
6.826—Principles of Computer Systems 2002 

24. Network Objects 

We have studied how to build up communications from physical signals to a reliable message 
channel defined by the Channel spec in handout 21 on distributed systems. This channel delivers 
bytes from a sender to a receiver in order and without loss or duplication as long as there are no 
failures; if there are failures it may lose some messages. 

Usually, however, a user or an application program doesn’t want reliable messages to and from a 
fixed party. Instead, they want access to a named object. A user wants to name the object with a 
World Wide Web URL (perhaps implicitly, by clicking on a hypertext link), and perhaps to pass 
some parameters that are supplied as fields of a form; the user expects to get back a result that 
can be displayed, and perhaps to change the state of the object, for instance, by recording a 
reservation or an order. A program may want the same thing, or it may want to call a procedure 
or invoke a method of an object. 

In both cases, the object name should have universal scope; that is: 

It should be able to refer to an object on any computer that you can communicate with. 

It should refer to the same object if it is copied to any computer that you can communicate 
with. 

As we learned when we studied naming, it’s possible to encode method names and arguments 
into the name. For example, the URL 

http://google.com/cgi-bin/query?&what=web&q=butler+lampson 

could be written in Spec as Google.Query("web", {"butler", "lampson"}). So we can write 
a general procedure call as a path name. To do this we need a way to encode and decode the 
arguments; this is usually called ‘marshaling’ and ‘unmarshaling’ in this context, but it’s the 
same mechanism we discussed in handout 7. 

So the big picture is clear. We have a global name space for all the objects we could possibly talk 
about, and we find a particular object by simply looking up its name, one component at a time. 
This summary is good as far as it goes, but it omits a few important things. 

•	 Roots. The global name space has to be rooted somewhere. A Web URL is rooted in the 
Internet’s Domain Name Space (DNS). 

•	 Heterogeneity. There may be a variety of communication protocols used to reach an object, 
hardware architectures and operating systems implementing it, and programming languages 
using it. Although we can abstract the process of name lookup as we did in handout 12, by 
viewing the directory or context at each point as a function N -> (D + V), there may be very 
different code for this lookup operation at different points. In a URL, for example, the host 
name is looked up in DNS, the next part of the name is looked up by the HTML server on 
that host, and the rest is passed to some program on the server. 

6.826—Principles of Computer Systems 2002 

•	 Efficiency. If we anticipate lots of references to objects, we will be concerned about 
efficiency. There are various tricks that we can use to make things run faster: 

Use specialized interfaces to look up a name. An important case of this is to pass a whole 
path name along to the lookup operation so that it can be swallowed in one gulp, rather 
than looking it up one simple name at a time. 

Cache the results of looking up prefixes of a name. 

Change the representation of an object name to make it efficient in a particular situation. 
This is called ‘swizzling’. One example is to encode a name in a fixed size data structure. 
Another is to make it relative to a locally meaningful root, in particular, to make it a 
virtual address in the local address space. 

•	 Fault tolerance. In general we need to deal with both volatile and stable (or persistent) 
objects. Volatile objects may disappear because of a crash, in which case there has to be a 
suitable error returned. Stable objects may be temporarily unreachable. Both kinds of objects 
may be replicated for availability, in which case we have to locate a suitable replica. 

•	 Location transparency. Ideally, local and remote objects behave in exactly the same way. In 
fact, however, there are certainly performance differences, and methods of remote objects 
may fail because of communication failure or failure of the remote system. 

•	 Data types and encoding. There may be restrictions on what types of values can be passed as 
parameters to methods, and the cost of encoding may vary greatly, depending on the 
encoding and on whether encoding is done by compiled code or by interpreting some 
description of the type. 

•	 Programming issues. If the objects are typed, the type system must deal with evolution of the 
types, because in a big system it isn’t practical to recompile everything whenever a type 
changes. If the objects are garbage collected, there must be a way to know when there are no 
longer any references to an object. 

Another way of looking at this is that we want a system that is universal, that is, independent of 
the details of the code, in as many dimensions as possible. 

Handout 24. Network Objects 1 Handout 24. Network Objects 2 



6.826—Principles of Computer Systems 2002 

Function Independent of How 

Transport bytes Communication protocol Reliable messages 

Transport meaningful Architecture and language Encode and decode 
values Stubs and pickles 

Network references 	 Location, architecture, and Globally meaningful names 
language 

Request-response Concurrency 	 Server: work queue 
Client: waiting calls 

Evolution Version of an interface Subtyping 

Fault tolerance Failures Replication and failover 

Storage allocation Failures, client programs Garbage collection 

There are lots of different kinds of network objects, and they address these issues in different 
ways and to different extents. We will look closely at two of them: Web URLs, and Modula-3 
network objects. The former are intended for human consumption, the latter for programming, 
and indeed for fairly low level programming. 

Web URLs 

Consider again the URL 

http://google.com/cgi-bin/query?&what=web&q=butler+lampson 

It makes sense to view http://google.com as a network object, and an HTTP Get operation on 
this URL as the invocation of a query method on that object with parameters (what:="web", 
q:="butler+lampson"). The name space of URL objects is rooted in the Internet DNS; in this 
example the object is just the host named by the DNS name plus the port (which defaults to 80 as 
usual). There is additional multiplexing for the RPC server cgi-bin. This server finds the 
procedure to run by looking up query in a directory of scripts and running it. 

HTTP is a request-response protocol. Internet TCP is the transport. This works in the most 
straightforward way: there is a new TCP connection for each HTTP operation (although the 
latest version, HTTP 1.2, has provision for caching connections, which cuts the number of round 
trips and network packets by a factor of 3 when the response data is short). The number of 
instructions executed to do an invocation is not very important, because it takes a user action to 
cause an invocation. 

In the invocation, all the names in the path name are strings, as are all the parameters. The data 
type of the response is always HTML. This, however, can contain other types. Initially GIF (for 
images) was the only widely supported type, but several others (for example, JPEG for images, 
Java and ActiveX for code) are now routinely supported. An arbitrary embedded type can be 

6.826—Principles of Computer Systems 2002 

handled by dispatching a ‘helper’ program such as a Postscript viewer, a word processor, or a 
spreadsheet. 

It’s also possible to do a Put operation that takes an HTML value as a parameter. This is more 
convenient than coding everything into strings in a Get. Methods normally ignore parameters 
that they don’t understand, and both methods and clients ignore the parts of HTML that they 
don’t understand. These conventions provide a form of subtyping. 

There is no explicit fault tolerance, though the Web inherits fault-tolerance for transport from IP 
and the ability to have multiple servers for an object from DNS. In addition, the user can retry a 
failed request. This behavior is consistent with the fact that the Web is used for casual browsing, 
so it doesn’t really have to work. This usage pattern is likely to evolve into one that demands 
much higher reliability, and a lot of the code will have to change as well to support it. 

Normally objects are persistent (that is, stored on the disk) and read-only, and there is no notion 
of preserving state from one operation to the next, so there is no need for storage allocation. 
There is a way to store server state in the client, using a data structure called a ‘cookie’. Cookies 
are indexed by the URL of the server that made them, so that different servers don’t step on each 
other’s cookies. The user is responsible for getting rid of cookies when they are no longer 
needed, but since they are small, most people don’t bother. Cookies are often used as pointers 
back to writeable state in the server, but there are no standard ways of doing this. 

As everyone knows, the Web has been extremely successful. It owes much of its success to the 
fact that an operation is normally invoked by a human user and the response is read by the same 
user. When things go wrong, the user gives up, makes the best of it, or tries something else. It’s 
extremely difficult to write programs that use HTTP, because there are so many things that can 
happen besides the “normal” response. Another way of saying this is that the web doesn’t have 
to work. 

Modula-3 network objects 

We now look at the Modula-3 network object system, which has an entirely different goal: to be 
used by programs. The things to be done are the same: name objects, encode parameters and 
responses, process request and response messages. However, most of the coding techniques are 
quite different. This system is described in the paper by Birrell et al. (handout 25). It addresses 
all of these issues in the table above except for fault-tolerance, and provides a framework for that 
as well. These network objects are closely integrated with Modula-3’s strongly typed objects, 
which are similar to the typed objects of C++, Java, and other ‘object-oriented’ programming 
languages. 

Why objects, rather than procedures? Because objects subsume the notions of procedure, 
interface, and reference/pointer. By an object we mean a collection of procedures that operate on 
some shared state; an object is just like a Spec module; indeed, its behavior can be defined by a 
Spec module. An essential property of an object is that there can be many codes for the same 
interface. This is often valuable in ordinary programming, but it’s essential in a distributed 
system, because it’s normal for different instances of the same kind of object to live on different 
machines. For example, two files may live on different file servers. 

Handout 24. Network Objects 3 Handout 24. Network Objects 4 



6.826—Principles of Computer Systems 2002 

Although in principle every object can have its own procedures to implement its methods, 
normally there are lots of objects that share the same procedure code, each with its own state. A 
set of objects with the same code is often called a ‘class’. The standard code for an object is a 
record that holds its state along with a pointer to a record of procedures for the class. Indeed, 
Spec classes work this way. 

The basic idea 

We begin with a spec for network objects. The idea is that you can invoke a method of an object 
transparently, regardless of whether it is local or remote. 

Client 

Server 

call 

Server 

call 

Client 

If it’s local, the code just invokes the method directly; if it’s remote, the code sends the 
arguments in a message and waits for a reply that contains the result. A real system does this by 
supplying a ‘surrogate’ object for a remote object. The surrogate has the same methods as the 
local object, but the code of each method is a ‘stub’ or ‘proxy’ that sends the arguments to the 
remote object and waits for the reply. The source code for the surrogate class is generated by a 
‘stub generator’ from the declaration of the real class, and then compiled in the ordinary way. 

void inner(long size, long A[], long B[], long *result) 

marshal unmarshal 

“wire” 

A[1..size] B[1..size] 

marshal unmarshal 

“wire” 

return value result 

inner 

STUB STUB 

CLIENT SERVER 

6.826—Principles of Computer Systems 2002 

We can’t do this in a general way in Spec. Instead, we change the call interface for methods to a 
single procedure Call. You give this procedure the object, the method, and the arguments (with 
type Any), and it gives back the result. This gives us clumsy syntax for invoking a method, 
Call(o, "meth", args) instead of o.meth(args), and sacrifices static type checking, but it 
also gives us transparent invocation for local and remote objects. 

An unrealistic form of this is very simple. 

MODULE Object0 = 
TYPE 	O = Method -> (PROC (Any) -> Any) % Object 

Method = String % Method name 

PROC Call(o, method, any) -> Any RAISES {failed} =
RET o(method)(any) 

END Object0 

What’s wrong with this is that it takes no account of what happens when there’s a failure. The 
machine containing the remote object might fail, or the communication between that machine 
and the invoker might fail. Either way, it won’t be possible to satisfy this spec. When there’s a 
failure, we expect the caller to see a failed exception. But what about the method? It may not 
be invoked at all, or it may be invoked but no result returned to the caller, or it may still be 
running after the caller gets the exception. This third case can arise if the remote object gets the 
call message, but communication fails and the caller times out while the remote method is still 
running; such a call is called an ‘orphan’. The following spec expresses all these possibilities; 
Fork(p, a) is a procedure that runs p(a) in a separate thread. We assume that the atomicity of 
the remote method when there’s a failure (that is, how much of it gets executed) is already 
expressed in its definition, so we don’t have to say anything about it here. 

MODULE Object = 
TYPE 	O = Method -> (PROC (Any) -> Any) % Object 

Method = String % Method name 

VAR failure : Bool := false 

PROC Call(o, method, any) -> Any RAISES {failed} =
RET o(method)(any)

[] failure => 
BEGIN SKIP [] o(method)(any) [] Fork(o(method), any) END;
RAISE failed 

END Object 

Now we examine basic code for this spec in terms of messages sent to and from the remote 
object. In the next two sections we will see how to optimize this code. 

Our code is based on the idea of a Space, which you should think of as the global name of a 
process or address space. Each object and each thread is local to some space. An object’s state is 
directly addressable there, and its methods can be directly invoked from a thread local to that 
space. We assume that we can send messages reliably between spaces using a channel Ch with 

Handout 24. Network Objects 5 Handout 24. Network Objects 6 



6.826—Principles of Computer Systems 2002 

the usual Get and Put procedures. Later on we discuss how to code this on top of standard 
networking. 

For network objects to work transparently, we must be able to: 

• Have a globally valid name for an object. 

• Find its space from its global name. 

• Convert between local and global names. 

We go from global to local in order to find the object in its own space to invoke a method; this is 
sometimes called ‘swizzling’. We go from local to global to send (a reference to) the object from 
its own space to another space; this is sometimes called ‘unswizzling’. 

Looking at the spec, the most obvious approach is to simply encode the value of an O to make it 
remote. But this requires encoding procedures, which is fraught with difficulty. The whole point 
of a procedure is that it reads and changes state. Encoding a function, as long as it doesn’t 
depend on global state, is just a matter of encoding its code, since given the code it can execute 
anywhere. Encoding a procedure is not so simple, since when it runs it has to read and change 
the same state regardless of where it is running. This means that the running procedure has to 
communicate with its state. It could do this with some low level remote read and write operations 
on state components such as bytes of memory. Systems that work this way are called ‘distributed 
shared memory’ systems,. The main challenge is to make the reads and writes efficient in spite of 
the fact that they involve network communication. We will study this problem in handout 30 
when we discuss caching. 

This is not what remote procedures or network objects are about, however. Instead of encoding 
the procedure code, we encode a reference to the object, and send it a message in order to invoke 
a method. This reference is a Remote; it is a path name that consists of the Space containing the 
object together with some local name for the object in that space. The local name could be just a 
LocalObj, the address of the object in the space. However, that would be rather fragile, since 
any mistake in the entire global system might result in treating an arbitrary memory address as 
the address of an object. It is prudent to name objects with meaningless object identifiers or 
Oid’s, and add a level of indirection for exporting the name of a local object, export: OId ->
LocalObj. We thus have Remote = [space, oid]. 

We summarize the encoding and decoding of arguments and results in two procedures Encode 
and Decode that map between Any and Data, as described in handout 7. In the next section we 
discuss some of the details of this process. 

MODULE NetObj = % codes Object 

TYPE 	O = (LocalObj + Remote)
LocalObj = Object.O % A local object 
Remote = [space, oid] % Wire Rep for an object 
OId = Int % Object Identifier 
Space = Int % Address space 

Data = SEQ Byte 

6.826—Principles of Computer Systems 2002 

CId = Int % Call Identifier

Req = [for: CId, remote, method, data] % Request

Resp = [for: CId, data] % Response

M = (Req + Resp) % Message


CONST r : Space := ...
sendSR := Ch.SR{s := r} 

VAR export : Space -> OId -> LocalObj % One per space 

PROC Call(o, method, any) -> Any RAISES {failed} =
IF o IS LocalObj => RET o(method)(any)
[*] VAR cid := NewCId(), to :=o.space |

Ch.Put(sendSR{r := to}, Req{cid, remote, method, Encode(any)});
VAR m |

IF << (to, m) := Ch.Get(r); m IS Resp /\ m.for = cid => SKIP >>;
RET Decode(m.data)

[] Timeout() => RAISE failed
FI 

FI 

After sending the request, Call waits for a response, which is identified by the right CId in the 
for field. If it hasn’t arrived by the time Timeout() is true, Call gives up and raises failed. 

Note the Spec hack: an atomic command that gets from the channel only the response to the 
current cid. Other threads, of course, might assign other cid’s and extract their responses from 
the same space-to-space channel. Code has to have this demultiplexing in some form, since the 
channel is between spaces and we are using it for all the requests and responses between those 
two spaces. In a real system the calling thread registers its CId and wait on a condition. The code 
that receives messages looks up the CId to find out which condition to signal and where to queue 
the response. 

THREAD Server() =
DO VAR m, from: Space, remote, result: Any |

<< (from, m) := Ch.Get(r); m IS Req => SKIP >>;
remote := m.remote;
IF remote.space = r => VAR local := export(r)(remote.oid) |

result := local(m.method)(Decode(m.data));
Ch.Put(sendSR{r := from}, Resp{m.for, Encode(result)})

[*] ... % not local object; error 
FI 

OD 

Note that the server thread runs the method. Of course, this might take a while, but we can have 
as many of these server threads as we like. A real system has a single receiving thread, interrupt 
routine, or whatever that finds an idle server thread and gives it a newly arrived request to work 
on. 

FUNC Encode(any ) -> Data = ...
FUNC Decode(data) -> Any = ... 

END NetObj 

We have not discussed how to encode exceptions. As we saw when we studied the atomic 
semantics of Spec, an exception raised by a routine is just a funny kind of result value, so it can 

Handout 24. Network Objects 7 Handout 24. Network Objects 8 



6.826—Principles of Computer Systems 2002 

be coded along with the ordinary result. The caller checks for an exceptional result and raises the 
proper exception. 

This module uses a channel Ch that sends messages between spaces. It is a slight variation on the 
perfect channel described in handout 20. This version delivers all the messages directed to a 
particular address, providing the source address of each one. We give the spec here for 
completeness. 

MODULE PerfectSR[
M, % Message 
A ] = % Address 

TYPE 	Q = SEQ M % Queue: channel state 
SR = [s: A, r: A] % Sender - Receiver 

VAR q := (SR -> Q){* -> {}} % all initially empty 

APROC Put(sr, m) = << q(sr) := q(sr) + {m} >> 

APROC Get(r: A) -> (A, M) = << VAR sr, m | sr.r = r /\ m = q(sr).head =>
q(sr) := q(sr).tail; RET (sr.s, m) >> 

END PerfectSR 

MODULE Ch = PerfectSR[NetObj.M, NetObj.Space] 
Now we explain how types and references are handled, and then we discuss how the space-to-
space channels are actually coded on top of a wide variety of existing communication 
mechanisms. 

Types and references 

Like the Modula 3 system described in handout 25, most RPC and network object systems have 
static type systems. That is, they know the types of the remote procedures and methods, and take 
advantage of this information to make encoding and decoding more efficient. In NetObj the 
argument and result are of type Any, which means that Encode must produce a self-describing 
Data result so that Decode has enough information to recreate the original value. If you know the 
procedure type, however, then you know the types of the argument and result, and Decode can be 
type specific and take advantage of this information. In particular, values can simply be encoded 
one after another, a 32-bit integer as 4 bytes, a record as the sequence of its component values, 
etc., just as in handout 7. The Server thread reads the object remote from the message and 
converts it to a local object, just as in NetObj. Then it calls the local object’s disp method, 
which decodes the method, usually as an integer, and switches to method-specific code that 
decodes the arguments, calls the local object’s method, and encodes the result. 

This is not the whole story, however. A network object system must respect the object types, 
decoding an encoded object into an object of the same type (or perhaps of a supertype, as we 
shall see). This means that we need global as well as local names for object types. In fact, there 
are in general two local types for each global type G, one which is the type of local objects of 
type G, and another which is the type of remote objects of type G. For example, suppose there is a 
network object type File. A space that implements some files will have a local type MyFile for 

Handout 24. Network Objects 9 

6.826—Principles of Computer Systems 2002 

its code. It may also need a surrogate type SrgFile, which is the type of surrogate objects that 
are implemented by a remote space but have been passed to this one. Both MyFile and SrgFile
are subtypes of File. As far as the runtime is concerned, these types come into existence in the 
usual way, because code that implements them is linked into the program. In Modula 3 the global 
name is the ‘fingerprint’ FP of the type, and the local name is the ‘typecode’ TC used by the local 
runtime for safe casts, garage collection, and other things. The stub code for the type registers the 
local-global mapping with the runtime in tables FPtoTC: FP -> TC and TCtoFP: TC -> FP.1 

When a network object remote arrives and is decoded, there are three possibilities: 

•	 It corresponds to a local object, because remote.space = r. The export table maps 
remote.oid to the corresponding LocalObj. 

•	 It corresponds to an existing surrogate. The surrogates table keeps track of these in 
surrogates: Space -> Remote -> LocalObj. In handout 25 the export and 
surrogates tables are combined into a single ObjTbl. 

•	 A new surrogate has to be created for it. For this to work we have to know the local surrogate 
type. If we pass along the global type with the object, we can map the global type to a local 
(surrogate) type, and then use the ordinary New to create the new surrogate. 

Almost every object system, including Modula 3, allows a supertype (more general type) to be 
‘narrowed’ to a subtype (more specific type). We have to know the smallest (most specific) type 
for a value in order to decide whether the narrowing is legal, that is, whether the desired type is a 
supertype of the most specific type. So the global type for the object must be its most specific 
type, rather than some more general one. If the object is coming from a space other than its 
owner, that space may not even have any local type that corresponds to the objects most specific 
type. Hence the global type must include the sequence of global supertypes, so that we can 
search for the most specific local type of the object. 

It is expensive to keep track of the object’s sequence of global types in every space that refers to 
it, and pass this sequence along every time the object is sent in a message. To make this cheaper, 
in Modula 3 a space calls back to the owning space to learn the global type sequence the first 
time it sees a remote object. This call is rather expensive, but it also serves the purpose of 
registering the space with the garbage collector (making the object ‘dirty’). 

This takes care of decoding. To encode a network object, it must be in export so that it has an 
OId. If it isn’t, it must be added with a newly assigned OId. 

Where there are objects, there must be storage allocation. A robust system must reclaim storage 
using garbage collection. This is especially important in a distributed system, where clients may 
fail instead of releasing objects. The basic idea for distributed garbage collection is to keep track 
for each exported object of all the spaces that might have a reference to the object. A space is 
supposed to register itself when it acquires a reference, and unregister itself when it gives up the 
reference (presumably as the result of a local garbage collection). The owner needs some way to 

1 There’s actually a kludge that maps the local typecode to the surrogate typecode, instead of mapping the 
fingerprint to both. 

Handout 24. Network Objects 10 



6.826—Principles of Computer Systems 2002 

detect that a space has failed, so that it can remove that space from all its objects. The details are 
somewhat subtle and beyond the scope of this discussion. 

Practical communication 

This section is about optimizing the space-to-space communication provided by PerfectSR. 
We’d like the efficiency to be reasonably close to what you could get by assembling messages by 
hand and delivering them directly to the underlying channel. Furthermore, we want to be able to 
use a variety of transports, since it’s hard to predict what transports will be available or which 
ones will be most efficient. There are several scales at which we may want to work: 

• Bytes into or out of the channel. 

• Data blocks into or out of the channel. 

•	 Directly accessible channel buffers. Most channels will take bytes or blocks that you give 
them and buffer them up into suitable blocks (called packets) for transmission). 

• Transmitting and receiving buffers. 

• Setting up channels to spaces. 

• Passing references to spaces. 

At the lowest level, we need efficient access to a transport’s mechanism for transmitting bytes or 
messages. This often takes the form of a ‘connection’ that transfers a sequence of bytes or 
messages reliably and efficiently, but is expensive to keep around. A connection is usually tied to 
a particular address space and, unlike an address, cannot be passed around freely. So our grand 
strategy is to map Space -> Connection whenever we do a call, and then send the message 
over the connection. Because this mapping is done frequently, it must be efficient. In the most 
general case, however, when we have never talked to the space before, it’s a lot of work to figure 
out what transports are available and set up a connection. Caching is therefore necessary. 

The general mechanism we use is Space -> SET Endpoint -> Location -> Connection. 
The Space is globally unique, but has no other structure. It appears in every Remote and every 
surrogate object, so it must be optimized for space. An Endpoint is a transport-specific address; 
there is a set of them because a space may implement several transports. Because Endpoint’s are 
addresses, they are just bytes and can be passed freely in messages. A Location is an object; that 
is, it has methods that call the transport’s code. Converting an Endpoint into a Location 
requires finding out whether the Endpoint’s transport is actually implemented here, and if it is, 
hooking up to the transport code. Finally, a Location object’s new method yields a connection. 
The Location may cache idle connections or create new ones on demand, depending on the 
costs. 

Consider the concrete example of TCP as the channel. An Endpoint is a DNS name or an IP 
address, a port number, and a UID for an address space that you can reach at that IP and port if it 
hasn’t failed; this is just bits. The corresponding Location is an object whose new method 
generates a TCP connection to that space; it works either by giving you an existing TCP 

6.826—Principles of Computer Systems 2002 

connection that it has cached, or by creating a new TCP connection to the space. A Connection 
is a TCP connection. 

As we have seen, a Space is an abbreviation, translated by the addrs table. Thus 
addrs: Space -> SET Endpoint. We need to set up addrs for newly encountered Space’s, 
and we do this by callback to the source of the Space, maintaining the invariant: have remote 
==> addrs!(remote.space). This ensures that we can always invoke a method of the remote, 
and that we can pass on the space’s Endpoint’s when we pass on the remote. The callback 
returns the set of Endpoint’s that can be used to reach the space. 

An Endpoint should ideally be an object with a location method, but since we have to 
transport them between spaces, this would lead to an undesirable recursion. Instead, an Endpoint
is just a string (or some binary record value), and a transport can recognize its own endpoints. 
Thus instead of invoking endpoint.location, we invoke tr.location(endpoint) for each 
transport tr that is available, until one succeeds and returns a Location. If a Transport doesn’t 
recognize the Endpoint, it returns nil instead. If there’s no Transport that recognizes the 
Endpoint, then it’s of no use. 

A Connection is a bi-directional channel that has the SR built in and has M = Byte; it connects a 
caller and a server thread (actually the thread is assigned dynamically when a request arrives, as 
we saw in NetObject). Because there’s only one sender and one receiver, it’s possible to stuff 
the parts of a message into the channel one at a time, and the caller does not have to identify 
itself but can take anything that comes back as the response. Thus the connection replaces 
NetObj.CId. The idea is that a TCP connection could be used directly as a Connection. You can 
make a Connection from a Location. The reason for having both is that a Location is just a 
small data structure, while a Connection may be much more expensive to maintain. A caller 
acquires a Connection for each call, and releases it when the call is done. The code can choose 
between creating and destroying connections on the one hand, and caching them on the other, 
based on the cost of creating one versus the cost of maintaining an idle one. 

The byte stream code should provide multi-byte Put and Get operations for efficiency. It may 
also provide access to the underlying buffers for the stream, which might make encoding and 
decoding more efficient; this must be done in a transport-independent way. Transmitting and 
receiving the buffers is handled by the transport. We have already discussed how to obtain a 
connection to a given space. 

Actually, of course, the channels are usually not perfect but only reliable; that is, they can lose 
messages if there is a crash. And even if there isn’t a crash, there might be an indefinite delay 
before a message gets through. If you have a transactional queuing system the channels might be 
perfect; in other words, if the sender doesn’t fail it will be able to queue a message. However, the 
response might be long delayed, and in practice there has to be a timeout after which a call raises 
the exception CallFailed. At this point the caller doesn’t know for sure whether the call 
completed or not, though it’s likely that it didn’t. In fact, it’s possible that the call might still be 
running as an ‘orphan’. 

For maximum efficiency you may want to use a specialized transport rather than a general one 
like RPC. Handout 11 described one such transport and analyzes its efficiency in detail. 

Handout 24. Network Objects 11 Handout 24. Network Objects 12 



6.826—Principles of Computer Systems 2002 

Bootstrapping 

So far we have explained how to invoke a method on a remote object, and how to pass references 
to remote objects from one space to another. To get started, however, we have to obtain some 
remote objects. If we have a single remote directory object that maps names to objects, we can 
look up the names of lots of other objects there and obtain references to them. To get started, we 
can adopt the convention that each space has a special object with OId 0 that is a directory. 
Given a space, we can forge Remote{space, 0) to get a reference to this object. 

Actually we need not a Space but a Location that we can use to get a Connection for invoking 
a method. To get the Location we need an Endpoint, that is, a network address plus a well-
known port number plus a standard unique identifier for the space. So given an address, say 
www.microsoft.com, we can construct a Location and invoke the lookup method of the 
standard directory object. If a server thread is listening on the well-known port at that address, 
this will work. 

A directory object can act as a ‘broker’, choosing a suitable representative object for a given 
name. Several attempts have been made to invent general mechanisms for doing this, but usually 
they need to be application-specific. For example, you may want the closest printer to your 
workstation that has B-size paper. A generic broker won’t handle this well. 

Handout 24. Network Objects 13 

6.826—Principles of Computer Systems 2002 

. 

Handout 24. Network Objects 14 


