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27. Distributed Transactions 

In this handout we study the problem of doing a transaction (that is, an atomic action) that 
involves actions at several different transaction systems, which we call the ‘servers’. The most 
obvious application is “distributed transactions”: separate databases running on different 
computers. For example, we might want to transfer money from an account at Citibank to an 
account at Wells Fargo. Each bank runs its own transaction system, but we still want the entire 
transfer to be atomic. More generally, however, it is good to be able to build up a system 
recursively out of smaller parts, rather than designing the whole thing as a single unit. The 
different parts can have different code, and the big system can be built even though it wasn’t 
thought of when the smaller ones were designed. 

Specs 

We have to solve two problems: composing the separate servers so that they can do a joint action 
atomically, and dealing with partial failures. Composition doesn’t require any changes in the 
spec of the servers; two servers that implement the SequentialTr spec in handout 19 can jointly 
commit a transaction if some third agent keeps track of the transaction and tells them both to 
commit. Partial failures do require changes in the server spec. In addition, they require, or at least 
strongly suggest, changes in the client spec. We consider the latter first. 

The client spec 

In the code we have in mind, the client may be invoking Do actions at several servers. If one of 
them fails, the transaction will eventually abort rather than committing. In the meantime, 
however, the client may be able to complete Do actions at other servers, since we don’t want each 
server to have to verify that no other server has failed before performing a Do. In fact, the client 
may itself be running on several machines, and may be invoking several Do’s concurrently. So 
the spec should say that the transaction can’t commit after a failure, and can abort any time after 
a failure, but need not abort until the client tries to commit. Furthermore, after a failure some Do 
actions may report crashed, and others, including some later ones, may succeed. 

We express this by adding another value failed to the phase. A crash sets the phase to failed, 
which enables an internal CrashAbort action that aborts the transaction. In the meantime a Do 
can either succeed or raise crashed. 

MODULE DistSeqTr [
V, % Value of an action 
S WITH { s0: ()->S } % State 
] EXPORT Begin, Do, Commit, Abort, Crash = 

TYPE A = S->(V, S) % Action 

VAR ss := S.s0() % Stable State 
vs := S.s0() % Volatile State 

: ENUM[idle, run, failed] := idle % PHase (volatile)ph 
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APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = <<
IF ph # idle => VAR v | (v, vs) := a(vs); RET v
[] ph # run => RAISE crashed
FI >> 

APROC Commit() RAISES {crashed} =
<< IF ph = run => ss := vs; ph := idle [*] Abort(); RAISE crashed FI >> 

PROC Abort () = << vs := ss, ph := idle >>
PROC Crash () = << ph := failed >> 

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD 

END DistSeqTr 

In a real system Begin starts a new transaction and returns its transaction identifier t, which is an 
argument to every other routine. Transactions can commit or abort independently (subject to the 
constraints of concurrency control). We omit this complication. Dealing with it requires 
representing each transaction’s state change independently in the spec. If the concurrency spec is 
‘any can commit’, Do(t) sees vs = ss + actions(t), and Commit(t) does ss := ss + 
actions(t). 

Partial failures 

When several servers are involved in a transaction, they must agree about whether the 
transaction commits. Thus each transaction commit requires consensus among the servers. 

The code that implements transactions usually keeps the state of a transaction in volatile storage, 
and only guarantees to make it stable at commit time. This is important for efficiency, since 
stable storage writes are expensive. To do this with several servers requires a server action to 
make a transaction’s state stable without committing it; this action is traditionally called 
Prepare. We can invoke Prepare on each server, and if they all succeed, we can commit the 
transaction. Without Prepare we might commit the transaction, only to learn that some server 
has failed and lost the transaction state. 

Prepare is a formalization of the so-called write-ahead logging in the old LogRecovery or 
LogAndCache code in handout 19. This code does a Prepare implicitly, by forcing the log to 
stable storage before writing the commit record. It doesn’t need a separate Prepare action 
because it has direct and exclusive access to the state, so that the sequential flow of control in 
Commit ensures that the state is stable before the transaction commits. For the same reason, it 
doesn’t need separate actions to clean up the stable state; the sequential flow of Commit and 
Crash takes care of everything. 

Once a server is prepared, it must maintain the transaction state until it finds out whether the 
transaction committed or aborted. We study a design in which a separate ‘coordinator’ module is 
responsible for keeping track of all the servers and telling them to commit or abort. Real systems 
sometimes allow the servers to query the coordinator, but we omit this minor variation. 

We give the spec for a server. Since we want to be able to compose servers repeatedly, we give it 
as a modification of the DistSeqTr client spec. The change is the addition of the stable ‘prepared 
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state’ ps, and a separate Prepare action between the last Do and Commit. A transaction is 
prepared if ps # nil. Note that Crash has no effect on a prepared transaction. Abort works on 
any transaction, prepared or not. 

MODULE TrServer [
V, % Value of an action 
S WITH { s0: ()->S } % State 
] EXPORT Begin, Do, Commit, Abort, Prepare, Crash = 

TYPE A = S->(V, S) % Action 

VAR ss := S.s0() % Stable State 
ps : (S + Null) := nil % Prepared State (stable) 
vs := S.s0() % Volatile State 
ph : ENUM[idle, run, failed] := idle % PHase (volatile) 

% INVARIANT ps # nil ==> ph = idle 

APROC Begin() = << Abort(); ph := run >> % aborts any current trans. 

APROC Do(a) -> V RAISES {crashed} = <<
IF ph # idle => VAR v | (v, vs) := a(vs); RET v
[] ph # run => RAISE crashed
FI >> 

APROC Prepare() RAISES {crashed} =
<< IF ph = run => ps := vs; ph := idle [*] RAISE crashed >> 

APROC Commit() RAISES {crashed} = <<
IF ps # nil => ss := ps; ps := nil [*] Abort(); RAISE crashed FI >> 

PROC Abort () = << vs := ss, ph := idle; ps := nil >>
PROC Crash () = << IF ps = nil => ph := failed [*] SKIP >> 

THREAD CrashAbort() = DO << ph = failed => Abort() >> OD 

END TrServer 

This spec requires its client to call Prepare exactly once before Commit, and confusingly raises 
crashed in Do after Prepare. A real system might handle these variations somewhat differently, 
but the differences are inessential. 

We don’t give code for this spec, since it is very similar to LogRecovery or LogAndCache. Like 
the old Commit, Prepare forces the log to stable storage; then it writes a prepared record so that 
recovery will know not to abort the transaction. Commit to a prepared transaction writes a 
commit record and then applies the log or discards the undo’s. Recovery rebuilds the volatile list 
of prepared transactions from the prepared records so that a later Commit or Abort knows what 
to do. Recovery must also restore the concurrency control state for prepared transactions; usually 
this means re-acquiring their locks. 

Committing a transaction 

We have not yet explained how to code DistSeqTr using several copies of TrServer. The basic 
idea is simple. A coordinator keeps track of all the servers that are involved in the transaction 
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(they are often called ‘workers’, ‘participants’, or ‘slaves’ in this story). Normally the 
coordinator is also one of the servers, but as with Paxos, it’s easier to explain what’s going on by 
keeping the two functions entirely separate. When the client tells the coordinator to commit, the 
coordinator tells all the servers to prepare. This succeeds if all the Prepare’s return normally. 
Then the coordinator records stably that the transaction committed, and tells all the servers to 
commit. 

The abstraction function from the states of the coordinator and the servers to the state of 
DistSeqTr is simple. We need names for the servers: 

TYPE 	R = Int % seRver name 
RS = [ss: S, ps: (S + Null), vs: S, ph] % seRver State 

The coordinator’s state is 

VAR 	ph : ENUM[idle, committed] := idle
servers : SET R := {} 

The server states are 

VAR s : R -> RS 

The spec’s vs is the combination of all the server vs values, where ‘combination’ is some way of 
assembly the complete state from the pieces on the various servers. Most often the state is a 
function from variables to values (as in Spec) and the domains of these functions are disjoint on 
the different servers. That is, the state space is partitioned among the servers. Then combination 
is the overlay of all the servers’ vs functions: 

DistSeqTr.vs = + : s.rng.vs 

Similarly, the spec’s ss is the combination of the servers’ ss unless ph = committed, in which 
case any server with a non-nil ps substitutes that: 

DistSeqTr.ss = (ph # committed => + : s.rng.ss
[*] + : s.rng * (\ rs | (rs.ps # nil => rs.ps [*] rs.ss))) 

We need to maintain the invariant that any server whose phase is not idle or which has ps # nil
is in servers, so that it will hear from the coordinator what it should do. 

If some server has failed, its Prepare will raise crashed. In this case the coordinator tells all the 
servers to abort, and raises crashed to the client. A server that is not prepared and doesn’t hear 
from the coordinator can abort on its own. A server that is prepared cannot abort on its own, but 
must hear from the coordinator whether the transaction has committed or aborted. 

This entire algorithm is called “two-phase commit”; do not confuse it with two-phase locking. 
The first phase is the prepares (the write-ahead logging), the second the commits. The 
coordinator can use any algorithm it likes to record the commit or abort decision. However, once 
some server is prepared, losing this information will leave that server permanently in limbo, 
uncertain whether to commit or abort. For this reason, a high-availability transaction system 
should use a high-availability way of recording the commit. This means storing it in several 
places and using a consensus algorithm to get these places to agree. 
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For example, you could use the Paxos algorithm. It’s convenient (though not necessary) to use 
the servers as the agents and the coordinator as leader. In this case the query/report phase of 
Paxos can be combined with the prepares, so no extra messages are required for that. There is 
still one round of command/report messages, which is more expensive than the minimum, non-
fault-tolerant consensus algorithm, in which the coordinator just records its decision. But using 
Paxos, a server is forced to block only if there is a network partition and it is on the minority side 
of the partition. 

In the theory literature this form of consensus is called the ‘atomic commitment’ problem. We 
can state the validity condition for atomic commitment as follows: A crash of any unprepared 
server does Allow(abort), and when the coordinator has heard that every server is prepared it 
does Allow(commit). You might think that consensus is trivial since at most one value is 
allowed. Unfortunately, this is not true because in general you don’t know which value it is. 

Most real transaction systems do not use fault-tolerant consensus to commit, but instead just let 
the coordinator record the result. In fact, when people say ‘two-phase commit’ they usually mean 
this form of consensus. The reason for this sloppiness is that usually the servers are not 
replicated, and one of the servers is the coordinator. If the coordinator fails or you can’t 
communicate with it, all the data it handles is inaccessible until it is restored from tape. So the 
fact that the outcome of a few transactions is also inaccessible doesn’t seem important. Once 
servers are replicated, however, it becomes important to replicate the commit result as well. 
Otherwise that will be the weakest point in the system. 

Bookkeeping 

The explanation above gives short shrift to the details of the coordinator’s work. In particular, 
how does the coordinator keep track of the servers efficiently. This problem has three aspects. 

Keeping track of servers 

The first is simply finding out who the servers are, since the client may be spread out over many 
machines, and it isn’t efficient to funnel every request to a server through the coordinator. The 
standard way to handle this is to arrange all the client processes in a tree, and require that each 
client process report to its parent the servers that it or its children have talked to. Then the root of 
the tree will know about all the servers, and it can either act as coordinator or give the 
coordinator this information. 

Noticing failed servers 

The second is noticing when a server has failed. In the SequentialTr or DistSeqTr specs this is 
simple: each transaction has a Begin that sets ph := run, and a failure sets ph to some other 
value. In the code, however, since there may be lots of client processes, a client doesn’t know the 
first time it talks to a server, so it doesn’t know when to call Begin on that server. One way to 
handle this is for each client process to send Begin to the coordinator, which then calls Begin
exactly once on each server. This costs extra messages, however, An alternative is to eliminate 
Begin and instead have both Do and Prepare report to the client whether the transaction is new 
at that server, that is, whether ph = idle before the action. If a server fails, it will forget this 
information (unless it’s prepared, in which case the information is stable), so that a later client 
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action will get another ‘new’ report. The client processes can then roll up all this information. If 
any server reports ‘new’ more than once, it must have crashed. 

To make this precise, each client processes counts the number of ‘new’ reports it has gotten from 
each server (here C names the client processes): 

VAR news : C -> R -> Int := {* -> 0} 

We add to the server state a history variable lost which is true if the server has failed and lost 
some of the client’s state. This is what the client needs to detect, so we maintain the invariant 

( ALL r | s(r).lost ==> (s(r).ph = idle /\ s(r).ps = nil)
\/ (+ : {c | news(c)(r)}) > 1 ) 

After all the servers have prepared, they all have s(r).ps # nil, so if anything is lost is shows 
up in the news count. 

A variation on this scheme has each server maintain an ‘incarnation id’ or ‘crash count’ which is 
different each time it recovers, and report this id to each Do and Prepare. Then any server with 
more than one id that is prepared must have failed during the transaction. 

Cleaning up 

The third aspect of bookkeeping is making sure that all the servers find out whether the 
transaction committed or aborted. Actually, only the prepared servers really need to find out, 
since a server that isn’t prepared can just abort the transaction if it is left in the lurch. But the 
timeout for this may be long, so it’s usually best to inform all the servers. 

The simple way to handle this is for the coordinator to record its servers variable stably before 
doing any prepares. Then even if it fails, it knows what servers to notify after recovery. 
However, this means an extra log write for servers before any prepares, in addition to the 
essential log write for the commit record. 

You might try to avoid this write by just telling each server the identity of the coordinator, and 
having a server query for the transaction outcome. This doesn’t work, because the coordinator 
needs to be able to forget the outcome eventually, in order to avoid the need to maintain state 
about each transaction forever. It can only forget after every server has learned the outcome and 
recorded it stably. If the coordinator doesn’t know the set of servers, it can’t know when all of 
them have learned the outcome. 

If there’s no stable record of the transaction, we can assume that it aborted. This convention, 
which is called ‘presumed abort’, is highly desirable, since otherwise we would have to do yet 
another log write at the beginning of the transaction. Given this, we can log the set of servers 
along with the commit record, since the transaction aborts if the coordinator fails before writing 
the commit record. But we still need to hear back from all the servers that they have recorded the 
transaction commit before we can clean up the commit record. If it aborts, we don’t have to hear 
back, because of the convention that a transaction with no record must have aborted. 

Since transactions usually commit, it’s unfortunate that we have optimized for the abort case. To 
fix this, we can make a more complicated convention based on the values of transaction 
identifiers T. We impose a total ordering on them, and record a stable variable tlow. Then we 
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maintain the invariant that any transaction with identifier < tlow is either committed, or not 
prepared at any server, or stably recorded as aborted at the coordinator. Thus old transactions are 
‘presumed commit’. This means that we don’t need to get acknowledgments from the servers for 
a committed transaction t. Instead, we can clean up their log entries as soon as t < tlow. 

The price for this scheme is that we do need acknowledgements from the servers for aborted 
transactions. That is OK, since aborts are assumed to be rare. However, if the coordinator crashes 
before writing a commit record for t, it doesn’t know who the servers are, so it doesn’t know 
when they have all heard about the abort. This means that the coordinator must remember 
forever the transactions that are aborted by its crashes. However, there are not many of these, so 
the cost is small. For a more complete explanation of this efficient presumed commit, see the 
paper by Lampson and Lomet.1 

Coordinating synchronization 

Simply requiring serializability at each site in a distributed transaction system is not enough, 
since the different sites could choose different serialization orders. To ensure that a single global 
serialization order exists, we need stronger constraints on the individual sites. We can capture 
these constraints in a spec. As with the ordinary concurrency described in handout 20, there are 
many different specs we could give, each of which corresponds to a different class of mutually 
compatible concurrency control methods (but where two concurrency control methods from two 
different classes may be incompatible). Here we illustrate one possible spec, which is appropriate 
for systems that use strict two-phase locking and other compatible concurrency control methods. 

Strict two-phase locking is one of many methods that serializes transactions in the order in which 
they commit. Our goal is to capture this constraint—that committed transactions are serializable 
in the order in which they commit—in a spec for individual sites in a distributed transaction 
system. This cannot be done directly, because commit decisions are made in a decentralized 
manner, so no single site knows the commit order. However, each site has some information 
about the global commit order. In particular, if a site hears that transaction t1 has committed 
before it processes an operation for transaction t2, then t2 must follow t1 in the global commit 
order (assuming that t2 eventually commits). Given a site’s local knowledge, there is a set of 
global commit orders consistent with its local knowledge (one of which must be the actual 
commit order). Thus, if a site ensures serializability in all possible commit orders consistent with 
its local knowledge, it is necessarily ensuring serializability in the global commit order. 

We can capture this idea more precisely in the following spec. (Rather than giving all the details, 
we sketch how to modify the spec of concurrent transactions given in handout 20.) 

•	 Keep track of a partial order precedes on transactions, which should record that t1 
precedes t2 whenever the Commit procedure for t1 happens before Do for t2. This can be 
done either by keeping a history variable with all external operations recorded (and defining 
precedes as a function on the history variable), or by explicitly updating precedes on each 
Do(B), by adding all pairs (tt, t2) where t1 is known to be committed. 

1 B. Lampson and D Lomet, A new presumed commit optimization for two phase commit. Proc. 19th VLDB 
Conference, Dublin, 1993, pp 630-640. 
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•	 Change the constraint Serializable in the invariant in the spec to require serializability in 
all total orders consistent with precedes, rather that just some total order consistent with xc. 
Note that an order consistent with precedes is also externally consistent. 

It is easy to show that the order in which transactions commit is one total order consistent with 
precedes; thus, if every site ensures serializability in every total order consistent with its local 
precedes order, it follows that the global commit order can be used as a global serialization 
order. 
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