
6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 1

30. Concurrent Caching

In the previous handout we studied the fault-tolerance aspects of replication. In this handout we
study many of the performance and concurrency aspects, under the label ‘caching’. A cache is of
course a form of replication. It is usually a copy of some ‘ground truth’ that is maintained in
some other way, although ‘all-cache’ systems are also possible. Normally a cache is not big
enough to hold the entire state (or it’s not cost-effective to pay for the bandwidth needed to get
all the state into it), so one issue is how much state to keep in the cache. The other main issue is
how to keep the cache up-to-date, so that a read will obtain the result of the most recent write as
the Memory spec requires. We concentrate on this problem.

This handout presents several specs and codes for caches in concurrent systems. We begin with a
spec for CoherentMemory, the kind of memory we would really like to have; it is just a function
from addresses to data values. We also specify the IncoherentMemory that has fast code, but is
not very nice to use. Then we show how to change IncoherentMemory so that it codes
CoherentMemory with as little communication as possible. We describe various strategies,
including invalidation-based and update-based strategies, and strategies using incoherent
memory plus locking.

Since the various strategies used in practice have a lot in common, we unify the presentation
using successive refinements. We start with cache code GlobalImpl that clearly works, but is
not practical to code directly because it is extremely non-local. Then we refine GlobalImpl in
stages to obtain (abstract versions of) practical code.

First we show how to use reader/writer locks to get a practical version of GlobalImpl called a
coherent cache. We do this in two stages, an ideal cache CurrentCaches and a concrete cache
ExclusiveLocks. The caches change the guards on internal actions of IncoherentMemory as
well as on the external read and write actions, so they can’t be coded externally, simply by
adding a test before each read or write of IncoherentMemory, but require changes to its insides.

There is another way to use locks to get a different practical version of GlobalImpl, called
ExternalLocks. The advantage of ExternalLocks is that the locking is decoupled from the
internal actions of the memory system so that it can be coded separately, and hence
ExternalLocks can run entirely in software on top of a memory system that only implements
IncoherentMemory. In other words, ExternalLocks is a practical way to program coherent
memory on a machine whose hardware provides only incoherent memory.

There are many practical codes for the methods that are described abstractly here. Most of them
originated in the hardware of shared-memory multiprocessors.1 It is also possible to code shared
memory in software, relying on some combination of page faults from the virtual memory and

1 J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann,
1996, chapter 8, pp 635-754.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 2

checks supplied by the compiler. This is called ‘distributed shared memory’ or DSM.2
Intermediate schemes do some of the work in hardware and some in software.3 Many of the
techniques have been re-invented for coherent distributed file systems.4

All our code makes use of a global memory that is modeled as a function from addresses to data
values; in other words, the spec for the global memory is simply CoherentMemory. This means
that actual code may have a recursive structure, in which the top-level code for CoherentMemory
using one of our algorithms contains a global memory that is coded with another algorithm and
contains another global memory, etc. This recursion terminates only when we lose interest in
another level of virtualization. For example,

a processor’s memory may consist of a first level cache plus
a global memory made up of a second level cache plus

a global memory made up of a main memory plus
a global memory made up of a local swapping disk plus

a global memory made up of a file server

Specs

First we recall the spec for ordinary coherent memory. Then we give the spec for efficient but
ugly incoherent memory. Finally, we discuss an alternative, less intuitive way of writing these
specs.

Coherent memory

The first spec is for the memory that we really want, which ensures that all memory operations
appear atomic. It is essentially the same as the Memory spec from Handout 5 on memory specs,
except that m is defined to be total. In the literature, this is sometimes called a ‘linearizable’
memory; in the more general setting of transactions it is ‘serializable’ (see handout 20).

MODULE CoherentMemory [P, A, V] EXPORT Read, Write =
% Arguments are Processors, Addresses and Data

TYPE M = A -> D SUCHTHAT (\ f: A->D | (ALL a | f!a))
VAR m

APROC Read(p, a) -> D = << RET m(a) >>
APROC Write(p, a, d) = << m(a) := d >>

END CoherentMemory

2 K. Li and P. Hudak, Memory coherence in shared virtual memory systems. ACM Transactions on Computer
Systems 7, 4 (Nov. 1989), pp 321-359. For recent work in this active field see any ISCA, ASPLOS, OSDI, or SOSP
proceedings.
3 David Chaiken and Anant Agarwal. Software-extended coherent shared memory: performance and cost.
Proceedings of the 21st Annual Symposium on Computer Architecture, pages 314-324, April 1994
(http://www.cag.lcs.mit.edu/alewife/papers/soft-ext-isca94.html). Jeffrey Kuskin et al., The Stanford FLASH
multiprocessor. In Proceedings of the 21st International Symposium on Computer Architecture, pages 302-313,
Chicago, IL, April 1994 (http://www-flash.stanford.edu/architecture/papers/ISCA94).
4 M. Nelson et al., Caching in the Sprite network file system. ACM Transactions on Computer Systems 11, 2 (Feb.
1993), pp 228-239. For recent work in this active field see any OSDI or SOSP proceedings.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 3

From this point we drop the a argument and study a memory with just one location; that is, we
study a cached register. Since everything about the specs and code holds independently for each
address, we don’t lose anything by doing this, and it reduces clutter. We also write the p
argument as a subscript, again to make the specs easier to read. The previous spec becomes

MODULE CoherentMemory [P, V] EXPORT Read, Write =
% Arguments are Processors and Data

TYPE M = D % Memory
VAR m

APROC Readp -> D = << RET m >>
APROC Writep(d) = << m := d >>

END CoherentMemory

Of course, code usually has limits on the size of a cache, or other resource limitations that can
only be expressed by considering all the addresses at once, but we will not study this kind of
detail here.

Incoherent memory

The next spec describes the minimum guarantees made by hardware: there is a private cache for
each processor, and internal actions that move data back and forth between caches and the main
memory, and between different caches. The only guarantee is that data written to a cache is not
overwritten in that cache by anyone else’s data. However, there is no ordering on writes from the
cache to main memory.

This is not enough to get any useful work done, since it allows writes to remain invisible to
others forever. We therefore add a Barrier synchronization operation that forces the cache and
memory to agree. This can be used after a Write to ensure that an update has been written back
to main memory, and before a Read to ensure that the data being read is current. Barrier was
called Sync when we studied disks and file systems in handout 7, and eventual consistency in
handouts 12 and 28.

Note that Read has a guard Live that it makes no attempt to satisfy (hardware usually has an
explicit flag called valid). Instead, there is another action MtoC that makes Live true. In a real
system an attempt to do a Read will trigger a MtoC so that the Read can go ahead, but in Spec we
can omit the direct linkage between the two actions and let the non-determinism do the work. We
use this coding trick repeatedly in this handout. Another example is Barrier, which forces the
cache to drop its data by waiting until Drop happens; if the cache is dirty, Drop will wait for CtoM
to store its data into memory first.

You might think that this is just specsmanship and that a nondeterministic MtoC is silly, but in
fact transferring data from m to c without a Read is called prefetching, and many codes do it
under various conditions: because it’s in the next block, or because a past reference sequence
used it, or because the program executes a prefetch instruction. Saying that it can happen
nondeterministically captures all of this behavior very simply.

We adopt the convention that an invalid cache entry has the value nil.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 4

MODULE IncoherentMemory [P, A, V] EXPORT Read, Write, Barrier =
TYPE M = D % Memory

C = P -> (D + Null) % Cache

VAR m : CoherentMemory.M % main memory
c := C{* -> nil} % local caches
dirty : P -> Bool := {*->false} % dirty flags

% INVARIANT Inv1: (ALL p | c!p) % each processor has a cache
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache

APROC Readp -> D = << Livep => RET cp >> % MtoC gets data into cache
APROC Writep(d) = << cp := d; dirtyp := true >>

APROC Barrierp = << ~ Livep => SKIP >> % wait until not in cache

FUNC Livep -> Bool = RET (cp # nil)

% Internal actions

THREAD Internalp = DO MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp [] SKIP OD

APROC MtoCp = << ~ dirtyp => cp := m >> % copy memory to cache
APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory
APROC CtoCp,p' = << ~ dirtyp' /\ Livep => cp' := cp >> % copy from cache p to p'
APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache

END IncoherentMemory

In real code some of these actions may be combined. For example, if the cache is dirty, a real
barrier operation may do CtoM; Barrier; MtoC by just storing the data. These combinations
don’t introduce any new behavior, however, and it’s simplest to study the minimum set of
actions presented here.

This memory is ‘incoherent’: different caches can have different data for the same address, so
that adjacent reads by different processors may see completely different data. Thus, it does not
implement the CoherentMemory spec given earlier. However, after a Barrierp, cp is guaranteed
to agree with m until the next time m changes or p does a Write.5 There are commercial machines
whose memory systems have essentially this spec.6 Others have explored similar specs.7

Here is a simple example that shows the contents of two addresses 0 and 1 in m and in three
processors p, q, and r. A dirty value is marked with a *, and circles mark values that have

5 An alternative version of Barrier has the guard ~ livep \/ (cp = m); this is equivalent to the current
Barrierp followed by an optional MtoCp. You might think that it’s better because it avoids a copy from m to cp in
case they already agree. But this is a spec, not an implementation, and the change doesn’t affect its external
behavior.
6 Digital Equipment Corporation, Alpha Architecture Handbook, 1992. IBM, The PowerPC Architecture, Morgan
Kaufmann, 1994.
7 Gharachorloo, K., et al., Memory consistency and event ordering in scalable shared-memory multiprocessors,
Proc. 17th Symposium on Computer Architecture, 1990, pp 15-26. Gibbons, P. and Merritt, M., Specifying
nonblocking shared memories, Proc. 4th ACM Symposium on Parallel Algorithms and Architectures, 1992, pp 158-
168.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 5

changed. Initially Readq(1) yields the dirty value z, Readr(1) yields y, and Readp(1) blocks
because cp(1) is nil. After the CtoMq the global location m(1) has been updated with z. After
the MtoCp, Readp(1) yields z. One way to ensure that the CtoMq and MtoCp actions happen before
the Readp(1) is to do Barrierq followed by Barrierp between the Writeq(1) that makes z
dirty in cq and the Readp(1).

After MtoCp, Readp(1) yields z

CtoMq updates m(1) with z

Readq(1) yields the dirty value z
Readr(1) yields y
Readp(1) blocks

x
nil
cp

x
z
m

x
z
mCtoMq(1)

nil
z*
cq

x
y
cr

x
y
m

x
nil
cp

nil
z
cq

x
y
cr

nil
z
cq

x
y
cr

MtoCp(1)
x
z
cp

(0)
(1)

Here are the possible transitions of IncoherentMemory for a given address. This kind of state
transition picture is the standard way to describe cache algorithms in the literature; see pages
664-5 of Hennessy and Patterson, for example.

Write CtoMWrite

MtoC, CtoC

Drop
live /\ ~ dirty

live /\ dirty

~ live

This is the weakest shared-memory spec that seems likely to be useful in practice. But perhaps it
is too weak. Why do we introduce this messy incoherent memory? Wouldn’t we be much better
off with the simple and familiar coherent memory? There are two reasons to prefer
IncoherentMemory:

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 6

• Code for IncoherentMemory can run faster—there is more locality and less communication.
As we will see later in ExternalLocks, software can batch the communication that is needed
to make a coherent memory out of IncoherentMemory.

• Even CoherentMemory is tricky to use when there are concurrent clients. Experience has
shown that it’s necessary to have wizards to package it so that ordinary programmers can use
it safely. This packaging takes the form of rules for writing concurrent programs and
procedures that encapsulate references to shared memory. We studied these rules in handout
14 on practical concurrency, under the name ‘easy concurrency’. The two most common
examples are:

Mutual exclusion / critical sections / monitors together with a “lock before touching’ rule,
which ensure that a number of references to shared memory can be done without
interference from other processors, just as in a sequential program. Reader/writer locks
are an important variation.

Producer-consumer buffers.

For the ordinary programmer only the simplicity of the package is important, not the subtlety of
its code. We need a smarter wizard to package IncoherentMemory, but the result is as simple to
use as the packaged CoherentMemory.

Specifying legal histories directly

It’s common in the literature to write the specs CoherentMemory and IncoherentMemory
explicitly in terms of legal sequences of references in each processor, rather than as state
machines (see the references in the previous section). We digress briefly to explain this approach
informally; it is similar to what we did to specify concurrent transactions in handout 20.

For CoherentMemoryLH, there must be a total ordering of all the Readp and Writep(v) actions
done by the processors (for all the addresses) that

• respects the order at each p, and
• such that for each Read and closest preceding Write(v), the Read returns v.

For IncoherentMemoryLH, for each address separately there must be a total ordering of the
Readp, Writep, and Barrierp actions done by the processors that has the same properties.
IncoherentMemory is weaker than CoherentMemory because it allows references to different
addresses to be ordered differently. If there were only one address and no other communication
(so that you couldn’t see the relative ordering of the operations), you couldn’t tell the difference
between the two specs. A real barrier operation usually does a Barrier for every address, and
thus forces all the references before it at a given processor to precede all the references after it.

It’s not hard to show that CoherentMemoryLH is equivalent to CoherentMemory. It’s less obvious
that IncoherentMemoryLH is almost equivalent to IncoherentMemory. There’s more to this spec
than meets the eye, because it doesn’t say anything about how the chosen ordering is related to
the real times at which different processors do their operations. Actually it is somewhat more
permissive than IncoherentMemory. For example, it allows the following history

• Initially x=1, y=1.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 7

• Processor p reads 4 from x, then writes 8 to y.
• Processor q reads 8 from y, then writes 4 to x.

For x we have the ordering Writeq(4); Readp, and for y the ordering Writep(8); Readq.

We can rule out this kind of predicting the future by observing that the processors make their
references in some total order in real time, and requiring that a suitable ordering exist for the
references in each prefix of this real time order. With this restriction, the two versions of
IncoherentMemoryLH and IncoherentMemory are equivalent. But the restriction may not be an
improvement, since it’s conceivable that a processor might be able to predict the future in this
way by speculative execution. In any case, the memory spec for the Alpha is in fact
IncoherentMemoryLH and allows this freedom.

Coding coherent memory

We give a sequence of refinements that implement CoherentMemory and are successively more
practical: GlobalImpl, Current Caches, and ExclusiveLocks. Then we give a different kind
of code that is based on IncoherentMemory.

Global code

Now we give code for CoherentMemory. We obtain it simply by strengthening the guards on the
operations of IncoherentMemory (omitting Barrier, which we don’t need). This code is not
practical, however, because the guards involve checking global state, not just the state of a single
processor. This module, like later ones, maintains the invariant Inv3 that an address is dirty in at
most one cache; this is necessary for the abstraction function to make sense. Note that the
definition of Current says that the cache agrees with the abstract memory.

We show only the code that differs from IncoherentMemory, boxing the new parts.

MODULE GlobalImpl [P, A, V] EXPORT Read, Write = % implements CoherentMemory

TYPE ... % as in IncoherentMemory
VAR ...

% ABSTRACTION: CoherentMemory.m = (Clean() => m [*] {p | dirtyp | cp}.choose)

% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache

APROC Readp -> D = << Currentp => RET cp >> % read only current data
APROC Writep(d) = % Write maintains Inv3

<< Clean() \/ dirtyp => cp := d; dirtyp := true >>

FUNC Currentp = % p’s cache is current?
RET cp = (Clean() => m [*] {p | dirtyp | cp}.choose)

FUNC Clean() = RET (ALL p | ~ dirtyp) % all caches are clean?

% Same internal actions as IncoherentMemory.

END GlobalImpl

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 8

Notice that the guard on Read checks that the data in the processor’s cache is current, that is,
equals the value currently stored in the abstract memory. This requires finding the most recent
value, which is either in the main memory (if no processor has a dirty value) or in some
processor's cache (if a processor has a dirty value). The guard on Write ensures that a given
address is dirty in at most one cache. These guards make it obvious that GlobalImpl implements
CoherentMemory, but both require checking global state, so they are impractical to code directly.

Code in which caches are always current

We can’t code the guards of GlobalImpl directly. In this section, we refine GlobalImpl a bit,
replacing some (but not all) of the global tests. We carry this refinement further in the following
sections. Our strategy for correctness is to always strengthen the guards in the actions, without
changing the rest of the code. This makes it obvious that we simulate the previous module and
that existing invariants hold. The only thing to check is that new invariants hold.

The main idea of CurrentCaches is to always keep the data in the caches current, so that we no
longer need the Current guard on Read. In order to achieve this, we impose a guard on a write
that allows it to happen only if no other processor has a cached copy. This is usually coded by
having a write invalidate other cached copies before writing; in our code Write waits for Drop
actions at all the other caches that are live. Note that Only implies the guard of
GlobalImpl.Write because of Inv2 and Inv3, and Live implies the guard of GlobalImpl.Read
because of Inv4. This makes it obvious that CurrentCaches implements GlobalImpl.
CurrentCaches uses the non-local functions Clean and Only, but it eliminates Current. This is
progress, because Read, the most common action, now has a local guard, and because Clean and
Only just test Live and dirty, which is much simpler than Current’s comparison of cp with m.

As usual, the parts not shown are the same as in the last module, GlobalImpl.

MODULE CurrentCaches ... = % implements GlobalImpl

TYPE ... % as in IncoherentMemory
VAR ...

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty.

% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current

...

FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p’s cache

APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4
APROC Writep(d) = % write locally the only copy

<< Onlyp => cp := d; dirtyp := true >>

...

APROC MtoCp = << Clean() => cp := m >> guard maintains Inv4
...

END CurrentCaches

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 9

Code using exclusive locks

The next code refines CurrentCaches by introducing an exclusive (write) lock with a Free test
and Acquire and Release actions. A writer must hold the lock on an object while it writes, but a
reader need not hold any lock (Live acts as a read lock according to Inv4 and Inc6). Thus,
multiple readers can read in parallel, but only one writer can write at a time, and only if there are
no concurrent readers. This means that before a write can happen at p, all other processors must
drop their copies; making this happen is called ‘invalidation’. The code ensures that while a
processor holds a lock, no other cache has a copy of the locked object. It uses the non-local
functions Clean and Free, but everything else is local. Again, the guards are stronger than those
in CurrentCaches, so it’s obvious that ExclusiveLocks0 implements CurrentCaches. We
show the changes from CurrentCaches.

MODULE ExclusiveLocks0 ... = % implements CurrentCaches

TYPE ... % as in IncoherentMemory
VAR ...

lock : P -> Bool := {*->false} % p has lock on cache?

% ABSTRACTION to CurrentCaches: Identity on m, c, and dirty.

% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy

...

APROC Writep(d) = % write with exclusive lock
<< lockp => cp := d; dirtyp := true >>

...

FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked?

THREAD Internalp =
DO MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp
 [] Acquirep [] Releasep [] SKIP OD

APROC MtoCp = % guard maintains Inv4, Inv6
<< Clean() /\ (lockp \/ Free()) => cp := m >>

APROC CtoCp,p' = % guard maintains Inv6
<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >>

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache
APROC Releasep = << lockp := false >> % release at any time

...

END ExclusiveLocks0

Note that this all works even in the presence of cache-to-cache copying of dirty data; a cache can
be dirty without being locked. A strategy that allows such copying is called update-based. The
usual code broadcasts (on the bus) every write to a shared location. That is, it combines with
each Writep a CtoCp, p' for each live p'. If this is done atomically, we don’t need the Onlyp in
Acquirep This is good if for each write of a shared location, the average number of reads on a

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 10

different processor is near 1. It’s bad if this average is much less than 1, since then each read that
goes faster is paid for with many bus cycles wasted on updates.

It’s possible to combine updates and invalidation. They you have to decide when to update and
when to invalidate. It’s possible to make this choice in a way that’s within a factor of two of an
optimal algorithm that knows the future pattern of references.8 The rule is to keep updating until
the accumulated cost of updates equals the cost of a read miss, and then invalidate.

Both Read and Write now do only local tests, which is good since they are supposed to be the
most common actions. The remaining global tests are the Only test in Acquire, the Clean test in
MtoC, and the Free tests in Acquire, MtoC, and CtoC. In hardware these are most commonly
coded by snooping on a bus. A processor can broadcast on the bus to check that:

• No one else has a copy (Only).

• No one has a dirty copy (Clean).

• No one has a lock (Free).

It’s called ‘snooping’ because these operations always go along with transfers between cache and
memory (except for Acquire), so no extra bus cycles are need to give every processor on the bus
a chance to see them.

For this to work, another processor that sees the test must either abandon its copy or lock, or
signal false. The false signals are usually generated at exactly the same time by all the
processors and combined by a simple ‘or’ operation. The processor can also request that the
others relinquish their locks or copies; this is called ‘invalidating’. Relinquishing a dirty copy
means first writing it back to memory, whereas relinquishing a non-dirty copy means just
dropping it from the cache. Sometimes the same broadcast is used to invalidate the old copies
and update the caches with new copies, although our code breaks this down into separate Drop,
Write, and CtoC actions.

Keeping dirty data locked

In the next module, we eliminate the cache-to-cache copying of dirty data; that is, we eliminate
updates on writes of shared locations. We modify ExclusiveLocks so that locks are held longer,
until data is no longer dirty. Besides the delayed lock release, the only significant change is in
the guard of MtoC. Now data can only be loaded into a cache p if it is not dirty in p and is not
locked elsewhere; together, these facts imply that the data item is clean, so we no longer need the
global Clean test.

8 A. Karlin et al, Competitive snoopy caching. Algorithmica 3, 1 (1988), pp 79-119.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 11

MODULE ExclusiveLocks ... = % implements ExclusiveLocks0

TYPE ... % as in ExclusiveLocks0
VAR ...

% ABSTRACTION to ExclusiveLocks0: Identity on m, c, dirty, and lock.

% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is locked

...

APROC MtoCp = % guard implies Clean()
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >>

APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty
...

END ExclusiveLocks

For completeness, we give all the code for ExclusiveLocks, since there have been so many
incremental changes. The non-local operations are boxed.

MODULE ExclusiveLocks[P,A,V] EXPORT Read,Write = % implements CoherentMemory

TYPE M = D % Memory
C = P -> (D + Null) % Cache

VAR m : CoherentMemory.M % main memory
c := C{* -> nil} % local caches
dirty : P -> Bool := {*->false} % dirty flags
lock : P -> Bool := {*->false} % p has lock on cache?

% ABSTRACTION to ExclusiveLocks: Identity on m, c, dirty, and lock.

% INVARIANT Inv1: (ALL p | c!p) % every processor has a cache
% INVARIANT Inv2: (ALL p | dirtyp ==> Livep) % dirty data is in the cache

% INVARIANT Inv3: {p | dirtyp}.size <= 1 % dirty in at most one cache
% INVARIANT Inv4: (ALL p | Livep ==> Currentp) % data in caches is current
% INVARIANT Inv5: {p | lockp}.size <= 1 % lock is exclusive
% INVARIANT Inv6: (ALL p | lockp ==> Onlyp) % locked data is only copy
% INVARIANT Inv7: (ALL p | dirtyp ==> lockp) % dirty data is locked

APROC Readp -> D = << Livep => RET cp >> % read locally; OK by Inv4
APROC Writep(d) = % write with exclusive lock

<< lockp => cp := d; dirtyp := true >>

FUNC Livep -> Bool = RET (cp # nil)
FUNC Onlyp -> Bool = RET {p' | Livep'} <= {p} % appears at most in p's cache?
FUNC Free() -> Bool = RET (ALL p | ~ lockp) % no one has cache locked?

THREAD Internalp =
DO MtoCp [] CtoMp [] VAR p' | CtoCp,p' [] Dropp
 [] Acquirep [] Releasep [] SKIP OD

APROC MtoCp = % guard implies Clean()
<< ~ dirtyp /\ (lockp \/ Free()) => cp := m >>

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 12

APROC CtoMp = << dirtyp => m := cp; dirtyp := false >> % copy cache to memory.
APROC CtoCp,p' = % guard maintains Inv6

<< Free() /\ ~ dirtyp' /\ Livep => cp' := cp >>
APROC Dropp = << ~ dirtyp => cp := nil >> % drop clean data from cache

APROC Acquirep = << Free() /\ Onlyp => lockp :=true >> % exclusive lock is on cache
APROC Releasep = << ~ dirtyp => lockp := false >> % don't release if dirty

END ExclusiveLocks

Practical code

The remaining global tests are the Only test in the guard of Acquire, and the Free tests in the
guards of Acquire, MtoC and CtoC. There are many ways to code them. Here are a few:

• Snooping on the bus, as described above. This is only practical when you have a cheap
synchronous broadcast, that is, in a bus-based shared memory multiprocessor. The shared bus
limits the maximum performance, so typically such systems are not built with more than
about 8 processors. As processors get faster, a shared bus gets less practical.

• Directory-based: Keep a “directory”, usually associated with main memory, containing
information about where locks and copies are currently located. To check Free, a processor
need only interact with the directory. To check Only, the same strategy can be used;
however, there is a difficulty if cache-to-cache copying is permitted—the directory must be
informed when such copying occurs. For this reason, directory-based code usually eliminates
cache-to-cache copying entirely. So far, there’s no need for broadcast. To acquire a lock, the
directory may need to communicate with other caches to get them to relinquish locks and
copies. This can be done by broadcast, but usually the directory keeps track of all the live
processors and sends a message to each one. If there are lots of processors, it may fall back to
broadcast for locations that are shared by too many processors.

These schemes, both snooping and directory, are based on a model in which all the
processors have uniform access to the shared memory.

Shared Main Memory

Cache Cache Cache

Processor Processor Processor

Interconnect

The directory technique extends to large-scale multiprocessor systems like Flash and
Alewife, distributed shared memory, and locks in clusters9, in which the memory is attached

9 Kronenberg, N. et al, The VAXCluster concept: An overview of a distributed system, Digital Technical Journal 1,
3 (1987), pp 7-21.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 13

to processors. When the abstraction is memory rather than files, these systems are often
called ‘non-uniform memory access’, or NUMA, systems.

Processor ProcessorProcessor

Memory Memory Memory

Cache Cache Cache

Interconnect

The directory itself can be distributed by defining a ‘home’ location for each address that
stores the directory information for that address. This is inefficient if that address turns out to
be referenced mainly by other processors. To make the directory’s distribution adapt better to
usage, store the directory information for an address in a ‘master’ processor for that address,
rather than in the home processor. The master can change to track the usage, but the home
processor always remembers the master. Thus:

FUNC Home(a) -> P = … % some fixed algorithm
VAR master: P -> A -> P % master(p) is partial
 copies: P -> A -> SET P % defined only at the master
 locker: P -> A -> P % defined only at the master
INVARIANT (ALL a, p, p' |
 master(Home(a))!a % master is defined at a’s home P,
 /\ master(p)!a /\ master(p')!a ==> % where it’s defined, it’s the same
 master(p)(a) = master(p')(a)
 /\ copies!p = (p = master(Home(a))(a))) % and copies is defined only at master

The Home function is often a hash of a; it’s possible to change the hash function, but if this is
not atomic it must be done very carefully, because Home will be different at different
processors and the invariants must hold for all the different Home’s.

Processor
1

Processor
P

Processor
2

Memory Memory Memory
Cache Cache Cache

Interconnect

Directory Directory Directory

• Hierarchical: Partition the processors into sets, and maintain a directory for each set. The
main directory attached to main memory keeps track of which processor sets have copies or
locks; the directory for each set keeps track of which processors in the set have copies or

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 14

locks. The hierarchy may have more levels, with the processor sets further subdivided, as in
Flash.

There are many issues for high-performance code: communication cost, bandwidth into the
cache into tag store, interleaving, and deadlock. The references at the start of this handout go into
a lot of detail.

Purely software code is also possible. This form of DSM makes V be a whole virtual memory
page and uses page faults to catch memory operations that require software intervention, while
allowing those that can be satisfied locally to run at full speed. A live page is mapped, read-only
unless it is dirty; a page that isn’t live isn’t mapped.10

Code based on IncoherentMemory
Next we consider a different kind of code for CoherentMemory that runs on top of
IncoherentMemory. This code guarantees coherence by using an external read/write locking
discipline. This is an example of an important general strategy—using weaker memory together
with a programming discipline to guarantee strong coherence.

The code uses read/write locks, as defined earlier in the course, one per data item. There is a
module ExternalLocksp for each processor p, which receives external Read and Write requests,
obtains the needed locks, and invokes low-level Read, Write, and Barrier operations on the
underlying IncoherentMemory memory. The composition of these pieces implements
CoherentMemory. We give the code for ExternalLocksp.

MODULE ExternalLocksp [A, V] EXPORT Read, Write = % implements CoherentMemory

% ReadAcquirep acquires a read lock for processor p.
% Similarly for ReadRelease, WriteAcquire, WriteRelease

PROC Readp =
ReadAcquirep; Barrierp; VAR d| d := IncoherentMemory.Readp; ReadReleasep; RET d

PROC Writep(d) = WriteAcquirep; IncoherentMemory.Writep(d); Barrierp; WriteReleasep

END ExternalLocksp

This code does not satisfy all the invariants of CurrentCaches and its code. In particular, the
data in caches is not always current, as stated in Inv4. It is only guaranteed to be current if it is
read-locked, or if it is write-locked and dirty.

Invariants Inv1, Inv2, and Inv3 are still satisfied. Invariants Inv5 and Inv6 no longer apply
because the lock discipline is completely different; in particular, a locked copy need not be the
only copy of an item. Let wLockPs be the set of processors that have a write-lock, and rLockPs
be those with a read-lock.

We thus have Inv1-3, and new Inv4a-Inv7a that replace Inv4-Inv7:

10 K. Li and P. Hudak, Memory coherence in shared virtual memory systems, ACM Transactions on Computer
Systems 7, 4 (Nov 1989), pp 321-359.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 15

% INVARIANT Inv4a: % Data is current
(ALL p | dirtyp \/ (p IN rLockPs /\ Livep) ==> Currentp())

% INVARIANT Inv5a: % Write lock is exclusive.
 wLockPs.size <= 1

% INVARIANT Inv6a: % Write lock excludes read locks.
 wLockPs # {} ==> rLockPs = {}

% INVARIANT Inv7a: (ALL p | dirtyp ==> p IN wLockPs) % dirty data is write-locked

With these invariants, the identity abstraction to GlobalImpl works:

% ABSTRACTION to GlobalImpl: Identity on m, c, and dirty.

We note some differences between ExternalLocks and ExclusiveLocks, which also uses
exclusive locks for writing:

• In ExclusiveLocks, Read can always proceed if there is a cache copy. In ExternalLocks,
Read has a stronger guard in ReadAcquire (requiring a read lock).

• In ExclusiveLocks, MtoC checks that no other processor has a lock on the item. In
ExternalLocks, an MtoC can occur as long as it doesn’t overwrite dirty writes.

• In ExternalLocks, the guard for Acquire only involves lock conflicts, and does not check
Only. (In fact, ExternalLocks doesn't use Only at all.)

• Additional Barrier actions are required in ExternalLocks.

• In ExclusiveLocks, the data in the cache is always current. In ExternalLocks, it is only
guaranteed to be current for read-lock holders, and for write-lock holders who have already
written.

In practice we don’t surround every read and write with Acquire and Release. Instead, we take
advantage of the rules for easy concurrency and rely on the fact that any reference to a shared
variable must be in a critical section, surrounded by Acquire and Release of the lock that
protects it. All we need to add is a Barrier at the beginning of the critical section, after the
Acquire, and another at the end, before the Release. Sometimes people build these barrier
actions into the acquire and release actions; this is called ‘release consistency’.

Note—here we give up the efficiency of continuing to hold the lock until someone else needs it.

Remarks

Costs of incoherent memory

IncoherentMemory allows a multiprocessor shared memory to respond to Read and Write
actions without any interprocessor communication. Furthermore, these actions only require
communication between a processor and the global memory when a processor reads from an
address that isn’t in its cache. The expensive operation in this spec is Barrier, since the
sequence Writep; Barrierp; Barrierq; Readq requires the value written by p to be
communicated to q. In most code Barrier is even more expensive because it acts on all

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 16

addresses at once. This means that roughly speaking there must be at least enough
communication to record globally every address that p wrote before the Barrierp, and to drop
from p’s cache every address that is globally recorded as dirty.

Read-modify-write operations

Although this isn’t strictly necessary, all current codes have additional external actions that make
it easier to program mutual exclusion. These usually take the form of some kind of atomic read-
modify-write operation, for example an atomic swap or compare-and-swap of a register value
and a memory value. A currently popular scheme is two actions: ReadLinked(a) and
WriteConditional(a), with the property that if any other processor writes to a between a
ReadLinkedp(a) and the next WriteConditionalp(a), the WriteConditional leaves the
memory unchanged and returns an indication of failure. The effect is that if the
WriteConditional succeeds, the entire sequence is an atomic read-modify-write from the
viewpoint of another processor, and if it fails the sequence is a SKIP. Compare-and-swap is
obviously a special case; it’s useful to know this because something as strong as compare-and-
swap is needed to program wait-free synchronization using a shared memory. Of course these
operations also incur communication costs, at least if the address a is shared.

We have shown that a program that touches shared memory only inside a critical section cannot
distinguish memory that satisfies IncoherentMemory from memory that satisfies the serial spec
CoherentMemory. This is not the only way to use IncoherentMemory, however. It is possible to
program other standard idioms, such as producer-consumer buffers, without relying on mutual
exclusion. We leave these programs as an exercise for the reader.

Caching as easy concurrency

We developed the coherent caching code by evolving from the obviously correct GlobalImpl to
code that has no global operations except to acquire locks. Another way to look at it is that
coherent caching is just a variation on easy concurrency. Each Read or Write touches a shared
variable and therefore must be done with a lock held, but there are no bigger atomic operations.
The read lock is Live and the write lock is lock. In order to avoid the overhead of acquiring and
releasing a lock on every memory operation, we use the optimization of holding onto a lock until
some other cache needs it.

Write buffering

Hardware caches, especially the ‘level 1’ caches closest to the processor, usually come in two
parts, called the cache and the write buffer. The latter holds dirty data temporarily before it’s
written back to the memory (or the level 2 cache in most modern systems). It is small and
optimized for high write bandwidth, and for combining writes to the same cache block that
happen close together in time into a single write of the entire block.

Invalidation

All caching systems have some provision for invalidating cache entries. A system that
implements CoherentMemory usually must invalidate a cache entry that is written on another
processor. The invalidation must happen before any read that follows the write touches the entry.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 17

Many systems, however, provide less coherence. For example, NFS simply times out cache
entries; this implements IncoherentMemory, with the clumsy property that the only way to code
Barrier is to wait for the timeout interval. The web does caching in client browsers and also in
proxies, and it also does invalidation by timeout. A web page can set the timeout interval, though
not all caches respect this setting. The Internet caches the result of DNS lookups (that is, the IP
address of a DNS name) and of ARP lookups (that is, the LAN address of an IP address). These
entries are timed out; a client can also discard an entry that doesn’t seem to be working. The
Internet also caches routing information, which is explicitly updated by periodic OSPF packets.

Think about what it would cost to make all these loosely coherent schemes coherent, and
whether it would be worth it.

Locality and granularity

Caching works because the patterns of memory references exhibit locality. There are two kinds
of locality.

• Temporal locality: if you reference an address, you are likely to reference it again in the near
future, so it’s worth keeping that item in the cache.

• Spatial locality: if you reference an address, you are likely to reference a neighboring address
in the near future. This makes it worthwhile to transfer a large block of data to the cache,
since the overhead of a miss is only paid once. Large blocks do have two drawbacks: they
consume more bandwidth, and they introduce or increase ‘false sharing’. A whole block has
to be invalidated whenever any part of it is written, and if you are only reading a different
part, the invalidation makes for extra work.

Both temporal and spatial locality can be improved by restructuring the program, and often this
restructuring can be done automatically. For instance, it’s possible to rearrange the basic blocks
of a program based on traces of program execution so that blocks that normally follow each other
in traces are in the same cache line or virtual memory page.

Distributed file systems

 A distributed file system does caching which is logically identical to the caching that a memory
system does. There are some practical differences:

• A DFS is usually built without any hardware support, whereas most DSM’s depend at least
on the virtual memory system to detect misses while letting hits run at full local memory
speed, and perhaps on much more hardware support, as in Flash.

• A DFS must deal with failures, whereas a DSM usually crashes a program that is sharing
memory with another program that fails.

• A DFS usually must scale better, to hundreds or thousands of nodes.

• A DFS has a wider choice of granularity: whole files, or a wide range of block sizes within
files.

6.826—Principles of Computer Systems 2002

Handout 30. Concurrent Caching 18

.

