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20. Concurrent Transactions 

We often (usually?) want more from a transaction mechanism than atomicity in the presence of 
failures: we also want atomicity in the presence of concurrency. As we saw in handout 14 on 
practical concurrency, the reasons for wanting to run transactions concurrently are slow 
input/output devices (usually disks) and the presence of multiple processors on which different 
transactions can run at the same time. The latter is especially important because it is a way of 
taking advantage of multiple processors that doesn’t require any special programming. In a 
distributed system it is also important because separate nodes need autonomy. 

Informally, if there are two transactions in progress concurrently (that is, the Begin of one 
happens after the Begin and before the Commit of the other), we want all the observable effects 
to be as though all the actions of one transaction happen either before or after all the actions of 
the other. This is called serializing the two transactions; it is the same as making each transaction 
into an atomic action. This is good for the usual reason: it allows the clients to reason about each 
transaction separately as a sequential program. The clients only have to worry about concurrency 
in between transactions, and they can use the usual method for doing this: find invariants that 
each transaction establishes when it commits and can therefore assume when it begins. The 
simplest way for a program to ensure that it doesn’t depend on anything except the invariants is 
to discard all state at the end of a transaction, and re-read whatever you need after starting the 
next transaction. 

Here is the standard example. We are maintaining bank balances, with deposit, withdraw, and 
balance transactions. The first two involve reading the current balance, adding or subtracting 
something, making a test, and perhaps writing the new balance back. If the read and write are the 
largest atomic actions, then the sequence read1, read2, write1, write2 will result in losing the 
effect of transaction 1. The third reads lots of balances and expects their total to be a constant. If 
its reads are interleaved with the writes of the other transactions, it may get the wrong total. 

The other property we want is that if one transaction precedes another (that is, its Commit 
happens before the Begin of the other, so that their execution does not overlap) then it is 
serialized first. This is sometimes called external consistency; it’s not just a picky detail that only 
a theoretician would worry about, because it’s needed to ensure that when you put two 
transaction systems together you still get a serializable system. 

A piece of jargon you will sometimes see is that transactions have the ACID properties: Atomic, 
Consistent, Isolated, and Durable. Here are the definitions given in Gray and Reuter: 

Atomicity. A transaction’s changes to the state are atomic: either all happen or none happen. 
These changes include database changes, messages, and actions on transducers. 

Consistency. A transaction is a correct transformation of the state. The actions taken as a 
group do not violate any of the integrity constraints associated with the state. This requires 
that the transaction be a correct program. 
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Isolation. Even though transactions execute concurrently, it appears to each transaction T 
that others executed either before T or after T, but not both. 

Durability. Once a transaction completes successfully (commits), its changes to the state 
survive failures. 

The first three appear to be different ways of saying that all transactions are serializable. 

Many systems implement something weaker than serializability for committed transactions in 
order to allow more concurrency. The standard terminology for weaker degrees of isolation is 
degree 0 through degree 3, which is serializability. Gray and Reuter discuss the specs, code, 
advantages, and drawbacks of weaker isolation in detail (section 7.6, pages 397-419). 

We give a spec for concurrent transactions. Coding this spec is called ‘concurrency control’, and 
we briefly discuss a number of coding techniques. 

Spec 

The spec is written in terms of the histories of the transactions: a history is a sequence of (action, 
result) pairs, called events below. The order of the events for a single transaction is fixed: it is the 
order in which the transaction did the actions. A spec must say that for all the committed 
transactions there is a total ordering of all the events in the committed transactions that has three 
properties: 

Serializable: Doing the actions in the total order (starting from the initial state) would 
yield the same result from each action, and the same final state, as the results and final 
state actually obtained. 

Externally consistent: The total order is consistent with the partial order established by 
the Begin’s and Commit’s. 

Non-blocking: it’s always possible to abort a transaction. This is necessary because when 
there’s a crash all the active transactions must abort. 

This is all that most transaction specs say. It allows anything to happen for uncommitted 
transactions. Operationally, this means that an uncommitted transaction will have to abort if it 
has seen a result that isn’t consistent with any ordering of it and the committed transactions. It 
also means that the programmer has to expect completely arbitrary results to come back from the 
actions. In theory this is OK, since a transaction that gets bad results will not commit, and hence 
nothing that it does can affect the rest of the world. But in practice this is not very satisfactory, 
since programs that get crazy results may loop, crash, or otherwise behave badly in ways that are 
beyond the scope of the transaction system to control. So our spec imposes some constraints on 
how actions can behave even before they commit. 

The spec works by keeping track of: 

• The ordering requirements imposed by external consistency, in a relation xc. 

• The histories of the transactions, in a map y. 
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It imposes an invariant on xc and y that is defined by the function Invariant. This function says 
that the committed transactions have to be serializable in a way consistent with xc, and that 
something must be true for the active transactions. As written, Invariant offers a choice of 
several “somethings”; the intuitive meaning of each one is described in a comment after its 
definition. The Do and Commit routines block if they can’t find a way to satisfy the invariant. The 
invariant maintained by the system is Invariant(committed, active, xc, y). 

It’s unfortunate that this spec deals explicitly with the histories of the transactions. Normally our 
specs don’t do this, but instead give a state machine that only generates allowable histories. I 
don’t know any way to do this for the most general serializability spec. 

The function Invariant defining the main invariant appears after the other routines of the spec. 

MODULE ConcurrentTransactions [
V, % Value

S, % State of database

T % Transaction ID

] EXPORT Begin, Do, Commit, Abort, Crash = 


TYPE Result 
A 

= 
= 

[v, s]
S -> Result % Action 

E 
H 

= 
= 

[a, v]
SEQ E 

% Event: Action and result Value 
% History 

TS = SET T % Transaction Set 
XC = (T, T)->Bool % eXternal Consistency; the first 

% transaction precedes the second 
TO 
Y 

= SEQ T 
= T -> H 

% Total Order on T's 
% histories of transactions 

VAR s0 : S % current base state 
y 
xc 

:= Y{}
:= XC{* -> false} 

% current transaction histories 
% current required XC 

active : TS{} % active transactions 
committed : TS{} % committed transactions 
installed : TS{} % installed transactions 
aborted : TS{} % aborted transactions 

The sets installed and aborted are only for the benefit of careless clients; they ensure that T's 
will not be reused and that Commit and Abort can be repeated without raising an exception. 
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Operations on histories and orderings 

To define Serializable we need some machinery. A history h records a sequence of events, 
that is, actions and the values they return. Apply applies a history to a state to compute a new 
state; note that it fails if the actions in the history don’t give back the results in the history. Valid 
checks whether applying the histories of the transactions in a given total order can succeed, that 
is, yield the values that the histories record. Consistent checks that a total order is consistent 
with a partial order, using the closure method (see section 9 of the Spec reference manual) to 
get the transitive closure of the external consistency relation and the <<= method for non-
contiguous sub-sequence. Then Serializable(ts, xc, y) is true if there is some total order 
to on the transactions in the set ts that is consistent with xc and that makes the histories in y
valid. 

FUNC Apply(h, s) -> S =
% return the end of the sequence of states starting at s and generated by 
% h's actions, provided the actions yield h's values. Otherwise undefined.

RET {e :IN h, s’ := s BY (e.a(s’).v = e.v => e.a(s’).s)}.last 


FUNC Valid(y0, to) -> BOOL = RET Apply!( + : (to * y0), s0)
% the histories in y0 in the order defined by to are valid starting at s0 

FUNC Consistent(to, xc0) -> BOOL =
RET xc0.closure.set <= (\ t1, t2 | TO{t1, t2} <<= to).set 

FUNC Serializable(ts, xc0, y0) -> BOOL = % is there a good TO of ts 
RET ( EXISTS to | to.set = ts /\ Consistent(to, xc0) /\ Valid(y0, to) ) 

Interface procedures 

A transaction is identified by a transaction identifier t, which is assigned by Begin and passed 
as an argument to all the other interface procedures. Do finds a result for the action a that satisfies 
the invariant; if this isn’t possible the Do can’t occur, that is, the transaction issuing it must abort 
or block. For instance, if concurrency control is coded with locks, the issuing transaction will 
wait for a lock. Similarly, Commit checks that the transaction is serializable with all the already 
committed transactions. Abort never blocks, although it may have to abort several transactions 
in order to preserve the invariant; this is called “cascading aborts” and is usually considered to be 
bad, for obvious reasons. 

Note that Do and Commit block rather than failing if they can’t maintain the invariant. They may 
be able to proceed later, after other transactions have committed. But some code can get stuck 
(for example, the optimistic schemes described later), and for these there must be a demon thread 
that aborts a stuck transaction. 
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APROC Begin() -> T =
% Choose a t and make it later in xc than every committed trans; can’t block 

<< VAR t | ~ t IN active \/ committed \/ installed \/ aborted =>
y(t) := {}; active \/ := {t}; xc(t, t) := true;
DO VAR t' :IN committed | ~ xc.closure(t', t) => xc(t', t) := true OD;
RET t >> 

APROC Do(t, a) -> V RAISES {badT} =
% Add (a,v) to history; may block unless NC 

<< IF ~ t IN active => RAISE badT 
[*] VAR v, y' := y{t -> y(t) + {E{a, v}}}} |

Invariant(committed, active, xc, y') => y := y'; RET v >> 

APROC Commit(t) RAISES {badT} = << % may block unless AC (to keep invariant) 
IF t IN committed \/ installed => SKIP % repeating Commit is OK 
[] ~ t IN active \/ committed \/ installed => RAISE badT >>
[] t IN active /\ Invariant(committed \/ {t}, active - {t}, xc, y) =>

committed \/ := {t}; active - := {t} >> 

APROC Abort(t) RAISES {badT} = << % doesn’t block (need this for crashes) 
IF t IN aborted => SKIP % repeating Abort is OK 
[] t IN active => 

% Abort t, and as few others as possible to maintain the invariant. 
% s is the possible sets of T’s to abort; choose one of the smallest ones. 
VAR s := {ts | {t} <= ts /\ ts <= active

/\ Invariant(committed, active - ts, xc, y)},
n := {ts :IN s | | ts.size}.min,
aborts := {ts :IN s | ts.size = n}.choose |

aborted \/ := aborts; active - := aborts;
y := y{t->}

[*] RAISE badT 
FI >> 

Installation daemon 

This is not really part of the spec, but it is included to show how the data structures can be 
cleaned up. 

THREAD Install() = DO % install a committed transaction in s0 
<< VAR t |

t IN committed 
% only if there’s no other transaction that should be earlier 

/\ ( ALL t' :IN committed \/ active | xc(t , t') ) =>
s0 := Apply(y(t), s0);
committed - := {t}; installed \/ := {t}
% remove t from y and xc; this isn’t necessary, but it’s tidy

y := y{t -> };

DO VAR t' | xc(t , t') => xc := xc{(t , t') -> } OD;


>> 
[*] SKIP
OD 

Function defining the main invariant 

FUNC Invariant(com: TS, act: TS, xc0, y0) -> BOOL = VAR current := com + act |
Serializable(com, xc0, y0)

/\ % constraints on active transactions: choose ONE 

AC (ALL t :IN act | Serializable(com + {t}, xc0, y0) )) 

CC  Serializable(com + act, xc0, y0) 

EO (ALL t :IN act | (EXISTS ts | 
com <=ts /\ ts<=current /\ Serializable(ts + {t}, xc0, y0) )) 

OD (ALL t :IN act | (EXISTS ts |
AtBegin(t)<=ts /\ ts<=current /\ Serializable(ts + {t}, xc0, y0) )) 

OC1 (ALL t :IN act, h :IN Prefixes(y0(t)) | (EXISTS to, h1, h2 |
to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(y0, to)

/\ IsInterleaving(h1, {t' | t' IN current - AtBegin(t) - {t} | y0(t')})
/\ h2 <<= h1 % subsequence 
/\ h.last.a(Apply(+ : (to * y0) + h2 + h.reml, s0) = h.last.v )) 

OC2 (ALL t :IN act, h :IN Prefixes(y0(t)) | (EXISTS to, h1, h2, h3 |
to.set = AtBegin(t) /\ Consistent(to, xc0) /\ Valid(y0, to)

/\ IsInterleaving(h1, {t' | t' IN current - AtBegin(t) - {t} | y0(t')})
/\ h2 <<= h1 % subsequence

/\ IsInterleaving(h3, {h2, h.reml})

/\ h.last.a(Apply(+ : (to * y0) + h3, s0) = h.last.v )) 


NC true 

FUNC Prefixes(h) -> SET H = RET {h' | h' <= h /\ h' # {}} 

FUNC AtBegin(t) -> TS = RET {t' | xc.closure(t', t)}
% The transactions that are committed when t begins. 

FUNC IsInterleaving(h, s: SET H) -> BOOL =

% h is an interleaving of the histories in s. This is true if there’s amultiset il that partitions h.dom, and 

% each element of il extracts one of the histories in s from h 


RET (EXISTS il: SEQ SEQ Int |
(+ : il) == h.dom.seq /\ {z :IN il | | z * h} == s.seq ) 
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A set of transactions is serializable if there is a serialization for all of them. All versions of the 
invariant require the committed transactions to be serializable; hence a transaction can only 
commit if it is serializable with all the already committed transactions. There are different ideas 
about the uncommitted ones. Some ideas use AtBegin(t): the transactions that committed 
before t started. 

AC	 All Committable: every uncommitted transaction can commit now and AC still holds 
for the rest (implies that any subset of the uncommitted transactions can commit, 
since abort is always possible). Strict two-phase locking, which doesn’t release any 
locks until commit, ensures AC. 

Complete Commit: it’s possible for all the transactions to commit (i.e., there’s at least 
one that can commit and CC still holds for the rest). Two-phase locking, which doesn’t 
acquire any locks after releasing one, ensures CC. AC ==> CC. 

EO	 Equal Opportunity: every uncommitted transaction has some friends such that it can 
commit if they do. CC ==> EO. 

OD	 Orphan Detection: every uncommitted transaction is serializable with its AtBegin
plus some other transactions (a variation not given here restricts it to the AtBegin
plus some other committed transactions). It may not be able to commit because it may 
not be serializable with all the committed transactions; a transaction with this 
property is called an ‘orphan’. Orphans can arise after a failure in a distributed system 
when a procedure keeps running even though its caller has failed, restarted, and 
released its locks. The orphan procedure may do things based on the old values of the 
now unlocked data. EO ==> OD. 

OC	 Optimistic Concurrency: uncommitted transactions can see some subset of what has 
happened. There’s no guarantee that any of them can commit; this means that the 
code must check at commit. Here are two versions; OC1 is stronger. 

OC1: Each sees AtBegin + some other stuff + its stuff; this roughly corresponds to 
having a private workspace for each uncommitted transaction. OD ==> OC1. 

OC2: Each sees AtBegin + some other stuff including its stuff; this roughly 
corresponds to a shared workspace for uncommitted transactions. OC1 ==> OC2 

NC	 No Constraints: uncommitted transactions can see arbitrary values. Again, there's no 
guarantee that any of them can commit. OC2 ==> NC. 

Note that each of these implies all the lower ones. 

Code 

In the remainder of the handout, we discuss various ways to code these specs. These are all ways 
to code the guards in Do and Commit, stopping a transaction either from doing an action which 
will keep it from committing, or from committing if it isn’t serializable with other committed 
transactions. 

Two-phase locking 

The most common way to code this spec1 is to ensure that a transaction can always commit (AC) 
by 

acquiring locks on data in such a way that the outstanding actions of active transactions 
always commute, and then 

doing each action of transaction t in a state consisting of the state of all the committed 
transactions plus the actions of t. 

This ensures that we can always serialize t as the next committed transaction, since we can 
commute all its actions over those of any other active transaction. We proved a theorem to this 
effect in handout 17, the “big atomic actions” theorem. With this scheme there is at least one 
time where a transaction holds all its locks, and any such time can be taken as the time when the 
transaction executes atomically. If all the locks are held until commit (strict two-phase locking), 
the serialization order is the commit order (more precisely, the commit order is a legal 
serialization order). 

To achieve this we need to associate a set of locks with each action in such a way that any two 
actions that don’t commute have conflicting locks. For example, if the actions are just reads and 
writes, we can have a read lock and a write lock for each datum, with the rule that read locks 
don’t conflict with each other, but a write lock conflicts with either. This works because two 
reads commute, while a read and a write do not. Note that the locks are on the actions, not on the 
updates into which the actions are decomposed to code logging and recovery. 

Once acquired, t’s locks must be held until t commits. Otherwise another transaction could see 
data modified by t; then if t aborts rather than committing, the other transaction would also have 
to abort. Thus we would not be maintaining the invariant that every transaction can always 
commit, because the premature release of locks means that all the actions of active transactions 
may not commute. Holding the locks until commit is called strict two-phase locking. 

A variation is to release locks before commit, but not to acquire any locks after you have 
released one. This is called two-phase locking, because there is a phase of acquiring locks, 
followed by a phase of releasing locks. Two-phase locking implements the CC spec. 

One drawback of locking is that there can be deadlocks, as we saw in handout 14. It’s possible to 
detect deadlocks by looking for cycles in the graph of threads and locks with arcs for the 
relations “thread a waiting for lock b” and “lock c held by thread d”. This is usually not done for 

1 In Jim Gray’s words, “People who do it for money use locks.” This is not strictly true, but it’s close. 
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mutexes, but it often is done by the lock manager of a database or transaction processing system, 
at least for threads and locks on a single machine. It requires global information about the graph, 
so it is expensive to code across a distributed system. The alternative is timeout: assume that if a 
thread waits too long for a lock it is deadlocked. Timeout is the poor man’s deadlock detection; 
most systems use it. A transaction system needs to have an automatic way to handle deadlock 
because the clients are not supposed to worry about concurrency, and that means they are not 
supposed to worry about avoiding deadlock. 

To get a lot of concurrency, it is necessary to have fine-granularity locks that protect only small 
amounts of data, say records or tuples. This introduces two problems: 

There might be a great many of these locks. 

Usually records are grouped into sets, and an operation like “return all the records with 
hairColor = blue” needs a lock that conflicts with inserting or deleting any such record. 

Both problems are usually solved by organizing locks into a tree or DAG and enforcing the rule 
that a lock on a node conflicts with locks on every descendant of that node. When there are too 
many locks, escalate to fewer locks with coarser granularity. This can get complicated; see Gray 
and Reuter2 for details. 

We now make the locking scheme more precise, omitting the complications of escalation. Each 
lock needs some sort of name; we use strings, which might have the form "Read(addr)", where 
addr is the name of a variable. Each transaction t has a set of locks locks(t), and each action a 
needs a set of locks protect(a). The conflict relation says when two locks conflict. It must 
have the property stated in invariant I1, that non-commuting actions have conflicting locks. Note 
that conflict need not be transitive. 

Invariant I2 says that a transaction has to hold a lock that protects each of its actions, and I3 says 
that two active transactions don’t hold conflicting locks. Putting these together, it’s clear that all 
the committed transactions in commit order, followed by any interleaving of the active 
transactions, produces the same histories. 

TYPE 	Lk = String
Lks = SET Lk 

CONST 
protect : A -> Lks 
conflict : (Lk, Lk) -> Bool 

% I1: (ALL a1, a2 | a1 * a2 # a2 * a1 ==> conflict(protect(a1), protect(a2))) 

VAR locks : T -> Lks 

% I2: (ALL t :IN active, e :IN y(t) | protect(e.a) <= locks(t)) 

% I3: (ALL t1 :IN active, t2 :IN active | t1 # t2 ==>
(ALL lk1 :IN locks(t1), lk2 :IN locks(t2) | ~ conflict(lk1, lk2))) 

2Gray and Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993, pp 406-421. 
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To maintain I2 the code needs a partial inverse of the locks function that answers the question: 
does anyone hold a lock that conflicts with lk. 

Multi-version time stamps 

It’s possible to give very direct code for the idea that the transactions take place serially, each 
one at a different instant—we make each one happen at a single instant of logical time. Define a 
logical time and keep with each datum a history of its value at every instant in time. This can be 
represented as a sequence of pairs (time, value), with the meaning that the datum has the given 
value from the given time until the time of the next pair. Now we can code AC by picking a time 
for each transaction (usually the time of its Begin, but any time between Begin and Commit will 
satisfy the external consistency requirement), and making every read obtain the value of the 
datum at the transaction’s time and every write set the value at that time. 

More precisely, a read at t gets the value at the next earlier definition, call it t', and leaves a note 
that the value of that datum can’t change between t' and t unless the transaction aborts. To 
maintain AC the read must block if t' isn’t committed. If the read doesn’t block, then the 
transaction is said to read ‘dirty data’, and it can’t commit unless the one at t' does. This version 
implements CC instead of AC. A write at t is impossible if some other transaction has already read 
a different value at t. This is the equivalent of deadlock, because the transaction cannot proceed. 
Or, in Jim Gray's words, reads are writes (because they add to the history) and waits are aborts 
(because waiting for a write lock turns into aborting since the value at that time is already 
fixed).3 These translations are not improvements, and they explain why multi-version time 
stamps have not become popular. 

A drastically simplified form of multi-version time stamps handles the common case of a very 
large transaction t that reads lots of shared data but only writes private data. This case arises in 
running a batch transaction that needs a snapshot of an online database. The simplification is to 
keep just one extra version of each datum; it works because t does no writes. You turn on this 
feature when t starts, and the system starts to do copy-on-write for all the data. Once t is done 
(actually, there could be several), the copies can be discarded. 

Optimistic concurrency control 

It’s easier to ask forgiveness than to beg permission. 
Grace Hopper 

Sometimes you can get better performance by allowing a transaction to proceed even though it 
might not be able to commit. The standard version of this optimistic strategy allows a transaction 
to read any data it likes, keeps track of all the data values it has read, and saves all its writes in 
local variables. When the transaction commits, the system atomically 

checks that every datum read still has the value that was read, and 

if this check succeeds, installs all the writes. 

3 Gray and Reuter, p 437. 
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This obviously serializes the transaction at commit time, since the transaction behaves as if it did 
all its work at commit time. If any datum that was read has changed, the transaction aborts, and 
usually retries. This implements OC1 or OC2. The check can be made efficient by keeping a 
version number for each datum. Grouping the data and keeping a version number for each group 
is cheaper but may result in more aborts. 

The disadvantages of optimistic concurrency control are that uncommitted transactions can see 
inconsistent states, and that livelock is possible because two conflicting transactions can 
repeatedly restart and abort each other. With locks at least one transaction will always make 
progress as long as you choose the youngest one to abort when a deadlock occurs. 

OCC can avoid livelock by keeping a private write buffer for each transaction, so that a 
transaction only sees the writes of committed transactions plus its own writes. This ensures that 
at least one uncommitted transaction can commit whenever there’s an uncommitted transaction 
that started after the last committed transaction t. A transaction that started before t might see 
both old and new values of variables written by t, and therefore be unable to commit. Of course 
a private write buffer for each transaction is more expensive than a shared write buffer for all of 
them. This is especially true because the shared buffer can use copy-on-write to capture the old 
state, so that reads are not slowed down at all. 

The Hydra design for a single-chip multi-processor4 uses an interesting version of OCC to allow 
speculative parallel execution of a sequential program. The idea is to run several sequential 
segments of a program in parallel as transactions (usually loop iterations or a procedure call and 
its continuation). The desired commit order is fixed by the original sequential ordering, and the 
earliest segment is guaranteed to commit. Each transaction has a private write buffer but can see 
writes done by earlier transactions; if it sees any values that are later overwritten then it has to 
abort and retry. Most of this work is done by the hardware of the on-chip caches and write 
buffers. 

Field calls and escrow locks 

There is a specialization of optimistic concurrency control called “field calls with escrow 
locking” that can perform much better under some very special circumstances that occur 
frequently in practice. Suppose you have an operation that does 

<< IF pred(v) => v := f(v) [*] RAISE error >> 

where f is total. A typical example is a debit operation, in which v is a balance, pred(v) is 
v > 100, and f(v) is v - 100. Then you can attach to v a ‘pending list’ of the f’s done by 
active transactions. To do this update, a transaction must acquire an ‘escrow lock’ on v; this lock 
conflicts if applying any subset of the f’s in the pending list makes the predicate false. In general 
this would be too complicated to test, but it is not hard if f’s are increment and decrement (v + 
n and v - n) and pred’s are single inequalities: just keep the largest and smallest values that v 
could attain if any subset of the active transactions commits. When a transaction commits, you 

4 Hammond, Nayfeh, and Olukotun, A single-chip multiprocessor, IEEE Computer, Sept. 1997. Hammond, Willey, 
and Olukotun, Data speculation support for a chip multiprocessor, Proc 8th ACM Conference on Architectural 
Support for Programming Languages and Operating Systems, San Jose, California, Oct. 1998. See also http://www-
hydra.stanford.edu/publications.shtml. 
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apply all its pending updates. Since these field call updates don’t actually obtain the value of v, 
but only test pred, they don’t need read locks. An escrow lock conflicts with any ordinary read 
or write. For more details, see Gray and Reuter, pp 430-435. 

This may seem like a lot of trouble, but if v is a variable that is touched by lots of transactions 
(such as a bank branch balance) it can increase concurrency dramatically, since in general none 
of the escrow locks will conflict. 

Full escrow locking is a form of locking, not of optimism. A ‘field call’ (without escrow locking) 
is the same except that instead of treating the predicate as a lock, it checks atomically at commit 
time that all the predicates in the transaction are still true. This is optimistic. The original form of 
optimism is a special case in which every pred has the form v = old value and every f(v) is 
just new value. 

Nested transactions 

It’s possible to generalize the results given here to the case of nested transactions. The idea is 
that within a single transaction we can recursively embed the entire transaction machinery. This 
isn’t interesting for handling crashes, since a crash will cause the top-level transaction to abort. It 
is interesting, however, for making it easy to program with concurrency inside a transaction by 
relying on the atomicity (that is, serializability) of sub-transactions, and for making it easy to 
handle errors by aborting unsuccessful sub-transactions. 

With this scheme, each transaction can have sub-transactions within itself. The definition of 
correctness is that all the sub-transactions satisfy the concurrency control invariant. In particular, 
all committed sub-transactions are serializable. When sub-transactions have their own nested 
transactions, we get a tree. When a sub-transaction commits, all its actions are added to the 
history of its parent. 

To code nested transactions using locking we need to know the conflict rules for the entire tree. 
They are simple: if two different transactions hold locks lk1 and lk2 and one is not the ancestor 
of the other, then lk1 and lk2 must not conflict. This ensures that all the actions of all the 
outstanding transactions commute except for ancestors and descendants. When a sub-transaction 
commits, its parent inherits all its locks. 

Interaction with recovery 

We do not discuss in detail how to put this code for concurrency control together with the code 
for recovery that we studied earlier. The basic idea, however, is simple enough: the two are 
almost completely orthogonal. All the concurrent transactions contribute their actions to the logs. 
Committing a transaction removes its undo’s from the undo logs, thus ensuring that its actions 
survive a crash; the single-transaction version of recovery in handout 18 removes everything 
from the undo logs. Aborting a transaction applies its undo’s to the state; the single-transaction 
version applies all the undo’s. 

Concurrency control simply stops certain actions (Do or Commit) from happening, and perhaps 
aborts some transactions that can’t commit. This is clearest in the case of locking, which just 
prevents any undesired changes to the state. Multi-version time stamps use a more complicated 
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representation of the state; the ordinary state is an abstraction given a particular ordering of the 
transactions. Optimistic concurrency control aborts some transactions when they try to commit. 
The trickiest thing to show is that the undo’s that recovery does in Abort do the right thing. 

Performance summary 

Each of the coding schemes has some costs when everything is going well, and performs badly 
for some combinations of active transactions. 

Locking pays the costs of acquiring the locks and of deadlock detection in the good case. 
Deadlocks lead to aborts, which waste the work done in the aborted transactions, although it’s 
possible to choose the aborted transactions so that progress is guaranteed. If the locks are too 
coarse either in granularity or in mode, many transactions will be waiting for locks, which 
increases latency and reduces concurrency. 

Optimistic concurrency control pays the cost of noticing competing changes in the good case, 
whether this is done by version numbers or by saving initial values of variables and checking 
them at Commit. If transactions conflict at Commit, they get aborted, which wastes the work they 
did, and it’s possible to have livelock, that is, no progress, in the shared-write-buffer version; it’s 
OK in the private-write-buffer version, since someone has to commit before anyone else can fail 
to do so. 

Multi-version time stamps pay a high price for maintaining the multi-version state in the good 
case; in general reads as well as writes change it. Transaction conflicts lead to aborts much as in 
the optimistic scheme. This method is inferior to both of the others in general; it is practical, 
however, for the special case of copy-on-write snapshots for read-only transactions, especially 
large ones. 
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