
abstracts this strategy; it breaks Read down into two atomic actions and returns some value, non-
deterministically chosen, between the values of t at these two actions. 

MODULE LateClock EXPORT Read =


VAR t : Int % the current time 

THREAD Tick() = DO << t := t + 1 >> OD % demon thread advances t 

PROC Read() -> Int = VAR t1: Int |

<< t1 := t >>; << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> 

END LateClock 


Again both specs have the same traces: a sequence of invocations and responses from Read, such 
that for any two Reads that don’t overlap, the earlier one returns a smaller value tr. In Clock the 
choice of tr depends on when the body of Read runs relative to the various Ticks. In LateClock 
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the VAR t2 makes the choice of tr, and it may choose a value of t some time ago. Any 
abstraction relation from LateClock to Clock has to preserve t, because a thread that does a 
complete Read exposes the value of t, and this can happen between any two other transitions. 
But LateClock doesn’t decide its return value until its last atomic command, and when it does, it 
may choose an earlier value than the current t; no abstraction relation can explain this. 

Prophecy variables 

One way to cope with these examples and others like them is to use ad hoc reasoning to show 
that LateSpec implements Spec; we did this informally in each example above. This strategy is 
much easier if we make the transition from premature choice to late choice at the highest level 
possible, as we did in these examples. It’s usually too hard to show directly that a complicated 
module that makes a late choice implements a spec that makes a premature choice. 

But it isn’t necessary to resort to ad hoc reasoning. Our trusty method of abstraction functions 
can also do the job. However, we have to use a different sort of auxiliary variable, one that can 
look into the future just as a history variable looks into the past. Just as we did with history 
variables, we will show that a module TP (T with Prophecy) augmented with a prophecy 
variable has the same traces as the original module T. Actually, we can show that it has the same 
finite traces, which is enough to take care of safety properties. It also has the same infinite traces 
provided certain technical conditions are satisfied, but we won’t worry about this because we are 
not interested in liveness. To show that the traces are the same, however, we have to work 
backward from the end of the trace instead of forward from the beginning. 

A prophecy variable guesses in advance some non-deterministic choice that T is going to make 
later. The guess gives enough information to construct an abstraction function to the spec that is 
making a premature choice. When execution reaches the choice that T makes non-
deterministically, TP makes it deterministically according to the guess in the prophecy variable. 
TP has to choose enough different values for the prophecy variable to keep from ruling out any 
executions of T. 

The conditions for an added variable to be a prophecy variable are closely related to the ones for 
a history variable, as the following table shows. 

History variable Prophecy variable 

1.	 Every initial state has at least one value for 1. Every state has at least one value for the 
the history variable. prophecy variable. 

2. No existing step is disabled by new guards 2. No existing step is disabled in the 
involving a history variable. backward direction by new guards 

involving a prophecy variable. More 
precisely, for each step (t, π, t') and state 
(t', p') there must be a p such that there is a 
step ((t, p), π, (t', p')). 

3. A value assigned to an existing state 3. Same condition 

component must not depend on the value of 
a history variable. One important case of 
this is that a return value must not depend 
on a history variable. 

4. If t is an initial state of T and (t, p) is a state 
of TP, it must be an initial state. 

If these conditions are satisfied, the state machine TP with the prophecy variable will have the 
same traces as the state machine T without it. You can see this intuitively by considering any 
finite execution of T and constructing a corresponding execution of TP, starting from the end. 
Condition (1) ensures that we can find a last state for TP. Condition (2) says that for each 
backward step of T there is a corresponding backward step of TP, and condition (3) says that in 
this step p doesn’t affect what happens to t. Finally, condition (4) ensures that we end up in an 
initial state of TP. 

Let’s review our examples and see how to add prophecy variables (that all start with p), marking 
the additions with boxes. For LateNonDetP we add pI that guesses the choice between 2 and 3. 
The abstraction function is just NonDet.i = LateNonDetP.pI. 

VAR 	i := 0 

pI := 0


APROC Out() -> Int = << 

IF i = 0 => i := 1; BEGIN pI := 2 [] pI := 3 END

[*] i = 1 => BEGIN pI = 2 => i := 2 [] pI = 3 => i := 3 END [*] SKIP FI; 

RET i >> 


For LateReliableMsgP we add a pDead flag to each marked message that forces Get to discard 
it. Crash chooses which dead flags to set. The abstraction function just discards the marks and 
the dead messages. 

VAR q : SEQ [m, mark: Bool, pDead: Bool] := {} 


% ABSTRACTION FUNCTION ReliableMsg.q = {x :IN LateReliableMsg.q | ~ x.dead | x.m} 

% INVARIANT (ALL i :IN q.dom | q(i).dead ==> q(i).mark) 

APROC Get() -> M = 

<< DO VAR x := q.head | 


q := q.tail; IF x.mark => SKIP [] ~ x.pDead => RET x.m FI OD >> 


APROC Crash() = << VAR pDeads: SEQ Bool | pDeads.size = q.size =>

q := {x :IN q, pD :IN pDeads | | x{mark := true, pDead := pD} 


Alternatively, we can prophesy the entire state of ReliableMsg as we did with db in StatDB, 
which is a little less natural in this case: 

VAR pQ : SEQ M := {}


% INVARIANT {x :IN q | ~ x.mark | x.m} <<= pQ /\ pQ <<= {x :IN q | | x.m}


APROC Get() -> M = 

<< DO VAR x := q.head | 
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q := q.tail; 

IF x.mark /\ (pQ = {} \/ x.m # pQ.head) => SKIP 
[] pQ := pQ.tail; RET x.m 

FI OD >> 


APROC Crash() = 

<< VAR q' | q' <<= q => pQ := q'; q := {x :IN q | | x{mark := true}} >> 


For LateConsensusP we follow the example of NonDet and just prophesy the outcome in Allow. 
The abstraction function is Consensus.outcome = LateConsensusP.pOutcome 

VAR 	outcome : (V + Null) := nil % Data value to agree on 
pOutcome : (V + Null) := nil 
allowed : SET V := {} 

APROC Allow(v) = 

<< allowed \/ := {v}; IF pOutcome = nil => pOutcome := v [] SKIP FI >> 


APROC Agree() = 

<< VAR v | v IN allowed /\ outcome = nil /\ v = pOutcome => outcome := v >> 


For LateClockP we choose the result at the beginning of Read. The second command of Read 
has to choose this value, which means it has to wait until Tick has advanced t far enough. The 
transition of LateClockP that corresponds to the body of Clock.Read is the Tick that gives t the 
pre-chosen value. This seems odd, but since all these transitions are internal, they all have empty 
external traces, so it is perfectly OK. 

VAR t : Int % the current time 
pT : Int 

PROC Read() -> Int = VAR t1: Int | 

<< t1 := t; VAR t': Int | pT := t' >>; 
<< VAR t2 | t1 <= t2 /\ t2 <= t /\ t2 = pT => RET t2 >> 

Most people find it much harder to think about prophecy variables than to think about history 
variables, because thinking about backward execution does not come naturally. It’s easy to see 
that it’s harmless to carry along extra information in the history variables that isn’t allowed to 
affect the main computation. A prophecy variable, however, is allowed to affect the main 
computation, by forcing a choice that was non-deterministic to be taken in a particular way. 
Condition (2) ensures that in spite of this, no traces of T are ruled out in TP. It requires us to use 
a prophecy variable in such a way that for any possible choice that T could make later, there’s 
some choice that TP can make for the prophecy variable’s value that allows TP to later do what T 
does. 

Here is another way of looking at this. Condition (2) requires enough different values for the 
prophecy variables pi to be carried forward from the points where they are set to the points where 
they are used to ensure that as they are used, any set of choices that T could have made is 
possible for some execution of TP. So for each command that uses a pi to make a choice, we can 
calculate the set of different values of the pi that are needed to allow all the possible choices. 
Then we can propagate this set back through earlier commands until we get to the one that 
chooses pi, and check that it makes enough different choices. 

Because prophecy variables are confusing, it’s important to use them only at the highest possible 
level. If you write a spec SE that makes an early choice, and implement it with a module T, don’t 
try to show that T satisfies SE; that will be too confusing. Instead, write another spec SL that 
makes the choice later, and use prophecy variables to show that SL implements SE. Then show 
that T implements SL; this shouldn’t require prophecy. We have given three examples of such SE 
and SL specs; the implementations are given in later handouts. 

Backward simulation 

Just as we could use abstraction relations instead of adding history variables, we can use a 
different kind of relation, satisfying different start and step conditions, instead of prophecy 
variables. This new sort of relation also guarantees trace inclusion. Like an ordinary abstraction 
relation, it allows construction of an execution of the spec, working from an execution of the 
code. Not surprisingly, however, the construction works backwards in the execution of the code 
instead of forwards. (Recall the inductive proof for abstraction relations.) Therefore, it is called a 
backward simulation. 

The following table gives the conditions for a backward simulation using relation R to show that 
T implements S, aligning each condition with the corresponding one for an ordinary abstraction 
relation. To highlight the relationship between the two kinds of abstraction mappings, an 
ordinary abstraction relation is also called a forward simulation. 

Forward simulation Backward simulation 

1. If t is any initial state of T, then there is an 
initial state s of S such that (t, s) ∈ R. 

1. If t is any reachable state of T, then there a 
state s of S such that (t, s) ∈ R. 

2. If t and s are reachable states of T and S 
respectively, with (t, s) ∈ R, and (t, π, t') is 
a step of T, then there is an execution 
fragment of S from s to some s', having the 
same trace, and with (t', s') ∈ R. 

2. If t' and s' are states of T and S respectively, 
with (t', s') ∈ R, (t, π, t') is a step of T, and t 
is reachable, then there is an execution 
fragment of S from some s to s', having the 
same trace, and with (t, s) ∈ R. 

3. If t is an initial state of T and (t, s) ∈ R then 
s is an initial state of S. 

(1) applies to any reachable state t rather than any initial state, since running backwards we can 
start in any reachable state, while running forwards we start in an initial state. (2) requires that 
every backward (instead of forward) step of T be a simulation of a step of S. (3) is a new 
condition ensuring that a backward run of T ending in an initial state simulates a backward run of 
S ending in an initial state; since a forward simulation never ends, it has no analogous condition. 

Theorem 3: If there exists a backward simulation from T to S then every finite trace of T is also 
a trace of S. 

Proof: Start at the end of a finite execution and work backward, exactly as we did for forward 
simulations. 
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Notice that Theorem 3 only yields finite trace inclusion. That’s different from the forward case, 
where we get infinite trace inclusion as well. Can we use backward simulations to help us prove 
general trace inclusion? It turns out that this doesn’t always work, for technical reasons, but it 
works in two situations that cover all the cases you are likely to encounter: 

•	 The infinite traces are exactly the limits of finite traces. Formally, we have the condition that 
for every sequence of successively extended finite traces of S, the limit is also a trace of S. 

• The correspondence relation relates only finitely many states of S to each state of T. 

In the NonDet example above, a backward simulation can be used to show that LateNonDet 
implements NonDet. In fact, the inverse of the relation used to show that NonDet implements 
LateNonDet will work. You should check that the three conditions are satisfied. 

Backward simulations vs. prophecy variables 

The same equivalence that holds between abstraction relations and history variables also holds 
between backward simulations and prophecy variables. The invariant on the prophecy variable 
becomes the abstraction relation for the backward simulation. 

Completeness 

Earlier we asked whether forward simulations always work to show trace inclusion. Now we can 
ask whether it is always possible to use either a forward or a backward simulation to show trace 
inclusion. The satisfying answer is that a combination of a forward and a backward simulation, 
one after the other, will always work, at least to show finite trace inclusion. (Technicalities again 
arise in the infinite case.) For proofs of this result and discussion of the technicalities, see the 
papers by Abadi and Lamport and by Lynch and Vondrager cited below. 

History and further reading 

The idea of abstraction functions has been around since the early 1970’s. Tony Hoare introduced 
it in a classic paper (C.A.R. Hoare, Proof of correctness of data representations. Acta Informatica 
1 (1972), pp 271-281). It was not until the early 1980’s that Lamport (L. Lamport, Specifying 
concurrent program modules. ACM Transactions on Programming Languages and Systems 5, 2 
(Apr. 1983), pp 190-222) and Lam and Shankar (S. Lam and A. Shankar, Protocol verification 
via projections. IEEE Transactions on Software Engineering SE-10, 4 (July 1984), pp 325-342) 
pointed out that abstraction functions can also be used for concurrent systems. 

People call abstraction functions and relations by various names. ‘Refinement mapping’ is 
popular, especially among European writers. Some people say ‘abstraction mapping’. 

History variables are an old idea. They were first formalized (as far as I know), in Abadi and 
Lamport, The existence of refinement mappings. Theoretical Computer Science 2, 82 (1991), pp 
253-284. The same paper introduced prophecy variables and proved the first completeness result. 
For more on backward and forward simulations see N. Lynch and F. Vondrager, Forward and 
backward simulations—Part I: Untimed systems. Information and Computation 121, 2 (Sep. 
1995), pp 214-233. 

. 
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