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7. Disks and File Systems 

Motivation 

The two lectures on disks and file systems are intended to show you a number of things: 

Some semi-realistic examples of specs. 

Many important coding techniques for file systems. 

Some of the tradeoffs between a simple spec and efficient code. 

Examples of abstraction functions and invariants. 

Encoding: a general technique for representing arbitrary types as byte sequences. 

How to model crashes. 

Transactions: a general technique for making big actions atomic. 

There are a lot of ideas here. After you have read this handout and listened to the lectures, it’s a 
good idea to go back and reread the handout with this list of themes in mind. 

Outline of topics 

We give the specs of disks and files in the Disk and File modules, and we discuss a variety of 
coding issues: 

Crashes 

Disks 

Files 

Caching and buffering of disks and files 

Representing files by trees and extents 

Allocation 

Encoding and decoding 

Directories 

Transactions 

Redundancy 

Crashes 

The specs and code here are without concurrency. However, they do allow for crashes. A crash 
can happen between any two atomic commands. Thus the possibility of crashes introduces a 
limited kind of concurrency. 

When a crash happens, the volatile global state is reset, but the stable state is normally 
unaffected. We express precisely what happens to the global state as well as how the module 
recovers by including a Crash procedure in the module. When a crash happens: 

1. The Crash procedure is invoked. It need not be atomic. 

2.	 If the Crash procedure does a CRASH command, the execution of the current invocations (if 
any) stop, and their local state is discarded; the same thing happens to any invocations 
outside the module from within it. After CRASH, no procedure in the module can be invoked 
from outside until Crash returns. 

3. The Crash procedure may do other actions, and eventually it returns. 

4. Normal operation of the module resumes; that is, external invocations are now possible. 

You can tell which parts of the state are volatile by looking at what Crash does; it will reset the 
volatile variables. 

Because crashes are possible between any two atomic commands, atomicity is important for any 
operation that involves a change to stable state. 

The meaning of a Spec program with this limited kind of concurrency is that each atomic 
command corresponds to a transition. A hidden piece of state called the program counter keeps 
track of what transitions are enabled next: they are the atomic commands right after the program 
counter. There may be several if the command after the program counter has [] as its operator. 
In addition, a crash transition is always possible; it resets the program counter to a null value 
from which no transition is possible until some external routine is invoked and then invokes the 
Crash routine. 

If there are non-atomic procedures in the spec with many atomic commands, it can be rather 
difficult to see the consequences of a crash. It is therefore clearer to write a spec with as much 
atomicity as possible, making it explicit exactly what unusual transitions are possible when 
there’s a crash. We don’t always follow this style, but we give some examples of it, notably at 
the end of the section on disks. 

Disks 

Essential properties of a disk: 

Storage is stable across crashes (we discuss error models for disks in the Disk spec). 

It’s organized in blocks, and the only atomic update is to write one block. 

Random access is about 100k times slower than random access to RAM (10 ms vs. 100 ns) 

Sequential access is 10-100 times slower than to RAM (40 MB/s vs. 400-6000 MB/s) 

Costs 50 times less than RAM ($2/GB vs. $100/GB) in January 2002.

MTBF 1 million hours = 100 years.


Performance numbers: 

Blocks of .5k - 4k bytes 
40 MB/sec sequential, sustained (more with parallel disks) 
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3 ms average rotational delay (10000 rpm = 6 ms rotation time) 
7 ms average seek time; 3 ms minimum 

It takes 10 ms to get anything at all from a random place on the disk. In another 10 ms you can 
transfer 400 KB. Hence the cost to get 400 KB is only twice the cost to get 1 byte. By reading 
from several disks in parallel (called striping or RAID) you can easily increase the transfer rate 
by a factor of 5-10. 

Performance techniques: 

Avoid disk operations: use caching 

Do sequential operations: allocate contiguously, prefetch, write to log 

Write in background (write-behind)


A spec for disks 

The following module describes a disk Dsk as a function from a DA to a disk block DB, which is 
just a sequence of DBSize bytes. The Dsk function can also yield nil, which represents a 
permanent read error. The module is a class, so you can instantiate as many Disks as needed. 
The state is one Dsk for each Disk. There is a New method for making a new disk; think of this as 
ordering a new disk drive and plugging it in. An extent E represents a set of consecutive disk 
addresses. The main routines are the read and write methods of Disk: read, which reads an 
extent, and write, which writes n disk blocks worth of data sequentially to the extent E{da, n}. 
The write is not atomic, but can be interrupted by a failure after each single block is written. 

Usually a spec like this is written with a concurrent thread that introduces permanent errors in the 
recorded data. Since we haven’t discussed concurrency yet, in this spec we introduce the errors 
in reads, using the AddErrors procedure. An error sets a block to nil, after which any read that 
includes that block raises the exception error. Strictly speaking this is illegal, since read is a 
function and therefore can’t call the procedure AddErrors. When we learn about concurrency we 
can move AddErrors to a separate thread; in the meantime we take the liberty, since it would be 
a real nuisance for read to be a procedure rather than a function. 

Since neither Spec nor our underlying model deals with probabilities, we don’t have any way to 
say how likely an error is. We duck this problem by making AddErrors completely non-
deterministic; it can do anything from introducing no errors (which we must hope is the usual 
case) to clobbering the entire disk. Characterizing errors would be quite tricky, since disks 
usually have at least two classes of error: failures of single blocks and failures of an entire disk. 
However, any user of this module must assume something about the probability and distribution 
of errors. 

Transient errors are less interesting because they can be masked by retries. We don’t model 
them, and we also don’t model errors reported by writes. Finally, a realistic error model would 
include the possibility that a block that reports a read error might later be readable after all. 

CLASS Disk EXPORT Byte, Data, DA, E, DBSize, read, write, size, check, Crash =


TYPE Byte = IN 0 .. 255 

Data = SEQ Byte 

DA = Nat % Disk block Address 

DB = SEQ Byte % Disk Block 
SUCHTHAT (\db| db.size = DBSize) 

Blocks = SEQ DB 
E = 	[da, size: Nat] % Extent, in disk blocks 

WITH {das:=EToDAs, "IN":=(\ e, da | da IN e.das)} 
Dsk = DA -> (DB + Null) % a DB or nil (error) for each DA 

CONST DBSize := 1024 % bytes in a disk block 

VAR disk : Dsk 


APROC new(size: Int) -> Disk = << % overrides StdNew 
VAR dsk | dsk.dom = size.seq.rng => % size blocks, arbitrary contents 

self := StdNew(); disk := dsk; RET self >> 

FUNC read(e) -> Data RAISES {notThere, error} = 

check(e); AddErrors(); 

VAR dbs := e.das * disk | % contents of the blocks in e 

IF nil IN dbs => RAISE error [*] RET BToD(dbs) FI 

PROC write(da, data) RAISES {notThere} = % fails if data not a multiple of DBsize 
VAR blocks := DToB(data), i := 0 | 
% Atomic by block, and in order 

check(E{da, blocks.size}); 

DO blocks!i => WriteBlock(da + i, blocks(i)); i + := 1 OD 


APROC WriteBlock(da, db) = << disk(da) := db >> % the atomic update. PRE: disk!da 

FUNC size() -> Int = RET disk.dom.size 


APROC check(e) RAISES {notThere} = % every DA in e is in disk.dom 
<< e.das.rng <= disk.dom => RET [*] RAISE notThere >> 

PROC Crash() = CRASH % no global volatile state 

FUNC EToDAs(e) -> SEQ DA = RET e.da .. e.da+e.size-1 % e.das 

% Internal routines 

% Functions to convert between Data and Blocks. 

FUNC BToD(blocks) -> Data = RET + : blocks 

FUNC DToB(data ) -> Blocks = VAR blocks | BToD(blocks) = data => RET blocks 

% Undefined if data.size is not a multiple of DBsize 

APROC AddErrors() = % clobber some blocks 
<< DO RET [] VAR da :IN disk.dom | disk(da) := nil OD >> 

END Disk 


This module doesn’t worry about the possibility that a disk may fail in such a way that the client 
can’t tell whether a write is still in progress; this is a significant problem in fault tolerant systems 
that want to allow a backup processor to start running a disk as soon as possible after the primary 
fails. 

Many disks do not guarantee the order in which blocks are written (why?) and thus do not 
implement this spec, but instead one with a weaker write: 
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PROC writeUnordered(da, data) RAISES {notThere} = 
VAR blocks := DToB(data) | 

% Atomic by block, in arbitrary order; assumes no concurrent writing. 
check(E{da, blocks.size}); 
DO VAR i | blocks(i) # disk(da + i) => WriteBlock(da + i, blocks(i)) OD 

In both specs write establishes blocks = E{da, blocks.size}.das * disk, which is the 
same as data = read(E{da, blocks.size}), and both change each disk block atomically. 
writeUnordered says nothing about the order of changes to the disk, so after a crash any subset 
of the blocks being written might be changed; write guarantees that the blocks changed are a 
prefix of all the blocks being written. (writeUnordered would have other differences from 
write if concurrent access to the disk were possible, but we have ruled that out for the moment.) 

Clarifying crashes 

In this spec, what happens when there’s a crash is expressed by the fact that write is not atomic 
and changes the disk one block at a time in the atomic WriteBlock. We can make this more 
explicit by making the occurrence of a crash visible inside the spec in the value of the crashed 
variable. To do this, we modify Crash so that it temporarily makes crashed true, to give write 
a chance to see it. Then write can be atomic; it writes all the blocks unless crashed is true, in 
which case it writes some prefix; this will happen only if write is invoked between the crashed 
:= true and the CRASH commands of Crash. To describe the changes to the disk neatly, we 
introduce an internal function NewDisk that maps a dsk value into another one in which disk 
blocks at da are replaced by corresponding blocks defined in bs. 

Again, this wouldn’t be right if there were concurrent accesses to Disk, since we have made all 
the changes atomically, but it gives the possible behavior if the only concurrency is in crashes. 

VAR crashed : Bool := false 

... 

APROC write(da, data) RAISES {notThere} = << % fails if data not a multiple of DBsize 
VAR blocks := DToB(data) | 

check(E{da, blocks.size}); 
IF crashed => % if crashed, write some prefix 

VAR i | i < blocks.size => blocks := blocks.sub(0, i) 
[] SKIP FI; 
disk := NewDisk(disk, da, blocks) 

>> 

FUNC NewDisk(dsk, da, bs: (Int -> DB)) -> Dsk = % result is dsk overwritten with bs at da 
RET dsk + (\ da' | da' – da) * bs 

PROC Crash() = crashed := true; CRASH; crashed := false 

For unordered writes we need only a slight change, to write an arbitrary subset of the blocks if 
there’s a crash, rather than a prefix: 

IF crashed => % if crashed, write some subset 
VAR w: SET I | w <= blocks.dom => blocks := blocks.restrict(w) 

Specifying files 

This section gives a variety of specs for files. Code follows in later sections. 

We treat a file as just a sequence of bytes, ignoring permissions, modified dates and other 
paraphernalia. Files have names, and for now we confine ourselves to a single directory that 
maps names to files. We call the name a ‘path name’ PN with an eye toward later introducing 
multiple directories, but for now we just treat the path name as a string without any structure. We 
package the operations on files as methods of PN. The main methods are read and write; we 
define the latter initially as WriteAtomic, and later introduce less atomic variations Write and 
WriteUnordered. There are also boring operations that deal with the size and with file names. 

MODULE File EXPORT PN, Byte, Data, X, F, Crash = 


TYPE PN = String % Path Name 
WITH {read:=Read, write:=WriteAtomic, size:=GetSize, 


setSize:=SetSize, create:=Create, remove:=Remove, 

rename:=Rename} 


I = Int 
Byte = IN 0 .. 255 
Data = SEQ Byte 
X = Nat % byte-in-file indeX 
F = Data % File 

D = PN -> F % Directory 

VAR d := D{} % undefined everywhere 

Note that the only state of the spec is d, since files are only reachable through d. 

There are tiresome complications in Write caused by the fact that the arguments may extend 
beyond the end of the file. These can be handled by imposing preconditions (that is, writing the 
spec to do HAVOC when the precondition isn’t satisfied), by raising exceptions, or by defining 
some sensible behavior. This spec takes the third approach; NewFile computes the desired 
contents of the file after the write. So that it will work for unordered writes as well, it handles 
sparse data by choosing an arbitrary data' that agrees with data where data is defined. 
Compare it with Disk.NewDisk. 

FUNC Read(pn, x, i) -> Data = RET d(pn).seg(x, i) 
% Returns as much data as available, up to i bytes, starting at x. 

APROC WriteAtomic(pn, x, data) = << d(pn) := NewFile(d(pn), x, data) >> 


FUNC NewFile(f0, x, data: Int -> Byte) -> F = 

% f is the desired final file. Fill in space between f0 and x with zeros, and undefined data elements arbitrarily.

VAR z := data.dom.max, z0 := f0.size , f, data' | 


data'.size = z /\ data'.restrict(data.dom) = data 

/\ f.size = {z0, x+z}.max 

/\ (ALL i | ( i IN 0 .. {x, z0}.min-1 ==> f(i) = f0(i) ) 


/\ ( i IN z0 .. x-1 ==> f(i) = 0 ) 

/\ ( i IN x .. x+z-1 ==> f(i) = data'(i-x) ) 

/\ ( i IN x+z .. z0-1 ==> f(i) = f0(i) ) ) 


=> RET f 
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FUNC GetSize(pn) -> X = RET d(pn).size 


APROC SetSize(pn, x) = << VAR z := pn.size | 

IF x <= z => << d(pn) := pn.read(0, z) >> % truncate 
[*] pn.write(z, F.fill(0, x - z + 1)) % handles crashes like write 
FI >> 

APROC Create(pn) = << d(pn) := F{} >> 

APROC Remove(pn) = << d := d{pn -> } >> 

APROC Rename(pn1, pn2) = << d(pn2) := d(pn1); Remove(pn1) >> 


PROC Crash() = SKIP % no volatile state or non-atomic changes 

END File 


WriteAtomic changes the entire file contents at once, so that a crash can never leave the file in 
an intermediate state. This would be quite expensive in most code. For instance, consider what is 
involved in making a write of 20 megabytes to an existing file atomic; certainly you can’t 
overwrite the existing disk blocks one by one. For this reason, real file systems don’t implement 
WriteAtomic. Instead, they change the file contents a little at a time, reflecting the fact that the 
underlying disk writes blocks one at a time. Later we will see how an atomic Write could be 
implemented in spite of the fact that it takes several atomic disk writes. In the meantime, here is 
a more realistic spec for Write that writes the new bytes in order. It is just like Disk.write 
except for the added complication of extending the file when necessary, which is taken care of in 
NewFile. 

APROC Write(pn, x, data) = << 

IF crashed => % if crashed, write some prefix 

VAR i | i < data.size => data := data.sub(0, i) 

[*] SKIP FI; 

d(pn) := NewFile(d(pn), x, data) >> 


PROC Crash() = crashed := true; CRASH; crashed := false


This spec reflects the fact that only a single disk block can be written atomically, so there is no 
guarantee that all of the data makes it to the file before a crash. At the file level it isn’t 
appropriate to deal in disk blocks, so the spec promises only bytewise atomicity. Actual code 
would probably make changes one page at a time, so it would not exhibit all the behavior 
allowed by the spec. There’s nothing wrong with this, as long as the spec is restrictive enough to 
satisfy its clients. 

Write does promise, however, that f(i) is changed no later than f(i+1). Some file systems 
make no ordering guarantee; actually, any file system that runs on a disk without an ordering 
guarantee probably makes no ordering guarantee, since it requires considerable care, or 
considerable cost, or both to overcome the consequences of unordered disk writes. For such a file 
system the following WriteUnordered is appropriate; it is just like Disk.writeUnordered. 

APROC WriteUnordered(pn, x, data) = << 

IF crashed => % if crashed, write some subset 

VAR w: SET I | w <= data.dom => data := data.restrict(w)

[*] SKIP FI; 

d(pn) := NewFile(d(pn), x, data) >> 


Notice that although writing a file is not atomic, File’s directory operations are atomic. This 
corresponds to the semantics that file systems usually attempt to provide: if there is a failure 
during a Create, Remove, or Rename, the operation is either completed or not done at all, but if 
there is a failure during a Write, any amount of the data may be written. The other reason for 
making this choice in the spec is simple: with the abstractions available there’s no way to express 
any sensible intermediate state of a directory operation other than Rename (of course sloppy code 
might leave the directory scrambled, but that has to count as a bug; think what it would look like 
in the spec). 

The spec we gave for SetSize made it as atomic as write. The following spec for SetSize is 
unconditionally atomic; this might be appropriate because an atomic SetSize is easier to 
implement than a general atomic Write: 

APROC SetSize(pn, x) = << d(pn) := (d(pn) + F.fill(0, x)).seg(0, x) >> 


Here is another version of NewFile, written in a more operational style just for comparison. It is 
a bit shorter, but less explicit about the relation between the initial and final states. 

FUNC NewFile(f0, x, data: Int -> Byte) -> F = VAR z0 := f0.size, data' | 

data'.size = data.dom.max => 


data' := data' + data; 

RET (x > z0 => f0 + F.fill(0, x - z0) [*] f0.sub(0, x - 1)) 


+ data' 

+ f0.sub(f.size, z0-1) 


Our File spec is missing some things that are important in real file systems: 

Access control: permissions or access control lists on files, ways of defaulting these when a 
file is created and of changing them, an identity for the requester that can be checked against 
the permissions, and a way to establish group identities. 

Multiple directories. We will discuss this when we talk about naming. 

Quotas, and what to do when the disk fills up. 

Multiple volumes or file systems. 

Backup. We will discuss this near the end of this handout when we describe the copying file 
system. 

Cached and buffered disks 

The simplest way to decouple the file system client from the slow disk is to provide code for the 
Disk abstraction that does caching and write buffering; then the file system code need not 
change. The basic ideas are very similar to the ideas for cached memory, although for the disk 
we preserve the order of writes. We didn’t do this for the memory because we didn’t worry about 
failures. 

Failures add complications; in particular, the spec must change, since buffering writes means that 
some writes may be lost if there is a crash. Furthermore, the client needs a way to ensure that its 
writes are actually stable. We therefore need a new spec BDisk. To get it, we add to Disk a 
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variable oldDisks that remembers the previous states that the disk might revert to after a crash 
(note that this is not necessarily all the previous states) and code to use oldDisks appropriately. 
BDisk.write no longer needs to test crashed, since it’s now possible to lose writes even if the 
crash happens after the write. 

CLASS BDisk EXPORT ..., sync % write-buffered disk 

TYPE ... 
CONST ... 
VAR disk : Dsk % as in Disk 

oldDisks : SET Dsk := {} 

... 

APROC write(da, data) RAISES {notThere} = << % fails if data not a multiple of DBsize 
<< VAR blocks := DToB(data) | 

check(E{da, blocks.size}); 
disk := NewDisk(disk, da, blocks); 
oldDisks \/ := {i | i < blocks.size | 

NewDisk(disk, da, blocks.sub(0, i))}; 
Forget() 

>> 

FUNC NewDisk(dsk, da, bs: (Int -> DB)) -> Dsk = % result is dsk overwritten with bs at da 
RET dsk + (\ da' | da' – da) * bs 

PROC sync() = oldDisks := {} % make disk stable 

PROC Forget() = VAR ds: SET Dsk | oldDisks - := ds 
% Discards an arbitrary subset of the remembered disk states. 

PROC Crash() = CRASH; << VAR d :IN oldDisks | disk := d; sync() [*] SKIP >> 

END BDisk 

Forget is there so that we can write an abstraction function for code for that doesn’t defer all its 
disk writes until they are forced by Sync. A write that actually changes the disk needs to change 
oldDisks, because oldDisks contains the old state of the disk block being overwritten, and 
there is nothing in the state of the code after the write from which to compute that old state. Later 
we will study a better way to handle this problem: history variables or multi-valued mappings. 
They complicate the code rather than the spec, which is preferable. Furthermore, they do not 
affect the performance of the code at all. 

A weaker spec would revert to a state in which any subset of the writes has been done. For this, 
change the assignment to oldDisks in write, along the lines we have seen before. 

oldDisks \/ := {w: SET I | w <= blocks.dom | 
NewDisk(disk, da, blocks.restrict(w))}; 

The module BufferedDisk below is code for BDisk. It copies newly written data into the cache 
and does the writes later, preserving the original order so that the state of the disk after a crash 
will always be the state at some time in the past. In the absence of crashes this implements Disk 
and is completely deterministic. We keep track of the order of writes with a queue variable, 
instead of keeping a dirty bit for each cache entry as we did for cached memory. If we didn’t do 

= 

the writes in order, there would be many more possible states after a crash, and it would be much 
more difficult for a client to use this module. Many real disks have this unpleasant property, and 
many real systems deal with it by ignoring it. 

A striking feature of this code is that it uses the same abstraction that it implements, namely 
BDisk. The code for BDisk that it uses we call UDisk (U for ‘underlying’). We think of it as a 
‘physical’ disk, and of course it is quite different from BufferedDisk: it contains SCSI 
controllers, magnetic heads, etc. A module that implements the same interface that it uses is 
sometimes called a filter or a stackable module. A Unix filter like sed is a familiar example that 
uses and implements the byte stream interface. We will see many other examples of this in the 
course. 

Invocations of UDisk are in bold type, so you can easily see how the module depends on the 
lower-level code for BDisk. 

CLASS BufferedDisk % implements BDisk 
EXPORT Byte, Data, DA, E, DBSize, read, write, size, check, sync, Crash = 

TYPE 	% Data, DA, DB, Blocks, E as in Disk 
I = Int 
J = Int 

Queue = SEQ DA % data is in cache 

CONST 

cacheSize := 1000 

queueSize := 50 


VAR udisk : Disk 

cache : DA -> DB := {} 

queue := Queue{} 


% ABSTRACTION FUNCTION bdisk.disk = udisk.disk + cache 

% ABSTRACTION FUNCTION bdisk.oldDisks = 


{ q: Queue | q <= queue | udisk.disk + cache.restrict(q.rng) } 


% INVARIANT queue.rng <= cache.dom % if queued then cached 
% INVARIANT queue.size = queue.rng.size % no duplicates in queue 
% INVARIANT cache.dom.size <= cacheSize % cache not too big 
% INVARIANT queue.size <= queueSize % queue not too big 

APROC new(size: Int) -> BDisk = << % overrides StdNew 
self := StdNew(); udisk := udisk.new(size); RET self >> 

PROC read(e) -> Data RAISES {notThere} = 

% We could make provision for read-ahead, but do not. 

check(e); 

VAR data := Data{}, da := e.da, upTo := e.da + e.size | 


DO da < upTo => 

IF cache!da => data + := cache(da); da + := 1 

[*] % read as many blocks from disk as possible 

VAR i := RunNotInCache(da, upTo), 

buffer := udisk.read(E{da, i}), 

k := MakeCacheSpace(i) | 

% k blocks will fit in cache; add them. 
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DO VAR j :IN k.seq | ~ cache!(da + j) => 

cache(da + j) := udisk.DToB(buffer)(j) 


OD; 

data + := buffer; da + := i 


FI 

OD; RET data 


PROC write(da, data) RAISES {notThere} = 

VAR blocks := udisk.DToB(data) | 


check(E{da, blocks.size}); 

DO VAR i :IN queue.dom | queue(i) IN da .. da+size-1 => FlushQueue(i) OD; 

% Do any previously buffered writes to these addresses. Why? 
VAR j := MakeCacheSpace(blocks.size), i := 0 | 

IF j < blocks.size => udisk.write(da, data) 

% Don’t cache if the write is bigger than the cache. 

[*] DO blocks!i => 

cache(da+i) := blocks(i); queue + := {da+i}; i + := 1 


OD 

FI 


PROC Sync() = FlushQueue(queue.size - 1) 


PROC Crash() = CRASH; cache := {}; queue := {} 


FUNC RunNotInCache(da, upTo: DA) -> I = 

RET {i | da + i <= upTo /\ (ALL j :IN i.seq | ~ cache!(da + j)}.max 


PROC MakeCacheSpace(i) -> Int = 

% Make room for i new blocks in the cache; returning min(i, the number of blocks now available). 

% May flush queue entries.

% POST: cache.dom.size + result <= cacheSize 


. . . 


PROC FlushQueue(i) = VAR q := queue.sub(0, i) | 

% Write queue entries 0 .. i and remove them from queue. 
% Should try to combine writes into the biggest possible writes 

DO q # {} => udisk.write(q.head, 1); q := q.tail OD; 

queue := queue.sub(i + 1, queue.size - 1) 


END BufferedDisk 


This code keeps the cache as full as possible with the most recent data, except for gigantic 
writes. It would be easy to change it to make non-deterministic choices about which blocks to 
keep in the cache, or to take advice from the client about which blocks to keep. The latter would 
require changing the interface to accept the advice, of course. 

Note that the only state of BDisk that this module can actually revert to after a crash is the one in 
which none of the queued writes has been done. You might wonder, therefore, why the body of 
the abstraction function for BDisk.oldDisks has to involve queue. Why can’t it just be 
{udisk.disk}? The reason is that when the internal procedure FlushQueue does a write, it 
changes the state that a crash reverts to, and there’s no provision in the BDisk spec for adding 
anything to oldDisks except during write. So oldDisks has to include all the states that the 
disk can reach after a sequence of ‘internal’ writes, that is, writes done in FlushQueue. And this 
is just what the abstraction function says. 

Building other kinds of disks 

There are other interesting and practical ways to code a disk abstraction on top of a ‘base’ disk. 
Some examples that are used in practice: 

Mirroring: use two base disks of the same size to code a single disk of that size, but with 
much greater availability and twice the read bandwidth, by doing each write to both base 
disks. 

Striping: use n base disks to code a single disk n times as large and with n times the 
bandwidth, by reading and writing in parallel to all the base disks 

RAID: use n base disks of the same size to code a single disk n-1 times as large and with n-1 
times the bandwidth, but with much greater availability, by using the nth disk to store the 
exclusive-or of the others. Then if one disk fails, you can reconstruct its contents from the 
others. 

Snapshots: use ‘copy-on-write’ to code an ordinary disk and some number of read-only 
‘snapshots’ of its previous state. 

Buffered files 

We need to make changes to the File spec if we want the option to code it using buffered disks 
without doing too many syncs. One possibility is do a bdisk.sync at the end of each write. 
This spec is not what most systems implement, however, because it’s too slow. Instead, they 
implement a version of File with the following additions. This version allows the data to revert 
to any previous state since the last Sync. The additions are very much like those we made to 
Disk to get BDisk. For simplicity, we don’t change oldDirs for operations other than write and 
setSize (well, except for truncation); real systems differ in how much they buffer the other 
operations. 

MODULE File EXPORT ..., Sync =


TYPE ... 

VAR d := D{} 


oldDs : SET D := {} 

... 


APROC Write(pn, x, byte) = << VAR f0 := d(pn) | 

d(pn) := NewFile(f0, x, data); 

oldDs \/ := {i | i < data.size | 


d{pn -> NewFile(f0, x, data.sub(0, i)))} >> 


APROC Sync() = << oldDirs := {} >>


PROC Crash() = CRASH; << VAR d :IN oldDirs => dir := d; Sync() [*] SKIP >>


END File 


Henceforth we will use File to refer to the modified module. Since we are not giving code for, 
we leave out Forget for simplicity. 
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Many file systems do their own caching and buffering. They usually loosen this spec so that a 
crash resets each file to some previous state, but does not necessarily reset the entire system to a 
previous state. (Actually, of course, real file systems usually don’t have a spec, and it is often 
very difficult to find out what they can actually do after a crash.) 

MODULE File2 EXPORT ..., Sync =


TYPE ... 

OldFiles = PN -> SET F 


VAR 	d := D{} 

oldFiles := OldFiles{* -> {}} 


... 


APROC Write(pn, x, byte) = << VAR f0 := d(pn) | 

d(pn) := NewFile(f0, x, data); 

oldFiles(pn) \/ := {i | i < data.size | NewFile(f0, x, data.sub(0, i)))} >>


APROC Sync() = << oldFiles:= OldFiles{* -> {}} >> 


PROC Crash() = 

CRASH; 

<< VAR d' | d'.dom = d.dom 


/\ (ALL pn :IN d.dom | d'(pn) IN oldFiles(pn) \/ {d(pn)}) 

=> d := d' >> 


END File 


A picky point about Spec: A function constructor like (\ pn | {d(pn)}) is no good as a value 
for oldFiles, because the value of the global variable d in that constructor is not captured when 
the constructor is evaluated. Instead, this function uses the value of d when it is invoked. This is 
a little weird, but it is usually very convenient. Here it is a pain; we avoid the problem by using a 
local variable d whose value is captured when the constructor is evaluated in SnapshotD. 

A still weaker spec allows d to revert to a state in which any subset of the byte writes has been 
done, except that the files still have to be sequences. By analogy with unordered BDisk, we 
change the assignment to oldFiles in Write. 

oldFiles(pn) \/ := {w: SET i | w <= data.dom | 

NewFile(f0, x, data.restrict(w))} >> 

Coding files 

The main issue is how to represent the bytes of the file on the disk so that large reads and writes 
will be fast, and so that the file will still be there after a crash. The former requires using 
contiguous disk blocks to represent the file as much as possible. The latter requires a 
representation for D that can be changed atomically. In other words, the file system state has type 
PN -> SEQ Byte, and we have to find a disk representation for the SEQ Byte that is efficient, 
and one for the function that is robust. This section addresses the first problem. 

The simplest approach is to represent a file by a sequence of disk blocks, and to keep an index 
that is a sequence of the DA’s of these blocks. Just doing this naively, we have 

TYPE F = [das: SEQ DA, size: N] % Contents and size in bytes 

The abstraction function to the spec says that the file is the first f.size bytes in the disk blocks 
pointed to by c. Writing this as though both File and its code FImpl0 had the file f as the state, 
we get 

File.f = (+ : (FImpl0.f.das * disk.disk)).seg(0, FImpl0.f.size) 


or, using the disk.read method rather than the state of disk directly 

File.f = (+ : {da :IN FImpl0.f.das | | disk.read(E{da, 1})}).seg(0, FImpl0.f.size) 


But actually the state of File is d, so we should have the same state for FImpl (with the different 
representation for F, of course), and 

File.d = (LAMBDA (pn) -> File.F = 

VAR f := FImpl0.d(pn) | % fails if d is undefined at pn 

RET (+ : (f.das * disk.disk)).seg(0, f.size) 


We need an invariant that says the blocks of each file have enough space for the data. 

% INVARIANT ( ALL f :IN d.rng | f.das.size * DBSize >= f.size ) 

Then it’s easy to see how to code read: 

PROC read(pn, x, i) = 

VAR f := dir(pn), 


diskData := + : (da :IN f.das | | disk.read(E{da, 1})}, 

fileData := diskData.seg(0, f.size) | 

RET fileData.seg(x, i) 


To code write we need a way to allocate free DAs; we defer this to the next section. 

There are two problems with using this representation directly: 

1.	 The index takes up quite a lot of space (with 4 byte DA’s and DBSize = 1Kbyte it takes .4% of 
the disk). Since RAM costs about 50 times as much as disk, keeping it all in RAM will add 
about 20% to the cost of the disk, which is a significant dollar cost. On the other hand, if the 
index is not in RAM it will take two disk accesses to read from a random file address, which 
is a significant performance cost. 

2.	 The index is of variable length with no small upper bound, so representing the index on the 
disk is not trivial either. 

To solve the first problem, store Disk.E’s in the index rather than DA’s. A single extent can 
represent lots of disk blocks, so the total size of the index can be much less. Following this idea, 
we would represent the file by a sequence of Disk.E’s, stored in a single disk block if it isn’t too 
big or in a file otherwise. This recursion obviously terminates. It has the drawback that random 
access to the file might become slow if there are many extents, because it’s necessary to search 
them linearly to find the extent that contains byte x of the file. 

To solve the second problem, use some kind of tree structure to represent the index. In standard 
Unix file systems, for example, the index is a structure called an inode that contains: 
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a sequence of 10 DA’s (enough for a 10 KB file, which is well above the median file size), 
followed by 

the DA of an indirect DB that holds DBSize/4 = 250 or so DA’s (enough for a 250 KB file), 
followed by 

the DA of a second-level indirect block that holds the DA’s of 250 indirect blocks and hence 
points to 2502 = 62500 DA’s (enough for a 62 MB file), 

and so forth. The third level can address a 16 GB file, which is enough for today's systems. 

Thus the inode itself has room for 13 DA’s. These systems duck the first problem; their extents 
are always a single disk block. 

We give code for that incorporates both extents and trees, representing a file by a generalized 
extent that is a tree of extents. The leaves of the tree are basic extents Disk.E, that is, references 
to contiguous sequences of disk blocks, which are the units of i/o for disk.read and 
disk.write. The purpose of such a general extent is simply to define a sequence of disk 
addresses, and the E.das method computes this sequence so that we can use it in invariants and 
abstraction functions. The tree structure is there so that the sequence can be stored and modified 
more efficiently. 

An extent that contains a sequence of basic extents is called a linear extent. To do fast i/o 
operations, we need a linear extent which includes just the blocks to be read or written, grouped 
into the largest possible basic extents so that disk.read and disk.write can work efficiently. 
Flatten computes such a linear extent from a general extent; the spec for Flatten given below 
flattens the entire extent for the file and then extracts the smallest segment that contains all the 
blocks that need to be touched. 

Read and Write just call Flatten to get the relevant linear extent and then call disk.read and 
disk.write on the basic extents; Write may extend the file first, and it may have to read the 
first and last blocks of the linear extent if the data being written does not fill them, since the disk 
can only write entire blocks. Extending or truncating a file is more complex, because it requires 
changing the extent, and also because it requires allocation. Allocation is described in the next 
section. Changing the extent requires changing the tree. 

The tree itself must be represented in disk blocks; methods inspired by B-trees can be used to 
change it while keeping it balanced. Our code shows how to extract information from the tree, 
but not how it is represented in disk blocks or how it is changed. In standard Unix file systems, 
changing the tree is fairly simple because a basic extent is always a single disk block in the 
multi-level indirect block scheme described above. 

We give the abstraction function to the simple code above. It just says that the DAs of a file are 
the ones you get from Flatten. 

The code below makes heavy use of function composition to apply some function to each 
element of a sequence: s * f is {f(s(0)), ..., f(s(s.size-1))}. If f yields an integer or a 
sequence, the combination + : (s * f) adds up or concatenates all the f(s(i)). 

MODULE FSImpl = % implements File 

TYPE N = Nat 

E = [c: (Disk.DA + SE), size: N] % size = # of DA’s in e 

SUCHTHAT (\e | Size(e) = e.size) 
WITH {das:=EToDAs, le:=EToLE} 

BE = E SUCHTHAT (\e| e.c IS Disk.DA) % Basic Extent 
LE = E SUCHTHAT (\e| e.c IS SEQ BE) % Linear Extent: sequence of BEs 

WITH {"+":=Cat} 
SE = SEQ E % Sequence of Extents: may be tree 

X = File.X 
F = [e, size: X] % size = # of bytes 

PN = File.PN % Path Name 

CONST DBSize := 1024 


VAR 	d : File.PN -> F := {} 

disk 


% ABSTRACTION FUNCTION File.d = (LAMBDA (pn) -> File.F = d!pn => 

% The file is the first f.size bytes in the disk blocks of the extent f.e 

VAR f := d(pn), 
data := + : {be :IN Flatten(f.e, 0, f.e.size).c | | disk.read(be)} | 
RET data.seg(0, f.size) ) 

% ABSTRACTION FUNCTION FImpl0.d = (LAMBDA (pn) -> FImpl0.F = 

VAR f := d(pn) | RET {be :IN Flatten(f.e, 0, f.e.size).c | | be.c} 


FUNC Size(e) -> Int = RET ( e IS BE => e.size [*] + :(e.c * Size) ) 
% # of DA’s reachable from e. Should be equal to e.size. 

FUNC EToDAs(e) -> SEQ DA = % e.das 

% The sequence of DA’s defined by e. Just for specs. 

RET ( e IS BE => {i :IN e.size.seq | | e.c + i} [*] + :(e.c * EToDAs) ) 

FUNC EToLE(e) -> LE = % e.le 

% The sequence of BE’s defined by e. 

RET ( e IS BE => LE{SE{e}, e.size} [*] + :(e.c * EToLE ) ) 

FUNC Cat(le1, le2) -> LE = 

% The "+" method of LE. Merge e1 and e2 if possible. 

IF e1 = {} => RET le2 
[] e2 = {} => RET le1 
[] VAR e1 := le1.c.last, e2 := le2.c.head, se | 

IF e1.c + e1.size = e2.c => 

se := le1.c.reml + SE{E{e1.c, e1.size + e2.size}} + le2.c.tail 


[*] se := le1.c + le2.c 

FI; 

RET LE{se, le1.size + le2.size} 


FI 


FUNC Flatten(e, start: N, size: N) -> LE = VAR le0 := e.le, le1, le2, le3 | 
% The result le is such that le.das = e.das.seg(start, size); 
% This is fewer than size DA’s if e gets used up. 
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% It’s empty if start >= e.size. 
% This is not practical code; see below. 

le0 = le1 + le2 + le3 

/\ le1.size = {start, e.size}.min 

/\ le2.size = {size, {e.size - start, 0}.max}.min 

=> RET le2 


... 


END FSImpl 


This version of Flatten is not very practical; in fact, it is more like a spec than code for. A 
practical one, given below, searches the tree of extents sequentially, taking the largest possible 
jumps, until it finds the extent that contains the startth DA. Then it collects extents until it has 
gotten size DA’s. Note that because each e.size gives the total number of DA’s in e, Flatten 
only needs time log(e.size) to find the first extent it wants, provided the tree is balanced. This 
is a standard trick for doing efficient operations on trees: summarize the important properties of 
each subtree in its root node. A further refinement (which we omit) is to store cumulative sizes in 
an SE so that we can find the point we want with a binary search rather than the linear search in 
the DO loop below; we did this in the editor buffer example of handout 3. 

FUNC Flatten(e, start: N, size: N) -> LE = 

VAR z := {size, {e.size - start, 0}.max}.min | 


IF z = 0 => RET E{c := SE{}, size := 0} 

[*] e IS BE => RET E{c := e.c + start, size := z}.le 

[*] VAR se := e.c AS SE, sbe : SEQ BE := {}, at := start, want := z | 


DO want > 0 => % maintain at + want <= Size(se) 
VAR e1 := se.head, e2 := Flatten(e1, at, want) | 


sbe := sbe + e2.c; want := want - e2.size; 

se := se.tail; at := {at - e1.size, 0}.max 


OD; 

RET E{c := sbe, size := z} 


FI 


Allocation 

We add something to the state to keep track of which disk blocks are free: 

VAR free: DA -> Bool 


We want to ensure that a free block is not also part of a file. In fact, to keep from losing blocks, a 
block should be free iff it isn’t in a file or some other data structure such as an inode: 

PROC IsReachable(da) -> Bool = 

RET ( EXISTS f :IN d.rng | da IN f.e.das \/ ... 


% INVARIANT (ALL da | IsReachable(da) = ~ free(da) ) 


This can’t be coded without some sort of log-like mechanism for atomicity if we want separate 
representations for free and f.e, that is, if we want any code for free other than the brute-force 
search implied by IsReachable itself. The reason is that the only atomic operation we have on 
the disk is to write a single block, and we can’t hope to update the representations of both free 
and f.e with a single block write. But ~ IsReachable is not satisfactory code for free, even 

though it does not require a separate data structure, because it’s too expensive — it traces the 
entire extent structure to find out whether a block is free. 

A weaker invariant allows blocks to be lost, but still ensures that the file data will be inviolate. 
This isn’t as bad as it sounds, because blocks will only be lost if there is a crash between writing 
the allocation state and writing the extent. Also, it’s possible to garbage-collect the lost blocks. 

% INVARIANT (ALL da | IsReachable(da) ==> ~ free(da)) 


A weaker invariant than this would be a disaster, since it would allow blocks that are part of a 
file to be free and therefore to be allocated for another file. 

The usual representation of free is a SEQ Bool (often called a bit table). It can be stored in a 
fixed-size file that is allocated by magic (so that the code for allocation doesn’t depend on itself). 
To reduce the size of free, the physical disk blocks may be grouped into larger units (usually 
called ‘clusters’) that are allocated and deallocated together. 

This is a fairly good scheme. The only problem with it is that the table size grows linearly with 
the size of the disk, even when there are only a few large files, and concomitantly many bits may 
have to be touched to allocate a single extent. This will certainly be true if the extent is large, and 
may be true anyway if lots of allocated blocks must be skipped to find a free one. 

The alternative is a tree of free extents, usually coded as a B-tree with the extent size as the key, 
so that we can find an extent that exactly fits if there is one. Another possibility is to use the 
extent address as the key, since we also care about getting an extent close to some existing one. 
These goals are in conflict. Also, updating the B-tree atomically is complicated. There is no best 
answer. 

Encoding and decoding 

To store complicated values on the disk, such as the function that constitutes a directory, we need 
to encode them into a byte sequence, since Disk.Data is SEQ Byte. (We also need encoding to 
send values in messages, an important operation later in the course.) It’s convenient to do this 
with a pair of functions for each type, called Encode and Decode, which turn a value of the type 
into a byte sequence and recover the value from the sequence. We package them up into an 
EncDec pair. 

TYPE Q = SEQ Byte 

EncDec = [enc: Any -> Q, dec: Q -> Any] % Encode/Decode pair 

SUCHTHAT (\ed: EncDec | ( EXISTS T: SET Any | 

ed.enc.dom = T 


/\ (ALL t :IN T | dec(enc(t)) = t) )) 


Other names for ‘encode’ are ‘serialize’ (used in Java), ‘pickle’, and ‘marshal’ (used for 
encoding arguments and results of remote procedure calls). 

A particular EncDec works only on values of a single type (represented by the set T in the 
SUCHTHAT, since you can’t quantify over types in Spec). This means that enc is defined exactly 
on values of that type, and dec is the inverse of enc so that the process of encoding and then 
decoding does not lose information. We do not assume that enc is the inverse of dec, since there 
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may be many byte sequences that decode to the same value; for example, if the value is a set, it 
would be pointless and perhaps costly to insist on a canonical ordering of the encoding. In this 
course we will generally assume that every type has methods enc and dec that form an EncDec 
pair. 

A type that has other types as its components can have its EncDec defined in an obvious way in 
terms of the EncDec’s of the component types. For example, a SEQ T can be encoded as a 
sequence of encoded T’s, provided the decoding is unambiguous. A function T -> U can be 
encoded as a set or sequence of encoded (T, U) pairs. 

A directory is one example of a situation in which we need to encode a sequence of values into a 
sequence of bytes. A log is another example of this, discussed below, and a stream of messages 
is a third. It’s necessary to be able to parse the encoded byte sequence unambiguously and 
recover the original values. We can express this idea precisely by saying that a parse is an 
EncDec sequence, a language is a set of parses, and the language is unambiguous if for every 
byte sequence q the language has at most one parse that can completely decode q. 

TYPE M = SEQ Q % for segmenting a Q 
P = SEQ EncDec % Parse 
% A sequence of decoders that parses a Q, as defined by IsParse below 
Language = SET P 

FUNC IsParse(p, q) -> Bool = RET ( EXISTS m | 

+ :m = q % m segments q 

/\ m.size = p.size % m is the right size 
/\ (ALL i :IN p.dom | (p(i).dec)!m(i)] ) % each p decodes its m 

FUNC IsUnambiguous(l: Language) -> Bool = RET (ALL q, p1, p2| 

p1 IN l /\ p2 IN l /\ IsParse(p1, q) /\ IsParse(p2, q) ==> p1 = p2) 


Of course ambiguity is not decidable in general. The standard way to get an unambiguous 
language for encodings is to use type-length-value (TLV) encoding, in which the result q of 
enc(x) starts with some sort of encoding of x’s type, followed by an encoding of q’s own length, 
followed by a Q that contains the rest of the information the decoder needs to recover x. 

FUNC IsTLV(ed: EncDec) -> Bool = 

RET (ALL x :IN ed.enc.dom | (EXISTS d1, d2, d3 | 


ed.enc(x) = d1 + d2 + d3 /\ EncodeType(x) = d1 

/\ (ed.enc(x).size).enc = d2 )) 


In many applications there is a grammar that determines each type unambiguously from the 
preceding values, and in this case the types can be omitted. For instance, if the sequence is the 
encoding of a SEQ T, then it’s known that all the types are T. If the length is determined from the 
type it can be omitted too, but this is done less often, since keeping the length means that the 
decoder can reliably skip over parts of the encoded sequence that it doesn’t understand. If 
desired, the encodings of different types can make different choices about what to omit. 

There is an international standard called ASN-1 (for Abstract Syntax Notation) that defines a 
way of writing a grammar for a language and deriving the EncDec pairs automatically from the 
grammar. Like most such standards, it is rather complicated and often yields somewhat 
inefficient encodings. It’s not as popular as it used to be, but you might stumble across it. 

Another standard way to get an unambiguous language is to encode into S-expressions, in which 
the encoding of each value is delimited by parentheses, and the type, unless it can be omitted, is 
given by the first symbol in the S-expression. A variation on this scheme which is popular for 
Internet Email and Web protocols, is to have a ‘header’ of the form 

attribute1: value1 

attribute2: value2 

... 


with various fairly ad-hoc rules for delimiting the values that are derived from early conventions 
for the human-readable headers of Email messages. 

The trendy modern version serialization languae is called XML (eXtensible Markup Language). 
It generalizes S-expressions by having labeled parentheses, which you write <foo> and </foo>. 

In both TLV and S-expression encodings, decoding depends on knowing exactly where the byte 
sequence starts. This is not a problem for Q’s coming from a file system, but it is a serious 
problem for Q’s coming from a wire or byte stream, since the wire produces a continuous stream 
of voltages, bits, bytes, or whatever. The process of delimiting a stream of symbols into Q’s that 
can be decoded is called framing; we will discuss it later in connection with networks. 

Directories 

Recall that a D is just a PN -> F. We have seen various ways to represent F. The simplest code 
relies on an EncDec for an entire D. It represents a D as a file containing enc of the PN -> F map 
as a set of ordered pairs. 

There are two problems with this scheme: 

•	 Lookup in a large D will be slow, since it requires decoding the whole D. This can be fixed 
by using a hash table or B-tree. Updating the D can still be done as in the simple scheme, but 
this will also be slow. Incremental update is possible, if more complex; it also has atomicity 
issues. 

•	 If we can’t do an atomic file write, then when updating a directory we are in danger of 
scrambling it if there is a crash during the write. There are various ways to solve this 
problem. The most general and practical way is to use the transactions explained in the next 
section. 

It is very common to code directories with an extra level of indirection called an ‘inode’, so that 
we have 

TYPE INo = Int % Inode Number 
D = PN -> INo 
INoMap = INo -> F 

VAR d : D := {} 
inodes : INoMap := {} 

You can see that inodes is just like a directory except that the names are INo’s instead of PN’s. 
There are three advantages: 

Handout 7. Disks and File Systems 19 Handout 7. Disks and File Systems 20 



6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002 

Because INo’s are integers, they are cheaper to store and manipulate. It’s customary to 
provide an Open operation to turn a PN into an INo (usually through yet another level of 
indirection called a ‘file descriptor’), and then use the INo as the argument of Read and 
Write. 

Because INo’s are integers, if F is fixed-size (as in the Unix example discussed earlier, for 
instance) then inodes can be represented as an array on the disk that is just indexed by the 
INo. 

The enforced level of indirection means that file names automatically get the semantics of 
pointers or memory addresses: two of them can point to the same file variable. 

The third advantage can be extended by extending the definition of D so that the value of a PN 
can be another PN, usually called a “symbolic link”. 

TYPE D = PN -> (INo + PN) 


Transactions 

We have seen several examples of a general problem: to give a spec for what happens after a 
crash that is acceptable to the client, and code for that satisfies the spec even though it has only 
small atomic actions at its disposal. In writing to a file, in maintaining allocation information, 
and in updating a directory, we wanted to make a possibly large state change atomic in the face 
of crashes during its execution, even though we can only write a single disk block atomically. 

The general technique for dealing with this problem is called transactions. General transactions 
make large state changes atomic in the face of arbitrary concurrency as well as crashes; we will 
discuss this later. For now we confine ourselves to ‘sequential transactions’, which only take care 
of crashes. The idea is to conceal the effects of a crash entirely within the transaction abstraction, 
so that its clients can program in a crash-free world. 

The code for sequential transactions is based on the very general idea of a deterministic state 
machine that has inputs called actions and makes a deterministic transition for every input it 
sees. The essential observation is that: 

If two instances of a deterministic state machine start in the same state and see the 
same inputs, they will make the same transitions and end up in the same state. 

This means that if we record the sequence of inputs, we can replay it after a crash and get to the 
same state that we reached before the crash. Of course this only works if we start in the same 
state, or if the state machine has an ‘idempotency’ property that allows us to repeat the inputs. 
More on this below. 

Here is the spec for sequential transactions. There’s a state that is queried and updated (read and 
written) by actions. We keep a stable version ss and a volatile version vs. Updates act on the 
volatile version, which is reset to the stable version after a crash. A ‘commit’ action atomically 
sets the stable state to the current volatile state. 
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MODULE SeqTr [ % Sequential Transaction 
V, % Value of an action 
S WITH { s0: ()-> S } % State; s0 initially 
] EXPORT Do, Commit, Crash = 

TYPE A = S->(V, S) % Action 

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 

APROC Do(a) -> V = << VAR v | (v, vs) := a(vs); RET v >> 

APROC Commit() = << ss := vs >> 

APROC Crash () = << vs := ss >> % Abort is the same 

END SeqTr 


In other words, you can do a whole series of actions to the volatile state vs, followed by a 
Commit. Think of the actions as reads and writes, or queries and updates. If there’s a crash before 
the Commit, the state reverts to what it was initially. If there’s a crash after the Commit, the state 
reverts to what it was at the time of the commit. An action is just a function from an initial state 
to a final state and a result value. 

There are many coding techniques for transactions. Here is the simplest. It breaks each action 
down into a sequence of updates, each one of which can be done atomically; the most common 
example of an atomic update is a write of a single disk block. The updates also must have an 
‘idempotency’ property discussed later. Given a sequence of Do’s, each applying an action, the 
code concatenates the update sequences for the actions in a volatile log that is a representation of 
the actions. Commit writes this log atomically to a stable log. Once the stable log is written, Redo 
applies the volatile log to the stable state and erases both logs. Crash resets the volatile to the 
stable log and then applies the log to the stable state to recover the volatile state. It then uses 
Redo to update the stable state and erase the logs. Note that we give S a "+" method s + l that 
applies a log to a state. 

This scheme reduces the problem of implementing arbitrary changes atomically to the problem 
of atomically writing an arbitrary amount of stuff to a log. This is easier but still not trivial to do 
efficiently; we discuss it at the end of the section. 

MODULE LogRecovery [ % implements SeqTr 
V, % Value of an action 
S0 WITH { s0: () -> S0 } % State 
] EXPORT Do, Commit, Crash = 

TYPE 	A = S->(V, S) % Action 
U = S -> S % atomic Update 
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L = SEQ U 	 % Log 
S = S0 WITH { "+":=DoLog } 

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 
sl := L{} % Stable Log 
vl := L{} % Volatile Log 

% State; s+l applies l to s 

% ABSTRACTION to SeqTr 

SeqTr.ss = ss + sl 

SeqTr.vs = vs 


% INVARIANT vs = ss + vl 


FUNC DoLog(s, l) -> S = % s+l = DoLog(s, l) 
% Apply the updates in l to the state s. 

l={} => RET s [*] RET DoLog((l.head)(s),l.tail)) 

APROC Do(a) -> V = 

% Find an l (a sequence of updates) that has the same effect as a on the current state. 

<< VAR v, l | (v, vs + l) = a(vs) => 
vl := vl + l; vs := vs + l; RET v >> 

PROC Commit() = << sl := vl >>; Redo() 


PROC Redo() = % replay vl, then clear sl 
DO vl # {} => << ss := ss + vl.head; vl := vl.tail >> OD; << sl := {} >> 

PROC Crash() = 

CRASH; 

<< vl := {}; vs := S.s0() >>; % crash erases vs, vl 

<< vl := sl; vs := ss + vl >>; % recovery restores them

Redo() % and repeats the Redo; this is optional 


END LogRecovery 


For this redo crash recovery to work, l must have the property that repeatedly applying prefixes 
of it, followed by the whole thing, has the same effect as applying the whole thing.  For example, 
suppose l = L{a,b,c,d,e}. Then L{a,b,c,a,a,a,b,c,d,a,b,a,b,c,d,e,a,a,b,c,d,e} 
must have the same effect as l itself; here we have grouped the prefixes together for clarity. We 
need this property because a crash can happen while Redo is running; the crash reapplies the 
whole log and runs Redo again. Another crash can happen while the second Redo is running, and 
so forth. 

This ‘hiccup’ property follows from ‘log idempotence’: 
s + l + l = s + l (1) 


From this we get (recall that < is the ‘prefix’ predicate for sequences). 
k < l ==> (s + k + l = s + l) (2) 


because k < l implies there is a l' such that k + l' = l, and hence 
s + k + l = s + k + (k + l') = (s + k + k) + l' 


= (s + k) + l' = s + (k + l') = s + l 


From (2) we get the property we want: 
IsHiccups(k, l) ==> (s + k + l = s + l) 
 (3) 


where 

FUNC IsHiccups(k, l) -> Bool = 
% k is a sequence of attempts to complete l 

RET k = {} 

\/ (EXISTS k', l'| k = k' + l' /\ l' # {} /\ l' <= l 


/\ IsHiccups(k', l) ) 


because we can keep absorbing the last hiccup l' into the final complete l. For example, taking 
some liberties with the notation for sequences: 

abcaaabcdababcdeaabcde 

= abcaaabcdababcde + (a + abcde) 

= abcaaabcdababcde + abcde by (2) 
= abcaaabcdab + (abcde + abcde) 
= abcaaabcdab + abcde by (2) 
= abcaaabcd + (ab + abcde) 
= abcaaabcd + abcde by (2) 

and so forth. 

To prove (3), observe that 
IsHiccups(k, l) /\ k # {} ==> k = k' + l' /\ l' <= l /\ IsHiccups(k', l). 


Hence 
s+k+l = (s+k')+l'+l = s+k'+l by (2) 

and k' < k. But we have IsHiccups(k', l), so we can proceed by induction until k' = {} 
and we have the desired result. 

We can get log idempotence if the U’s commute and are idempotent (that is, u * u = u), or if 
they are all writes. More generally, for arbitrary U’s we can attach a UID to each U and record it in 
S when the U is applied, so we can tell that it shouldn’t be applied again. Calling the original state 
SS, and defining a meaning method that turns a U record into a function, we have 

TYPE 

S = [ss, tags: SET UID] 

U = [uu: SS->SS, tag: UID] WITH { meaning:=Meaning } 


FUNC Meaning(u, s)->S = 

u.tag IN s.tags => RET s % u already done 

[*] RET S{ (u.uu)(s.ss), s.tags + {u.tag} } 


If all the U’s in l have different tags, we get log idempotence. The tags make U’s ‘testable’ in the 
jargon of transaction processing; after a crash we can test to find out whether a U has been done 
or not. In the standard database code each U works on one disk page, the tag is the ‘log sequence 
number’, the index of the update in the log, and the update writes the tag on the disk page. 

Writing the log atomically 

There is still an atomicity problem in this code: Commit atomically does << sl := vl >>, and 
the logs can be large. A simple way to use a disk to code a log that requires this assignment of 
arbitrary-sized sequences is to keep the size of sl in a separate disk block, and to write all the 
data first, then do a Sync if necessary, and finally write the new size. Since sl is always empty 
before this assignment, in this representation it will remain empty until the single Disk.write 
that sets its size. This is rather wasteful code, since it does an extra disk write. 

Handout 7. Disks and File Systems 23 Handout 7. Disks and File Systems 24 



6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002 

More efficient code writes a ‘commit record’ at the end of the log, and treats the log as empty 
unless the commit record is present. Now it’s only necessary to ensure that the log can never be 
mis-parsed if a crash happens while it’s being written. An easy way to accomplish this is to write 
a distinctive ‘erased value into each disk block that may become part of the log, but this means 
that for every disk write to a log block, there will be another write to erase it. To avoid this cost 
we can use a ring buffer of disk blocks for the log and a sequence number that increments each 
time the ring buffer wraps around; then a block is ‘erased’ if its sequence number is not the 
current one. There’s still a cost to initialize the sequence numbers, but it’s only paid once. With 
careful code, a single bit of sequence number is enough. 

In some applications it’s inconvenient to make room in the data stream for a sequence number 
every DBsize bytes. To get around this, use a ‘displaced’ representation for the log, in which the 
first data bit of each block is removed from its normal position to make room for the one bit 
sequence number. The displaced bits are written into their own disk blocks at convenient 
intervals. 

Another approach is to compute a strong checksum for the log contents, write it at the end after 
all the other blocks are known to be on the disk, and treat the log as empty unless a correct 
checksum is present. With a good n-bit checksum, the probability of mis-parsing is 2-n . 

Redundancy 

A disk has many blocks. We would like some assurance that the failure of a single block will not 
damage a large part of the file system. To get such assurance we must record some critical parts 
of the representation redundantly, so that they can be recovered even after a failure. 

The simplest way to get this effect is to record everything redundantly. This gives us more: a 
single failure won’t damage any part of the file system. Unfortunately, it is expensive. In current 
systems this is usually done at the disk abstraction, and is called mirroring or shadowing the 
disk. 

The alternative is to record redundantly only the information whose loss can damage more than 
one file: extent, allocation, and directory information. 

Another approach is to 

do all writes to a log, 

keep a copy of the log for a long time (by writing it to tape, usually), and 

checkpoint the state of the file system occasionally. 

Then the current state can be recovered by restoring the checkpoint and replaying the log from 
the moment of the checkpoint. This method is usually used in large database systems, but not in 
any file systems that I know of. 

We will discuss these methods in more detail near the end of the course. 

Copying File Systems 

The file system described in FSImpl above separates the process of adding DB’s to the 
representation of a file from the process of writing data into the file. A copying file system (CFS) 
combines these two processes into one. It is called a ‘log-structured’ file system in the literature1, 
but as we shall see, the log is not the main idea. A CFS is based on three ideas: 

•	 Use a generational copying garbage collector (called a cleaner) to reclaim DB’s that are no 
longer reachable and keep all the free space in a single (logically) contiguous region, so that 
there is no need for a bit table or free list to keep track of free space. 

•	 Do all writes sequentially at one end of this region, so that existing data is never overwritten 
and new data is sequential. 

•	 Log and cache updates to metadata (the index and directory) so that the metadata doesn’t 
have to be rewritten too often. 

A CFS is a very interesting example of the subtle interplay among the ideas of sequential 
writing, copying garbage collection, and logging. This section describes the essentials of a CFS 
in detail and discusses more briefly a number of refinements and practical considerations. It will 
repay careful study. 

Here is a picture of a disk organized for a CFS: 
abc==defgh====ijkl=m=nopqrs-----------------

In this picture letters denote reachable blocks, =’s denote unreachable blocks that are not part of 
the free space, and -’s denote free blocks (contiguous on the disk viewed as a ring buffer). After 
the cleaner copies blocks a-e the picture is 

-------fgh====ijkl=m=nopqrsabcde-----------­

because the data a-e has been copied to free space and the blocks that used to hold a-e are free, 
together with the two unreachable blocks which were not copied. Then after blocks g and j are 
overwritten with new values G and J, the picture is 

-------f=h====i=kl=m=nopqrsabcdeGJ----------

The new data G and J has been written into free space, and the blocks that used to hold g and j 
are now unreachable. After the cleaner runs to completion the picture is 

---------------------nopqrsabcdeGJfhiklm----


Pros and cons 

A CFS has two main advantages: 

•	 All writing is done sequentially; as we know, sequential writes are much faster than random 
writes. We have a good technique for making disk reads faster: caching. As main memory 
caches get bigger, more reads hit in the cache and disks spend more of their time writing, so 
we need a technique to make writes faster. 

1 M. Rosenblum and J. Osterhout, The design and implementation of a log-structured file system, ACM 
Transactions on Computer Systems, 10, 1, Feb. 1992, pp 26-52. 
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•	 The cleaner can copy reachable blocks to anywhere, not just to the standard free space 
region, and can do so without interfering with normal operation of the system. In particular, it 
can copy reachable blocks to tape for backup, or to a different disk drive that is faster, 
cheaper, less full, or otherwise more suitable as a home for the data. 

There are some secondary advantages. Since the writes are sequential, they are not tied to disk 
blocks, so it’s easy to write items of various different sizes without worrying about how they are 
packed into DB’s. Furthermore, it’s easy to compress the sequential stream as it’s being written2, 
and if the disk is a RAID you never have to read any blocks to recompute the parity. Finally, 
there is no bit table or free list of disk blocks to maintain. 

There is also one major drawback: unless large amounts of data in the same file are written 
sequentially, a file will tend to have lots of small extents, which can cause the problems 
discussed on page 13. In Unix file systems most files are written all at once, but this is certainly 
not true for databases. Ways of alleviating this drawback are the subject of current research. The 
cost of the cleaner is also a potential problem, but in practice the cost of the cleaner seems to be 
small compared to the time saved by sequential writes. 

Updating metadata 

For the CFS to work, it must update the index that points to the DB’s containing the file data on 
every write and every copy done by the cleaner, not just when the file is extended. And in order 
to keep the writing sequential, we must handle the new index information just like the file data, 
writing it into the free space instead of overwriting it. This means that the directory too must be 
updated, since it points to the index; we write it into free space as well. Only the root of the 
entire file system is written in a fixed location; this root says where to find the directory. 

You might think that all this rewriting of the metadata is too expensive, since a single write to a 
file block, whether existing or new, now triggers three additional writes of metadata: for the 
index (if it doesn’t fit in the directory), the directory, and the root. Previously none of these 
writes was needed for an existing block, and only the index write for a new block. However, the 
scheme for logging updates that we introduced to code transactions can also handle this problem. 
The idea is to write the changes to the index into a log, and cache the updated index (or just the 
updates) only in main memory. An example of a logged change is “block 43 of file ‘alpha’ now 
has disk address 385672”. Later (with any luck, after several changes to the same piece of the 
index) we write the index itself and log the consequent changes to the directory; again, we cache 
the updated directory. Still later we write the directory and log the changes to the root. We only 
write a piece of metadata when: 

We run out of main memory space to cache changed metadata, or 

The log gets so big (because of many writes) that recovery takes too long. 

To recover we replay the active tail of the log, starting before the oldest logged change whose 
metadata hasn’t been rewritten. This means that we must be able to read the log sequentially 

2 M. Burrows et al., On-line compression in a log-structured file system, Proc. 5th Conference on Architectural 
Support for Programming Languages and Operating Systems, Oct. 1992, pp 2-9. This does require some blocking 
so that the decompressor can obtain the initial state it needs. 

from that point. It’s natural to write the log to free space along with everything else. While we 
are at it, we can also log other changes like renames. 

Note that a CFS can use exactly the same directory and index data as an ordinary file system, and 
in fact exactly the same code for Read. To do this we must give up the added flexibility we can 
get from sequential writing, and write each DB of data into a DB on the disk. Several codes have 
done this (but the simple code below does not). 

The logged changes serve another purpose. Because a file can only be reached from a single 
directory entry (or inode), the cleaner need not trace the directory structure in order to find the 
reachable blocks. Instead, if the block at da was written as block b of file f, it’s sufficient to look 
at the file index and find out whether block b of file f is still at da. But the triple (b, f, da) is 
exactly the logged change. To take advantage of this we must keep the logged change as long as 
da remains reachable since the cleaner needs it (it’s called ‘segment summary’ information in the 
literature). We don’t need to replay it on recovery once its metadata is written out, however, and 
hence we need the sequential structure of the log only for the active tail. 

Existing CFS’s use the extra level of naming called inodes that is described on page 19. The 
inode numbers don’t change during writing or copying, so the PN -> INo directory doesn’t 
change. The root points to index information for the inodes (called the ‘inode map’), which 
points to inodes, which point to data blocks or, for large files, to indirect blocks which point to 
data blocks. 

Segments 

Running the cleaner is fairly expensive, since it has to read and write the disk. It’s therefore 
important to get as much value out of it as possible, by cleaning lots of unreachable data instead 
of copying lots of data that is still reachable. To accomplish this, divide the disk into segments, 
large enough (say 1 MB or 10 MB) that the time to seek to a new segment is much smaller than 
the time to read or write a whole segment. Clean each segment separately. Keep track of the 
amount of unreachable space in each segment, and clean a segment when (unreachable space) * 
(age of data) exceeds a threshold. Rosenblum and Osterhout explain this rule, which is similar in 
spirit to what a generational garbage collector3 does; the goal is to recover as much free space as 
possible, without allowing too much unreachable space to pile up in old segments. 

Now the free space isn’t physically contiguous, so we must somehow link the segments in the 
active tail together. We also need a table that keeps track for each segment of whether it is free, 
and if not, what its unreachable space and age are; this is cheap because segments are so large. 

Backup 

As we mentioned earlier, one of the major advantages of a CFS is that it is easier to back up. 
There are several reasons for this. 

3 H. Lieberman and C. Hewitt, A real-time garbage collector based on the lifetimes of objects, Comm. ACM 26, 6, 
June 1983, pp 419-429. 
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1.	 You can take a snapshot just by stopping the cleaner from freeing cleaned segments, and then 
copy the root information and the log to the backup medium, recording the logged data 
backward from the end of the log. 

2.	 This backup data structure allows a single file (or a small set of files) to be restored in one 
pass. 

3. It’s only necessary to copy the log back to the point at which the previous backup started. 

4.	 The disks reads done by backup are sequential and therefore fast. This is an important issue 
when the file system occupies many terabytes. At the 10 MB/s peak transfer rate of the disk, 
it takes 105 seconds, or a bit more than one day, to copy a terabyte. This means that a small 
number of disks and tapes running in parallel can do it in a fraction of a day. If the transfer 
rate is reduced to 1 MB/s by lots of seeks (which is what you get with random seeks if the 
average block size is 10 KB), the copying time becomes 10 days, which is impractical. 

5.	 If a large file is partially updated, only the updates will be logged and hence appear in the 
backup. 

6. It’s easy to merge several incremental backups to make a full backup. 

To get these advantages, we have to retain the ordering of segments in the log even after 
recovery no longer needs it. 

There have been several research implementations of CFS’s, and at least one commercial one 
called Spiralog in Digital Equipment Corporation’s (now Compaq’s) VMS system. You can read 
a good deal about it at http://www.digital.com/info/DTJM00/. 

A simple CFS code 

We give code for CopyingFS of a CFS that contains all the essential ideas (except for segments, 
and the rule for choosing which segment to clean), but simplifies the data structures for the sake 
of clarity. CopyingFS treats the disk as a root DB plus a ring buffer of bytes. Since writing is 
sequential this is practical; the only cost is that we may have to pad to the end of a DB 
occasionally in order to do a Sync. A DA is therefore a byte address on the disk. We could 
dispense with the structure of disk blocks entirely in the representation of files, just write the 
data of each File.Write to the disk, and make a FSImpl.BE point directly to the resulting byte 
sequence on the disk. Instead, however, we will stick with tradition, take BE = DA, and represent 
a file as a SEQ DA plus its size. 

So the disk consists of a root page, a busy region, and a free region (as we have seen, in a real 
system both busy and free regions would be divided into segments); see the figure below. The 
busy region is a sequence of encoded Item’s, where an Item is either a D or a Change to a DB in a 
file or to the D. The busy region starts at busy and ends just before free, which always points to 
the start of a disk block. We could write free into the root, but then making anything stable 
would require a (non-sequential) write of the root. Instead, the busy region ends with a 
recognizable endDB, put there by Sync, so that recovery can find the end of the busy region. 

dDA  is the address of the latest directory on the disk. The part of the busy region after dDA is the 
active tail of the log and contains the changes that need to be replayed during recovery to 
reconstruct the current directory; this arrangement ensures that we start the replay with a d to 
which it makes sense to apply the changes that follow. 

This code does bytewise writes that are buffered in buf and flushed to the disk only by Sync. 
Hence after a crash the state reverts to the state at the last Sync. Without the replay done during 
recovery by ApplyLog, it would revert to the state the last time the root was written; be sure you 
understand why this is true. 

We assume that a sequence of encoded Item’s followed by an endDB can be decoded 
unambiguously. See the earlier discussion of writing logs atomically. 

Other simplifications: 

1.	 We store the SEQ DA that points to the file DB’s right in the directory. In real life it would be a 
tree, along one of the lines discussed in FSImpl, so that it can be searched and updated 
efficiently even when it is large. Only the top levels of the tree would be in the directory. 

2.	 We keep the entire directory in main memory and write it all out as a single Item. In real life 
we would cache parts of it in memory and write out only the parts that are dirty (in other 
words, that contain changes). 

3.	 We write a data block as part of the log entry for the change to the block, and make the DA’s 
in the file representation point to these log entries. In real life the logged change information 
would be batched together (as ‘segment summary information’) and the data written 
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separately, so that recovery and cleaning can read the changes efficiently without having to 
read the file data as well, and so that contiguous data blocks can be read with a single disk 
operation and no extra memory-to-memory copying. 

4.	 We allocate space for data in Write, though we buffer the data in buf rather than writing it 
immediately. In real life we might cache newly written data in the hope that another adjacent 
write will come along so that we can allocate contiguous space for both writes, thus reducing 
the number of extents and making a later sequential read faster. 

5.	 Because we don’t have segments, the cleaner always copies items starting at busy. In real life 
it would figure out which segments are most profitable to clean. 

6.	 We run the cleaner only when we need space. In real life, it would run in the background to 
take advantage of times when the disk is idle, and to maintain a healthy amount of free space 
so that writes don’t have to wait for the cleaner to run. 

7.	 We treat WriteData and WriteRoot as atomic. In real life we would use one of the 
techniques for making log writes atomic that are described on page 23. 

8.	 We treat Init and Crash as atomic, mainly for convenience in writing invariants and 
abstraction functions.In real life they do several disk operations, so we have to lock out 
external invocations while they are running. 

9. We ignore the possibility of errors. 

MODULE CopyingFS EXPORTS PN, Sync = % implements File, uses Disk 

TYPE DA = Nat % Disk Address in bytes 
WITH "+":=DAAdd, "-":=DASub} 

LE = SEQ DA % Linear Extent 
Data = File.Data 

= File.X 
F = [le, size: X] % size = # of bytes 

PN = String WITH [...] % Path Name 
D = PN -> F 

Item = (DBChange + DChange + D + Pad) % item on the disk 
DBChange = [pn, x, db] % db is data at x in file pn 
DChange = [pn, dOp, x] % x only for SetSize 
DOp = ENUM[create, delete, setSize] 
Pad = [size: X] % For filling up a DB; 

% Pad{x}.enc.size = x. 

IDA = [item, da] 

SI = SEQ IDA % for parsing the busy region


Root = [dDA: DA, busy: DA] % assume encoding < DBSize 


CONST 

DBSize := Disk.DBSize 

diskSize := 1000000 


rootDA := 0 
bottom := rootDA + DBSize % smallest DA outside root 
top := (DBSize * diskSize) AS DA 
ringSize := top - bottom 
endDB := DB{...} % starts unlike any Item 

VAR % All volatile; stable data is on disk. 
d : D := {} 

sDDA : DA := bottom % = ReadRoot().dDA 
sBusy : DA := Bottom % = ReadRoot().busy 
busy : DA := bottom 
free : DA := bottom 
next : DA := bottom % DA to write buf at 
buf : Data := {} % waiting to be written 
disk % the disk 

ABSTRACTION FUNCTION File.d = ( LAMBDA (pn) -> File.F = 

% The file is the data pointed to by the DA's in its F. 

VAR f := d(pn), diskData := + :(f.le * ReadOneDB) | 
RET diskData.seg(0, f.size) ) 

ABSTRACTION FUNCTION File.oldDs = { SD(), d } 


INVARIANT 1: ( ALL f :IN d.rng | f.le.size * DBSize >= f.size ) 
% The blocks of a file have enough space for the data. From FSImpl. 

The reason that oldDs doesn’t contain any intermediate states is that the stable state changes 
only in a Sync, which shrinks oldDs to just d. 

During normal operation we need to have the variables that keep track of the region boundaries 
and the stable directory arranged in order around the disk ring, and we need to maintain this 
condition after a crash. Here are the relevant current and post-crash variables, in order (see below 
for MinSpace). The ‘post-crash’ column gives the value that the ‘current’ expression will have 
after a crash. 

Current Post-crash 
busy sBusy start of busy region 
sDDA sDDA most recent stable d 
next end of stable busy region 
free next end of busy region 
free + minSpace() next + minSpace() end of cushion for writes 

In addition, the stable busy region should start and end before or at the start and end of the 
volatile busy region, and the stable directory should be contained in both. Also, the global 
variables that are supposed to equal various stable variables (their names start with ‘s’) should in 
fact do so. The analysis that leads to this invariant is somewhat tricky; I hope it’s right. 

INVARIANT 2: 

IsOrdered((SEQ DA){next + MinSpace(), sBusy, busy, sDDA, next, free, 


free + MinSpace(), busy}) 

/\ EndDA() = next /\ next//DBSize = 0 /\ Root{sDDA, sBusy} = ReadRoot() 


Finally, 
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The busy region should contain all the items pointed to from DA’s in d or in global variables. 

The directory on disk at sDDA plus the changes between there and free should agree with d. 

This condition should still hold after a crash. 

INVARIANT 3: 

IsAllGood(ParseLog(busy, buf), d) 


/\ IsAllGood(ParseLog(sBusy, {}), SD()) 


The following functions are mainly for the invariants, though they are also used in crash 
recovery. ParseLog expects that the disk from da to the next DB with contents endDB, plus data, 
is the encoding of a sequence of Item’s, and it returns the sequence SI, each Item paired with its 
DA. ApplyLog takes an SI that starts with a D and returns the result of applying all the changes in 
the sequence to that D. 

FUNC ParseLog(da, data) -> SI = VAR si, end: DA | 
% Parse the log from da to the next endDB block, and continue with data. 

+ :(si * (\ ida | ida.item.enc) = ReadData(da, end - da) + data 

/\ (ALL n :IN si.dom - {0} | 


si(n).da = si(n-1).da + si(n-1).item.enc.size) 

/\ si.head.da = da 

/\ ReadOneDB(end) = endDB => RET si 


FUNC ApplyLog(si) -> D = VAR d' := si.head.item AS D | 
% si must start with a D. Apply all the changes to this D. 

DO VAR item := si.head.item | 

IF item IS DBChange => d'(item.pn).le(item.x/DBSize) := si.head.da 

[] item IS DChange => d' := ... % details omitted 
[*] SKIP % ignore D and Pad 
FI; si := si.tail 

OD; RET d' 

FUNC IsAllGood(si, d') -> Bool = RET 
% All d' entries point to DBChange’s and si agrees with d' 

(ALL da, pn, item | d'!pn /\ da IN d'(pn).le /\ IDA{item, da} IN si 

==> item IS DBChange) 


/\ ApplyLog(si) = d' 


FUNC SD() -> D = RET ApplyLog(ParseLog(sDDA), {}) 
% The D encoded by the Item at sDDA plus the following DChange’s 

FUNC EndDA() -> DA = VAR ida := ParseLog(sDDA).last | 
% Return the DA of the first endDB after sDDA, assuming a parsable log. 

RET ida.da + ida.item.enc.size 


The minimum free space we need is room for writing out d when we are about to overwrite the 
last previous copy on the disk, plus the wasted space in a disk block that might have only one 
byte of data, plus the endDB. 

FUNC MinSpace() -> Int = RET d.enc.size + (DBSize-1) + DBsize 


The following Read and Write procedures are much the same as they would be in FSImpl, where 
we omitted them. They are full of boring details about fitting things into disk blocks; we include 
them here for completeness, and because the way Write handles allocation is an important part 

of CopyingFS. We continue to omit the other File procedures like SetSize, as well as the 
handling in ApplyLog of the DChange items that they create. 

PROC Read(pn, x, size: X) -> Data = 

VAR f := d(pn), 


size := {{size, f.size - x}.min, 0}.max, % the available bytes 
n := x/DBSize, % first block number 
nSize := NumDBs(x, size), % number of blocks 
blocks:= n .. n + nSize -1, % blocks we need in f.le 
data := + :(blocks * f.le * ReadItem * % all data in these blocks 

(\ item | (item AS DBChange).db)) | 
RET data.seg(x//DBSize, size) % the data requested 

PROC Write(pn, x, data) = VAR f := d(pn) | 

% First expand data to contain all the DB’s that need to be written 

data := Data.fill(0, x - f.size) + data; % add 0’s to extend f to x 
x := {x, f.size}.min; % and adjust x to match 
IF VAR y := x//DBSize | y # 0 => % fill to a DB in front 

x := x - y; data := Read(pn, x, y) + data 
[*] SKIP FI; 
IF VAR y := data.size//DBSize | y # 0 => % fill to a DB in back 

data + := Read(pn, x + data.size, DBSize - y) 
[*] SKIP FI; 
% Convert data into DB’s, write it, and compute the new f.le 
VAR blocks := Disk.DToB(data), n := x/DBSize, 

% Extend f.le with 0’s to the right length.

le := f.le + LE.fill(0, x + blocks.size - le.size), 

i := 0 | 


DO blocks!i => 

le(n + i) := WriteData(DBChange{pn, x, blocks(i)}.enc); 

x + := DBSize; i + := 1 


OD; d(pn).le := le 


These procedures initialize the system and handle crashes. Crash is somewhat idealized; more 
realistic code would read the log and apply the changes to d as it reads them, but the logic would 
be the same. 

PROC Init() = disk := disk.new(diskSize); WriteD() % initially d is empty 

PROC Crash() = << % atomic for simplicity 
CRASH; 
sDDA := ReadRoot().sDDA; d := SD(); 
sBusy := ReadRoot().busy; busy := sBusy; 
free := EndDA(); next := free; buf := {} >> 

These functions read an item, some data, or a single DB from the disk. They are boring. ReadItem 
is somewhat unrealistic, since it just chooses a suitable size for the item at da so that Item.dec 
works. In real life it would read a few blocks at DA, determine the length of the item from the 
header, and then go back for more blocks if necessary. It reads either from buf or from the disk, 
depending on whether da is in the write buffer, that is, between next and free. 

FUNC ReadItem(da) -> Item = VAR size: X | 

RET Item.dec( ( DABetween(da, next, free) => buf.seg(da - next, size) 

[*] ReadData(da, size) ) ) 
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FUNC ReadData(da, size: X) -> Data = 
 % 1 or 2 disk.read’s 
% Int."+", not DA."+" 

% Read the necessary disk blocks, then pick out the bytes requested. 
IF size + da <= top => 


VAR data := disk.read(LE{da/DBSize, NumDBs(da, size)}) | 

RET data.seg(da//DBSize, size) 


[*] RET ReadData(da, top - da) + ReadData(bottom, size - (top - da)) 


PROC ReadOneDB(da) = RET disk.read(LE{da/DBSize, 1})) 


WriteData writes some data to the disk. It is not boring, since it includes the write buffering, the 
cleaning, and the space bookkeeping. The writes are buffered in buf, and Sync does the actual 
disk write. In this module Sync is only called by WriteD, but since it’s a procedure in File it can 
also be called by the client. When WriteData needs space it calls Clean, which does the basic 
cleaning step of copying a single item. There should be a check for a full disk, but we omit it. 
This check can be done by observing that the loop in WriteData advances free all the way 
around the ring, or by keeping track of the available free space. The latter is fairly easy, but 
Crash would have to restore the information as part of its replay of the log. 

These write procedures are the only ones that actually write into buf. Sync and WriteRoot 
below are the only procedures that write the underlying disk. 

PROC WriteData(data) -> DA = % just to buf, not disk 
DO IsFull(data.size) => Clean() OD; 
buf + := data; VAR da := free | free + := data.size; RET da 

PROC WriteItem(item) = VAR q := item.enc | buf + := q; free + := q.size 
% No check for space because this is only called by Clean, WriteD. 

PROC Sync() = 

% Actually write to disk, in 1 or 2 disk.write’s (2 if wrapping). 
% If we will write past sBusy, we have to update the root. 

IF (sBusy - next) + (free - next) <= MinSpace() => WriteRoot()[*] SKIP FI; 

% Pad buf to even DB’s. A loop because one Pad might overflow current DB. 
DO VAR z := buf.size//DBSize | z # 0 => buf := buf + Pad{DBSize-z}.enc OD;.

buf := buf + endDB; % add the end marker DB 

<< % atomic for simplicity

IF buf.size + next < top => disk.write(next/DBSize, buf) 

[*] disk.write(next /DBSize, buf.seg(0 , top-next )); 


disk.write(bottom/DBSize, buf.sub(top-next, buf.size-1)) 

FI; 

>>; free := next + buf.size - DBSize; next := free; buf := {} 


The constraints on using free space are that Clean must not cause writes beyond the stable sBusy 
or into a disk block containing Item’s that haven’t yet been copied. (If sBusy is equal to busy and 
in the middle of a disk block, the second condition might be stronger. It’s necessary because a 
write will clobber the whole block.) Furthermore, there must be room to write an Item 
containing d. Invariant 2 expresses all this precisely. In real life, of course, Clean would be 
called in the background, the system would try to maintain a fairly large amount of free space, 
and only small parts of d would be dirty. Clean drops DChange’s because they are recorded in 
the D item that must appear later in the busy region. 

FUNC IsFull(size: X) -> Bool = RET busy - free < MinSpace() + size 


PROC Clean() = VAR item := ReadItem(busy) | % copy the next item 
IF item IS DBChange /\ d(item.pn).le(item.x/DBSize) = busy => 

d(item.pn).le(item.x/DBSize) := free; WriteItem(item) 
[] item IS D /\ da = sDDA => WriteD() % the latest D 
[*] SKIP % drop DChange, Pad 
FI; busy := busy + item.enc.size 

PROC WriteD() = 

% Called only from Clean and Init. Could call it more often to speed up recovery 
%, after DO busy - free < MinSpace() => Clean() OD to get space. 

sDDA := free; WriteItem(d); Sync(); WriteRoot() 

The remaining utility functions read and write the root, convert byte sizes to DB counts, and 
provide arithmetic on DA’s that wraps around from the top to the bottom of the disk. In real life 
we don’t need the arithmetic because the disk is divided into segments and items don’t cross 
segment boundaries; if they did the cleaner would have to do something quite special for a 
segment that starts with the tail of an item. 

FUNC ReadRoot() -> Root = VAR root, pad | 

ReadOneDB(rootDA) = root.enc + pad.enc => RET root 


PROC WriteRoot() = << VAR pad, db | db = Root{sDDA, busy}.enc + pad.enc => 

disk.write(rootDA, db); sBusy := busy >> 


FUNC NumDBs(da, size: X) -> Int = RET (size + da//DBSize + DBSize-1)/DBSize 
% The number of DB’s needed to hold size bytes starting at da. 

FUNC DAAdd(da, i: Int) -> DA = RET ((da - bottom + i) // ringSize) + bottom 


FUNC DASub(da, i: Int) -> DA = RET ((da - bottom - i) // ringSize) + bottom 
% Arithmetic modulo the data region. abs(i) should be < ringSize. 

FUNC DABetween(da, da1, da2) -> Bool = RET da = da1 \/ (da2 - da1) < (da1 - da) 


FUNC IsOrdered(s: SEQ DA) -> Bool = 

RET (ALL i :IN s.dom - {0, 1} | DABetween(s(i-1), s(i-2), s(i))) 


END CopyingFS 
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