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17. Formal Concurrency 

In this handout we take a more formal view of concurrency than in handout 14 on practical 
concurrency. Our goal is to be able to prove that a general concurrent program implements a 
spec. 

We begin with a fairly precise account of the non-atomic semantics of Spec, though our 
treatment is less formal than the one for atomic semantics in handout 9. Next we explain the 
general method for making large atomic actions out of small ones (easy concurrency) and prove 
its correctness. We continue with a number of examples of concurrency, both easy and hard: 
mutexes, condition variables, read-write locks, buffers, and non-atomic clocks. Finally, we give 
fairly careful proofs of correctness for some of the examples. 

Non-atomic semantics of Spec 

We have already seen that a Spec module is a way of defining an automaton, or state machine, 
with transitions corresponding to the invocations of external atomic procedures. This view is 
sufficient if we only have functions and atomic procedures, but when we consider concurrency 
we need to extend it to include internal transitions. To properly model crashes, we introduced the 
idea of atomic commands that may not be interrupted. We did this informally, however, and 
since a crash “kills” any active procedure, we did not have to describe the possible behaviors 
when two or more procedures are invoked and running concurrently. This section describes the 
concurrent semantics of Spec. 

The most general way to describe a concurrent system is as a collection of independent atomic 
actions that share a collection of variables. If the actions are A1, ..., An then the entire system 
is just the ‘or’ of all these actions: A1 [] ... [] An. In general only some of the actions will be 
enabled, but for each transition the system non-deterministically chooses an action to execute 
from all the enabled actions. Thus non-determinism encompasses concurrency. 

Usually, however, we find it convenient to carry over into the concurrent world as much of the 
framework of sequential computing as possible. To this end, we model the computation as a set 
of threads (also called ‘tasks’ or ‘processes’), each of which executes a sequence of atomic 
actions; we denote threads by variables h, h', etc. To define its sequence, each thread has a state 
variable called its ‘program counter’ $pc, and each of its actions has the form (h.$pc = α) => 
c, so that c can only execute when h’s program counter equals α. Different actions have different 
values for α, so that at most one action of a thread is enabled at a time. Each action advances the 
program counter with an assignment of the form h.$pc := β, thus enabling the thread’s next 
action. 

It’s important to understand there is nothing truly fundamental about threads, that is, about 
organizing the state transitions into sets such that at most one action is enabled in each set. We 
do so because we can then carry forward much of what we know about sequential computing 
into the concurrent world. In fact, we want to achieve our performance goals with as little 
concurrency as possible, since concurrency is confusing and error-prone. 

We now explain how to use this view to understand the non-atomic semantics of Spec. 

Non-atomic commands and threads 

Unlike an atomic command, a non-atomic command cannot be described simply as a relation 
between states and outcomes, that is, an atomic transition. The simple example, given in handout 
14, of a non-atomic assignment x := x + 1 executed by two threads should make this clear: the 
outcome can increase x by 1 or 2, depending on the interleaving of the transitions in the two 
threads. Rather, a non-atomic command corresponds to a sequence of atomic transitions, which 
may be interleaved with the sequences of other commands executing concurrently. To describe 
this interleaving, we use labels and program counters. We also need to distinguish the various 
threads of concurrent computation. 

Intuitively, threads represent sequential processes. Roughly speaking, each point in the program 
between two atomic commands is assigned a label. Each thread’s program counter $pc takes a 
label as its value,1 indicating where that thread is in the program, that is, what command it is 
going to execute next. 

Spec threads are created by top level THREAD declarations in a module. They make all possible 
concurrency explicit at the top level of each module. A thread is syntactically much like a 
procedure, but instead of being invoked by a client or by another procedure, it is automatically 
invoked in parallel initially, for every possible value of its arguments.2 When it executes a RET 
(or reaches the end of its body), a thread simply makes no more transitions. However, threads are 
often written to loop indefinitely. 

Spec does not have COBEGIN or FORK constructs, as many programming languages do, these are 
considerably more difficult to define precisely, since they are tangled up with the control 
structure of the program. Also, because one Spec thread starts up for every possible argument of 
the THREAD declaration, they tend to be more convenient for most of the specs and code in this 
course. To keep the thread from doing anything until a certain point in the computation (or at 
all), use an initial guard for the entire body as in the Sieve example below. 

A thread is named by the name in the declaration and the argument values. Thus, the threads 
declared by THREAD Foo(bool) = ..., for example, would be named Foo(true) and 
Foo(false) The names of local variables are qualified by both the name of the thread that is the 
root of the call stack, and by the name of the procedure invoked.3 In other words, each procedure 
in each thread has its own set of local variables. So for example, the local variable p in the Sieve 
example appears in the state as Sieve(0).p, Sieve(1).p, .... If there were a PROC Foo 
called by Sieve with a local variable baz, the state might be defined at Sieve(0).Foo.baz, 
Sieve(1).Foo.baz, .... The pseudo-names $a, $x, and $pc are qualified only by the thread. 

1 The variables declared by a program are not allowed to have labels as their values, hence there is no Label type. 
2 This differs from the threads in Java, in Modula 3, or in many C implementations. These languages start a 
computation with one thread and allow it to create and destroy threads dynamically using fork and join 
operations. 
3 This works for non-recursive procedures. To accommodate recursive procedures, the state must involve something 
equivalent to a stack. Probably the simplest solution is to augment the state space by tacking on the nesting depth of 
the procedure to all the names and program counter values defined above. For example, h + ".P.v" becomes h + 
".P.v" + d.enc, for every positive integer d. An invocation transition at depth d goes to depth d+1. 
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Each atomic command defines a transition, just as in the sequential semantics. However, now a 
transition is enabled by the program counter value. That is, a transition can only occur if the 
program counter of some thread equals the label before the command, and the transition sets the 
program counter of that thread to the label after the command. If the command at the label in the 
program counter fails (for example, because it has a guard that tests for a buffer to be non-empty, 
and the buffer is empty in the current state), the thread is “stuck” and does not make any 
transitions. However, it may become unstuck later, because of the transitions of some other 
threads. Thus, a command failing does not necessarily (or even usually) mean that the thread 
fails. 

We won’t give the non-atomic semantics precisely here as we did for the atomic semantics in 
handout 9, since it involves a number of fussy details that don’t add much insight. Also, it’s 
somewhat arbitrary. You can always get exactly the atomicity you want by adding local variables 
and semicolons to increase the number of atomic transitions (see the examples below), or 
<<...>> brackets to decrease it. 

It’s important, however, to understand the basic ideas. 

•	 Each atomic command in a thread or procedure defines a transition (atomic procedures and 
functions are taken care of by the atomic semantics). 

•	 The program counters enable transitions: a transition can only occur if the program counter 
for some thread equals the label before the command, and the transition sets that program 
counter to the label after the command. 

Thus the state of the system is the global state plus the state of all the threads. The state of a 
thread is its $pc, $a, and $x values, the local variables of the thread, and the local variables of 
each procedure that has been called by the thread and has not yet returned. 

Suppose the label before the command c is α and the one after the command is β, and the 
transition function defined by MC(c) in handout 9 is (\ s, o | rel). Then if c is in thread h, 
its transition function is 

(\ s, o | s(h+".$pc") = α /\ o(h+".$pc) = β /\ rel') 
If c is in procedure P, that is, c can execute for any thread whose program counter has reached α, 
its transition function is 

(\ s, o | (EXISTS h: Thread | 

s(h+".P.$pc") = α /\ o(h+".P.$pc) = β /\ rel')) 


Here rel' is rel with each reference to a local variable v changed to h + ".v" or h + ".P.v". 

Labels in Spec 

What are the atomic transitions in a Spec program? In other words, where do we put the labels? 
The basic idea is to build in as little atomicity as possible (since you can always put in what you 
need with <<...>>). However, expression evaluation must be atomic, or reasoning about 
expressions would be a mess. To use Spec to model code in which expression evaluation is not 
atomic (C code, for example), you must add temporary variables. Thus x := a + b + c 
becomes 

VAR t | << t := a >>; << t := t + b >>; << x := t + c >> 

For a real-life example of this, see MutexImpl.acq below. 

The simple commands, SKIP, HAVOC, RET, and RAISE, are atomic, as is any command in 
atomicity brackets <<...>>. 

For an invocation, there is a transition to evaluate the argument and set the $a variable, and one 
to send control to the start of the body. The RET command’s transition sets $a and leaves control 
at the end of the body. The next transition leaves control after the invocation. So every procedure 
invocation has at least four transitions: evaluate the argument and set $a, send control to the 
body, do the RET and set $a, and return control from the body. The reason for these fussy details 
is to ensure that the invocation of an external procedure has start and end transitions that do not 
change any other state. These are the transitions that appear in the trace and therefore must be 
identical in both the spec and the code that implements it. 

Minimizing atomicity means that an assignment is broken into separate transitions, one to 
evaluate the right hand side and one to change the left hand variable. This also has the advantage 
of consistency with the case where the right hand side is a non-atomic procedure invocation. 
Each transition happens atomically, even if the variable is “big”. Thus x := exp is 

VAR t | << t := exp >> ; << x := t >> 

and x := p(y) is 
p(y); << x := $a >> 


Since there are no additional labels for the c1 [] c2 command, the initial transition of the 
compound command is enabled exactly when the initial transition of either of the subcommands 
is enabled (or if they both are). Thus, the choice is made based only on the first transition. After 
that, the thread may get stuck in one branch (though, of course, some other thread might unstick 
it later). The same is true for [*], except that the initial transition for c1 [*] c2 can only be the 
initial transition of c2 if the initial transition of c1 is not enabled. And the same is also true for 
VAR. The value chosen for id in VAR id | c must allow c to make at least one transition; after 
that the thread might get stuck. 

DO has a label, but OD does not introduce any additional labels. The starting and ending program 
counter value for c in DO c OD is the label on the DO. Thus, the initial transition of c is enabled 
when the program counter is the label on the DO, and the last transition sets the program counter 
back to that label. When c fails, the program counter is set to the label following the OD. 

To sum up, there’s a label on each :=, =>, ‘;’, EXCEPT, and DO outside of <<...>>. There is 
never any label inside atomicity brackets. It’s convenient to write the labels in brackets after 
these symbols. 

There’s also a label at the start of a procedure, which we write on the = of the declaration, and a 
label at the end. There is one label for a procedure invocation, after the argument is evaluated; 
we write it just before the closing ‘)’. After the invocation is complete, the PC goes to the next 
label after the invocation, which is the one on the := if the invocation is in an assignment. 

As a consequence of this labeling, as we said before, a procedure invocation has 
one transition to evaluate the argument expression, 
one to set the program counter to the label immediately before the procedure body, 
one for every transition of the procedure body (using the labels of the body), 
one for the RET command in the body, which sets the program counter after the body, 
and a final transition that sets it to the label immediately following the invocation. 
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Here is a meaningless sequential example, just to show where the labels go. They are numbered 
in the order they are reached during execution. 

PROC P() = [P1] VAR x, y | 
IF x > 5 => [P2] x := [P4] Q(x + 1, 2 [P3]); [P5] y := [P6] 3 
[] << y := 4 >> 

FI; [P7] 
VAR z | DO [P8] << P() >> OD [P9] 

External actions 

In sequential Spec a module has only external actions; each invocation of a function or atomic 
procedure is an external action. In concurrent Spec there are two differences: 

There are internal actions. These can be actions of an externally invoked PROC or actions of a 
thread declared and executing in the module. 

There are two external actions in the external invocation of a (non-atomic) procedure: the call, 
which sends control from after evaluation of the argument to the entry point of the procedure, 
and the return, which sends control from after the RET command in the procedure to just after the 
invocation in the caller. These external transitions do not affect the $a variable that 
communicates the argument and result values. That variable is set by the internal transitions that 
compute the argument and do the RET command. 

There’s another style of defining external interfaces in which every external action is an APROC. 
If you want to get the effect of a non-atomic procedure, you have to break it into two APROC’s, 
one that delivers the arguments and sets the internal state so that internal actions will do the work 
of the procedure body, and a second that retrieves the result. This style is used in I/O automata4, 
but we will not use it. 

Examples 

Here are two Spec programs that search for prime numbers and collect the result in a set primes; 
both omit the even numbers, initializing primes to {2}. Both are based on the sieve of 
Eratosthenes, testing each prime less than n1/2 to see whether it divides n. Since the threads may 
not be synchronized, we must ensure that all the numbers ≤ n1/2 have been checked before we 
check n. 

The first example is more like a spec, using an infinite number of threads, one for every odd 
number. 

CONST Odds = {i: Nat | i // 2 = 1 /\ i > 1 } 


VAR 	primes : SET Nat := {2} 
done : SET Nat := {} % numbers checked 

INVARIANT (ALL n: Nat | n IN done /\ IsPrime(n) ==> n IN primes 

/\ n IN primes ==> IsPrime(n)) 


4 Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996, Chapter 8. 

THREAD Sieve1(n :IN Odds) = 

{i :IN Odds | i <= Sqrt(n)} <= done => % Wait for possible factors 

IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) => 

<< primes \/ := {n} >> 


[*] SKIP 

FI; 

<< done \/ := {n} >> % No more transitions


FUNC Sqrt(n: Nat) -> Int = RET { i: Nat | i*i <= n }.max 


The second example, on the other hand, is closer to code, running ten parallel searches. Although 
there is one thread for every integer, only threads Sieve(0), Sieve(1), …, Sieve(9) are 
“active”, because of the initial guard, Differences from Sieve1 are boxed. 

CONST nThreads := 10 


THREAD Sieve(i: Int) = next!i => 
next(i) := 2*i + 3; 
DO VAR n: Int 

(ALL j :IN next.rng | j >= Sqrt(n)) => 
:= next(i) | 

VAR primes : SET Int := {2} 
next nThreads.seq := 

IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) => 

<< primes \/ := {n} >> 


[*] SKIP 

FI; 

next(i) := n + 2*nThreads


OD 


Big atomic actions 

As we saw earlier, we need atomic actions for practical, easy concurrency. Spec lets you specify 
any grain of atomicity in the program just by writing << ... >> brackets.5 It doesn’t tell you where 
to write the brackets. If the environment in which the program has to run doesn’t impose any 
constraints, it’s usually best to make the atomic actions as big as possible, because big atomic 
actions are easier to reason about. But big atomic actions are often too hard or too expensive to 
code, or the reduction in concurrency hurts performance too much, so that we have to make do 
with small ones. For example, in a shared-memory multiprocessor typically only the individual 
instructions are atomic, and we can only write one disk block atomically. So we are faced with 
the problem of showing that code with small atomic actions satisfies a spec with bigger ones. 

The idea 

The standard way of doing this is by some kind of ‘non-interference’. The idea is based on the 
following observation. Suppose we have a program with a thread h that contains the sequence 

A; B (1) 

5 As we have seen, Spec does treat expression evaluation as atomic. Recall that if you are dealing with an 
environment in which an expression like x(i) + f(y) can’t be evaluated atomically, you should model this by 
writing VAR t1, t2 | t1 := x(i); t2 := f(y); ... t1 + t2 .... 
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as well as an arbitrary collection of other commands. We denote the program counter value 
before A by α and at the semi-colon by β. We are thinking of the program as 

h.$pc = α => A [] h.$pc = β => B [] C1 [] C2 [] ... 
where each command has an appropriate guard that enables it only when the program counter for 
its thread has the right value. We have written the guards for A and B explicitly. 

Suppose B denotes an arbitrary atomic command, and A denotes an atomic command that 
commutes with every command in the program (other than B) that is enabled when h is at the 
semicolon, that is, when h.$pc = β. (We give a precise meaning for ‘commutes’ below.) In 
addition, both A and B have only internal actions. Then it’s intuitively clear that the program with 
(1) simulates a program with the same commands except that instead of (1) it has 

<< A; B >> (2) 
Informally this is true because any C’s that happen between A and B have the same effect on the 
state that they would have if they happened before A, since they all commute with A. Note that 
the C’s don’t have to commute with B; commuting with A is enough to let us ‘push’ C before A. A 
symmetric argument works if all the C’s commute with B, even if they don’t commute with A. 

Thus we have achieved the goal of making a bigger atomic command << A; B >> out of two 
small ones A and B. We can call the big command D and repeat the process on E; D to get a still 
bigger command << E; A; B >>. 

How do we ensure that only a command C that commutes with A can execute while h.$pc = β? 
The simplest way is to ensure that the variables that A touches (reads or writes) are disjoint from 
the variables that C writes, and vice versa; then they will surely commute. Two such commands 
are called ‘non-interfering’. There are two easy ways to show that commands are non-interfering. 
One is that A touches only local variables of h. Only actions of h touch local variables of h, and 
the only action of h that is enabled when h.$pc = β is B. So any sequence of commands that 
touch only local variables is atomic, and if it is preceded or followed by a single arbitrary atomic 
command the whole thing is still atomic.6 

The other easy case is a critical section protected by a mutex. Recall that a critical section for v is 
a command with the property that if some thread’s PC is in the command, then no other thread’s 
PC can be in any critical section for v. If the only commands that touch v are in critical sections 
for v, then we know that only B and commands that don’t touch v can execute while h.$pc = β. 
So if every command in any critical section for v only touches v (and perhaps local variables), 
then the program simulates another program in which every critical section is an atomic 
command. A critical section is usually coded by acquiring a lock or mutex and holding it for the 
duration of the section. The property of a lock is that it’s not possible to acquire it when it is 
already held, and this ensures the mutual exclusion property for critical sections. 

It’s not necessary to have exclusive locks; reader/writer locks are sufficient for non-interference, 
because read operations all commute with each other. Indeed, any locking scheme will work in 
which non-commuting operations hold mutually exclusive locks; this is the basis of rules for 

6 See Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research Report 44, Digital Equipment 
Corporation Systems Research Center, Palo Alto, CA, May 1989. 
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-044.html 

‘lock conflicts’. See handout 14 on practical concurrency for more details on different kinds of 
locks. 

Another important case is mutex acquire and release operations. These operations only touch the 
mutex, so they commute with everything else. What about these operations on the same mutex in 
different threads? If both can execute, they certainly don’t yield the same result in either order; 
that is, they don’t commute. When can both operations execute? We have the following cases 
(writing the executing thread as an explicit argument of each operation): 

A C Possible sequence? 
m.acq(h) m.acq(h') No: C is blocked by h holding m 
m.acq(h) m.rel(h') No: C won’t be reached because h' doesn’t hold m 
m.rel(h) m.acq(h') OK 
m.rel(h) m.rel(h') No: one thread doesn’t hold m, hence won’t do rel 

So m.acq commutes with everything that’s enabled at β, since neither mutex operation is enabled 
at β in a program that avoids havoc. But m.rel(h) doesn’t commute with m.acq(h'). The 
reason is that the A; C sequence can happen, but the C; A sequence m.acq(h'); m.rel(h) 
cannot, because in this case h doesn’t hold m and therefore can’t be doing a rel. Hence it’s not 
possible to flip every C in front of m.rel(h) in order to make A; B atomic. 

What does this mean? You can acquire more locks and still keep things atomic, but as soon as 
you release one, you no longer have atomicity.7 

A third important case of commuting operations, producer-consumer, is similar to the mutex 
case. A producer and a consumer thread share no state except a buffer. The operations on the 
buffer are put and get, and these operations commute with each other. The interesting case is 
when the buffer is empty. In this case get is blocked until a put occurs, just as in the mutex 
example when h holds the lock m.acq(h') is blocked until m.rel(h) occurs. This is why 
programming with buffers, or dataflow programming, is so easy. 

Proofs 

How can we make all this precise and prove that a program containing (1) implements the same 
program with (2) replacing (1), using our trusty method of abstraction relations? For easy 
reference, we repeat (1) and (2). 

A; [β] B (1) 
<< A; B >> (2) 

As usual, we call the complete program containing (2) the spec S and the complete program 
containing (1) the code T. We need an abstraction relation AR between the states of T and the 
states of S under which every transition of T simulates a (possibly empty) trace of S. Note that 
the state spaces of T and S are the same, except that h.$pc can never be β in S. We use s and u 
for states of S and T, to avoid confusion with various other uses of t. 

7 Actually, this is not quite right. If you hold several locks, and touch data only when you hold its lock, you have 
atomicity until you release all the locks. 
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First we need a precise definition of “C is enabled at β and commutes with A”. For any command 
X, we write u X u' for MC(X)(u, u'), that is, if X relates u to u'. The idea of ‘commutes’ is that 
<<A; C>> is the same as <<C; A>>, and the definition follows from the meaning of semicolon: 

(ALL u1, u2 | (EXISTS u | u1 A u /\ u C u2 /\ u("h.$pc") = β) 
==> (EXISTS u' | u1 C u' /\ u’ A u2) ) 

This says that any result that you could get by doing A; C you could also get by doing C; A. 

It seems reasonable to do the proof by making A simulate the empty trace and B simulate 
<<A; B>>, since we know more about A than about B; every other command simulates itself. 

SKIP 

s s 

<< A ; B >> 
s'


= ~ =


s 
A 

u 
B 

s'


u("$pc") = β 

So we make AR the identity everywhere except at β, where it relates any state u that can be 
reached from s by A to s. This expresses the intention that at β we haven’t yet done A in S, but we 
have done A in T. (Since A may take many states to s, this can’t just be an abstraction function.) 
We write u ~ s for “AR relates u to s”. Precisely, we say that u ~ s if 

u("h.$pc") ≠ β /\ s = u 
\/ u("h.$pc") = β /\ s A u. 

Why is this an abstraction relation? It certainly relates an initial state to an initial state, and it 
certainly works for any transition u -> u' that stays away from β, that is, in which u("h.$pc") 
≠ β and u'("h.$pc") ≠ β, since the abstract and concrete states are the same. What about 
transitions that do involve β? 

• If h.$pc changes to β then we must have executed A. The picture is 

=

s s'


= A


u 
A 

u'


The abstract trace is empty, so the abstract state doesn’t change: s = s'. Also, s' = u 
because only equal states are related when h.$pc # β. But we executed A, so u A u', so 
s' ~ u' because of the equalities. 

•	 If h.$pc starts at β then the command must be either B or some C that commutes with A. If the 
command is B, then the picture is 

s 
<<A; B>> 

s'


A =


u 
B 

u'


To show the top relation, we have to show that there exists an s0 such that s A s0 and 
s0 B s', by the meaning of semicolon. But u has exactly this property, since s' = u'. 

• If the command is C, then the picture is 

u1 s 
C 

s' u'


A A


u 
C 

u' u2


But this follows from the definition of ‘commutes’: we are given s, u, and u' related as 
shown, and we need s' related as shown, which is just what the definition gives us, with 
u1 = s, u2 = u', and u' = s'. 

Examples of concurrency 

This section contains a number of example specs and codes that illustrate various aspects of 
concurrency. The specs have large atomic actions that keep them simple. The codes have smaller 
atomic actions that reflect the realities of the machines on which they have to run. Some of the 
examples of code illustrate easy concurrency (that is, that use locks): RWLockImpl and 
BufferImpl. Others illustrate hard concurrency: SpinLock, Mutex2Impl, ClockImpl, 
MutexImpl, and ConditionImpl. 

Incrementing a register 

The first example involves incrementing a register that has Read and Write operations. Here is 
the unsurprising spec of the register, which makes both operations atomic: 

MODULE Register EXPORT Read, Write =


VAR x : Int := 0 


APROC Read() -> Int = << RET x >> 

APROC Write(i: Int) = << x := i >> 


END Register 


To increment the register, we could use the following procedure: 
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PROC Increment() = VAR t: Int | t := Register.Read(); t := t + 1; Register.Write(t) 


Suppose that, starting from the initial state where x = 0, n threads execute Increment in parallel. 
Then, depending on the interleaving of the low-level steps, the final value of the register could be 
anything from 1 to n. This is unlikely to be what was intended. Certainly this code doesn’t 
implement the spec 

PROC Increment() = << x := x + 1 >> 


Exercise: Suppose that we weaken our atomicity assumptions to say that the value of a register is 
represented as a sequence of bits, and that the only atomic operations are reading and writing 
individual bits. Now what are the possible final states if n threads execute Increment in parallel? 

Alternatively, consider a new module RWInc that explicitly supports Increment operations in 
addition to Read and Write. This might add the following (exported) procedure to the Register 
module: 

PROC Increment() = x := x+1 


Or, more explicitly: 

PROC Increment() = VAR t: Int | << t := x >>; << x := t+1 >> 


Because of the fine grain of atomicity, it is still true that if n threads execute Increment in 
parallel then, depending on the interleaving of the low-level steps, the final value of the register 
could be anything from 1 to n. Putting the procedure inside the Register module doesn’t help. 
Of course, making Increment an APROC would certainly do the trick. 

Mutexes 

Here is a spec of a simple Mutex module, which can be used to ensure mutually exclusive 
execution of critical sections; it is copied from handout 14 on practical concurrency. The state of 
a mutex is nil if the mutex is free, and otherwise is the thread that holds the mutex. 

CLASS Mutex EXPORT acq, rel = 


VAR m : (Thread + Null) := nil 

% Each mutex is either nil or the thread holding the mutex. 

% The variable SELF is defined to be the thread currently making a transition.


APROC acq() = << m = nil => m := SELF; RET >> 

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 


END Mutex 


If a thread invokes acq when m ≠ nil, then the body fails, This means that there’s no possible 
transition for that thread, and the thread is blocked, waiting at this point until the guard becomes 
true. If many threads are blocked at this point, then when m is set to nil, one is scheduled first, 
and it sets m to itself atomically; the other threads are still blocked. 

The spec says that if a thread that doesn’t hold m does m.rel, the result is HAVOC. As usual, this 
means that the code is free to do anything when this happens. As we shall see in the SpinLock 
code below, one possible ‘anything’ is to free the mutex anyway. 

Here is a simple use of a mutex m to make the Increment procedure atomic: 

PROC Increment() = VAR t: Int | 

m.acq; t := Register.Read(); t := t + 1; Register.Write(t); m.rel 


This keeps concurrent calls of Increment from interfering with each other. If there are other 
write accesses to the register, they must also use the mutex to avoid interfering with threads 
executing Increment. 

Spin locks 

A simple way to code a mutex is to use a spin lock. The name is derived from the behavior of a 
thread waiting to acquire the lock—it “spins”, repeatedly attempting to acquire the lock until it is 
finally successful. 

Here is incorrect code: 

CLASS BadSpinLock EXPORT acq, rel =


TYPE FH = ENUM[free, held] 

VAR fh := free 


PROC acq() = 

DO << fh = held => SKIP >> OD; % wait for fh = free 
<< fh := held >> % and acquire it 

PROC rel() = << fh := free >> 

END BadSpinLock 


This is wrong because two concurrent invocations of acq could both find fh = free and 
subsequently both set fh := held and return. 

Here is correct code. It uses a more complex atomic command in the acq procedure. This 
command corresponds to the atomic “test-and-set” instruction provided by many real machines 
to code locks. It records the initial value of the lock, and then sets it to held. Then it tests the 
initial value; if it was free, then this thread was successful in atomically changing the state of 
the lock from free to held. Otherwise some other thread must hold the lock, so we “spin”, 
repeatedly trying to acquire it until we succeed. The important difference in SpinLock is that the 
guard now involves only the local variable t, instead of the global variable fh in BadSpinLock. 
A thread acquires the lock when it is the one that changes it from free to held, which it checks 
by testing the value returned by the test-and-set. 

CLASS SpinLock EXPORT acq, rel = 


TYPE FH = ENUM[free, held] 

VAR fh := free 


PROC acq() = VAR t: FH | 

DO << t := fh; fh := held >>; IF t = free => RET [*] SKIP FI OD 


PROC rel() = << fh := free >> 


END SpinLock 
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Of course this code is not practical in general unless each thread has its own processor; it is used, 
however, in the kernels of most operating systems for computers with several processors. Later, 
in MutexImpl, we give practical code that queues a waiting thread. 

The SpinLock code differs from the Mutex spec in another important way. It “forgets” which 
thread owns the mutex. The following ForgetfulMutex module is useful in understanding the 
SpinLock code—in ForgetfulMutex, the threads get forgotten, but the atomicity is the same as 
in Mutex. 

CLASS ForgetfulMutex EXPORT acq, rel = 


TYPE FH = ENUM[free, held] 

VAR fh := free 


PROC acq() = << fh = free => fh := held >> 

PROC rel() = << fh := free >> 


END ForgetfulMutex 


Note that ForgetfulMutex releases a mutex regardless of which thread acquired it, and it does a 
SKIP if the mutex is already free. This is one of the behaviors permitted by the Mutex spec, 
which allows anything under these conditions. 

Later we will show that SpinLock implements ForgetfulMutex and that ForgetfulMutex 
implements Mutex, from which it follows that SpinLock implements Mutex. We don’t give the 
abstraction function here because it involves the details of program counters. 

Read/write locks 

Here is a spec of a module that provides locks with two modes, read and write, rather than the 
single mode of a mutex. Several threads can hold a lock in read mode, but only one thread can 
hold a lock in write mode, and no thread can hold a lock in read mode if some thread holds it in 
write mode. In other words, read locks can be shared, but write locks are exclusive; hence the 
locks are also known as ‘shared’ and ‘exclusive’. 

CLASS RWLock EXPORT rAcq, rRel, wAcq, wRel = 


TYPE ST = SET Thread 


VAR r : ST := {} 

w : ST := {} 


APROC rAcq() = % Acquires r if no current write locks 
<< SELF IN (r \/ w) => HAVOC [*] w = {} => r \/ := {SELF} >> 

APROC wAcq() = % Acquires w if no current locks 
<< SELF IN (r \/ w) => HAVOC [*] (r \/ w) = {} => w := {SELF} >> 

APROC rRel() = % Releases r if the thread has it 
<< ~ (SELF IN r) => HAVOC [*] r - := {SELF} >> 

APROC wRel() = 
<< ~ (SELF IN w) => HAVOC [*] w := {} >> 

END RWLock 


The following simple code is similar to ForgetfulMutex. It has the same atomicity as RWLock, 
but uses a different data structure to represent possession of the lock. Specifically, it uses a single 
integer variable rw to keep track of the number of readers (positive) or the existence of a writer 
(-1). 

CLASS ForgetfulRWL EXPORT rAcq, rRel, wAcq, wRel = 


VAR rw := 0 

% >0 gives number of readers, 0 means free, -1 means one writer 

APROC rAcq() = << rw >= 0 => rw + := 1 >> 

APROC wAcq() = << rw = 0 => rw := -1 >> 


APROC rRel() = << rw - := 1 >> 

APROC wRel() = << rw := 0 >> 


END ForgetfulRWL 


We will see later how to code ForgetfulRWL using a mutex. 

Condition variables 

Mutexes are used to protect shared variables. Often a thread h cannot proceed until some 
condition is true of the shared variables, a condition produced by some other thread. Since the 
variables are protected by a lock, and can be changed only by the thread holding the lock, h has 
to release the lock. It is not efficient to repeatedly release the lock and then re-acquire it to check 
the condition. Instead, it’s better for h to wait on a condition variable, as we saw in handout 14. 
Whenever any thread changes the shared variables in such a way that the condition might 
become true, it signals the threads waiting on that variable. Sometimes we say that the waiting 
threads ‘wake up’ when they are signaled. Depending on the application, a thread may signal one 
or several of the waiting threads. 

Here is the spec for condition variables, copied from handout 14 on practical concurrency. 

CLASS Condition EXPORT wait, signal, broadcast = 


TYPE M = Mutex 


VAR c : SET Thread := {} 

% Each condition variable is the set of waiting threads. 

PROC wait(m) = 
<< c \/ := {SELF}; m.rel >>; % m.rel=HAVOC unless SELF IN m 
<< ~ (SELF IN c) => m.acq >> 

APROC signal() = << 
% Remove at least one thread from c. In practice, usually just one. 

IF VAR t: SET Thread | t <= c /\ t # {} => c - := t [*] SKIP FI >> 


APROC broadcast() = << c := {} >> 


END Condition 
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As we saw in handout 14, it’s not necessary to have a single condition for each set of shared 
variables. We want enough condition variables so that we don’t wake up too many threads whose 
conditions are not yet satisfied, but not so many that the cost of doing all the signals is 
excessive. 

Coding read/write lock using condition variables 

This example shows how to use easy concurrency to make more complex locks and scheduling 
out of basic mutexes and conditions. We use a single mutex and condition for all the read-write 
locks here, but we could have separate ones for each read-write lock, or we could partition the 
locks into groups that share a mutex and condition. The choice depends on the amount of 
contention for the mutex. 

Compare the code with ForgetfulRWL; the differences are highlighted with boxes. The <<...>> 
in ForgetfulRWL have become m.acq ... m.rel; this provides atomicity because shared 
variables are only touched while the lock is held. The other change is that each guard that could 
block (in this example, all of them) is replaced by a loop that tests the guard and does c.wait if 
it doesn’t hold. The release operations do the corresponding signal or broadcast operations. 

CLASS RWLockImpl EXPORT rAcq, rRel, wAcq, wRel = % implements ForgetfulRWL 

VAR 	rw : Int := 0 

m := m.new() 

c := c.new() 


% ABSTRACTION FUNCTION ForgetfulRWL.rw = rw 


PROC rAcq(l) = m.acq; DO ~ rw >= 0 => c.wait(m) OD; rw + := 1; m.rel

PROC wAcq(l) = m.acq; DO ~ rw = 0 => c.wait(m) OD; rw := -1; m.rel


PROC rRel(l) = 

m.acq; rw - := 1; IF rw = 0 => c.signal [*] SKIP FI; m.rel


PROC wRel(l) = 

m.acq; rw := 0; c.broadcast; m.rel


END RWLockImpl 


This is the prototypical example for scheduling resources. There are mutexes (just m in this case) 
to protect the scheduling data structures, conditions (just c in this case) on which to delay threads 
that are waiting for a resource, and logic that figures out when it’s all right to allocate a resource 
(the read or write lock in this case) to a thread. 

Note that this code may starve a writer: if readers come and go but there’s always at least one of 
them, a waiting writer will never acquire the lock. How could you fix this? 

An unbounded FIFO buffer 

In this section, we give a spec and code for a simple unbounded buffer that could be used as a 
communication channel between two threads. This is the prototypical example of a producer-
consumer relation between threads. Other popular names for Produce and Consume are Put and 
Get. 

MODULE Buffer[T] EXPORT Produce, Consume = 


VAR b : SEQ T := {} 


APROC Produce(t) = << b + := {t} >> 

APROC Consume() -> T = VAR t | << b # {} => t := b.head; b := b.tail; RET t >> 


END Buffer 


The code is another example of easy concurrency. 

MODULE BufferImpl[T] EXPORT Produce, Consume = 


VAR 	b : SEQ T := {} 

m := m.new() 

c := c.new() 


% ABSTRACTION FUNCTION Buffer.b = b 


PROC Produce(t) = m.acq; IF b = {} => c.signal [*] SKIP FI; b + := {t}; m.rel 


PROC Consume() -> T = VAR t | 

m.acq; DO b = {} => c.wait(m) OD; t := b.head; b := b.tail; m.rel; RET t 


END BufferImpl 


Coding Mutex with memory 

The usual way to code Mutex is to use an atomic test-and-set operation; we saw this in the 
MutexImpl module above. If such an operation is not available, however, it’s possible to code 
Mutex using only atomic read and write operations on memory. This requires an amount of 
storage linear in the number of threads, however. We give a fair algorithm due to Peterson8 for 
two threads; if thread h is competing for the mutex, we write h* for its competitor. 

CLASS Mutex2Impl EXPORT acq, rel = 


VAR 	req : Thread -> Bool := {* -> false} 

lastReq : Int 


PROC acq() = 
[a0] req(SELF) := true; 
[a1] lastReq := SELF; 
DO [a2] (req(SELF*) /\ lastReq = SELF) => SKIP OD [a3] 

PROC rel() = req(SELF) := false 


END Mutex2Impl 


This is hard concurrency, and it’s tricky to show that it works. To see the idea, consider first a 
simpler version of acq that ensures mutual exclusion but can deadlock: 

PROC acq0() = 
[a0] req(SELF) := true; 

8 G. Peterson, A new solution to Lamport’s concurrent programming problem using small shared variables. ACM 
Trans. Programming Languages and Systems 5, 1 (Jan. 1983), pp 56-65. 
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DO [a2] req(SELF*) => SKIP OD [a3] % busy wait 

We get mutual exclusion because once req(h) is true, h* can’t get from a2 to a3. Thus req(h) 
acts as a lock that keeps the predicate h*.$pc = a2 true once it becomes true. Only one of the 
threads can get to a3 and acquire the lock. We might call the algorithm ‘polite’ because each 
thread defers to the other one at a2. 

Of course, acq0 is no good because it can deadlock—if both threads get to a2 then neither can 
progress. acq avoids this problem by making it a little easier for a thread to progress: even if 
req(h*), h can take (a2, a3) if lastReq # h. Intuitively this maintains mutual exclusion because: 

If both threads are at a2, only the one ≠ lastReq, say h, can progress to a3 and acquire the 
lock. Since lastReq won’t change, h* will remain at a2 until h releases the lock. 

Once h has acquired the lock with h* not at a2, h* can only reach a2 by setting 
lastReq := h*, and again h* will remain at a2 until h releases the lock. 

It ensures progress because the DO is the only place to get stuck, and whichever thread is not in 
lastReq will get past it. It ensures fairness because the first thread to get to a2 is the one that will 
get the lock first. 

Abstractly, h has the mutex if req(h) /\ h.$pc # a2, and the transition from a2 to a3 simulates 
the body of Mutex.acq. Precisely, the abstraction function is 

Mutex.m = (Holds0.set = {} => nil [*] Holds0.set.choose) 


We sketch the proof that Mutex2Impl implements Mutex later. 

There is lots more to say about coding Mutex efficiently, especially in the context of shared-
memory multiprocessors.9 Even on a uniprocessor you still need an implementation that can 
handle pre-emption; often the most efficient implementation gets the necessary atomicity by 
modifying the code for pre-emption to detect when a thread is pre-empted in the middle of the 
mutex code and either complete the operation or back up the state. 

Multi-word clock 

Often it’s possible to get better performance by avoiding locking. Algorithms that do this are 
called ‘wait-free’; we gave a brief discussion in handout 14. Here we present a wait-free 
algorithm due to Lamport10 for reading and incrementing a clock, even if clock values do not fit 
into a single memory location that can be read and written atomically. 

We begin with the spec. It says that a Read returns some value that the clock had between the 
beginning and the end of the Read. As we saw in handout 8 on generalized abstraction functions, 

9 J. Mellor-Crummey and M. Scott, Algorithms for scalable synchronization of shared-memory multiprocessors.

ACM Transactions on Computer Systems 9, 1 (Feb. 1991), pp 21-65. A. Karlin et al., Empirical studies of 

competitive spinning for a shared-memory multiprocessor. ACM Operating Systems Review 25, 5 (Oct. 1991), pp 

41-55. 

10 L. Lamport, Concurrent reading and writing of clocks. ACM Transactions on Computer Systems 8, 4 (Nov. 1990), 

pp 305-310. 


where this spec is called LateClock, it takes a prophecy variable to show that this spec is 
equivalent to the simpler spec that just reads the clock value. 

MODULE Clock EXPORT Read =


VAR t : Int := 0 % the current time 

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t 

PROC Read() -> Int = VAR t1: Int | 

<< t1 := t >>; << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> 


END Clock 


The code below is based on the idea of doing reads and writes of the same multi-word data in 
opposite orders. Tick writes hi2, then lo, then hi1. Read reads hi1, then lo, then hi2; if it sees 
different values in hi1 and hi2, there must have been at least one carry during the read, so t 
must have taken on the value hi2 * base. The function T expresses this idea. The atomicity 
brackets in the code are the largest ones that are justified by big atomic actions. 

MODULE ClockImpl EXPORT Read =


CONST base := 2**32 


TYPE Word = Int SUCHTHAT (\ i: Int | i IN base.seq) 


VAR 	lo : Word := 0 

hi1 : Word := 0 

hi2 : Word := 0 


% ABSTRACTION FUNCTION Clock.t = T(lo, hi1, hi2), Clock.Read.t1 = Read.t1Hist, 

Clock.Read.t2 = T(Read.tLo, Read.tH1, read.tH2) 


THREAD Tick() = DO VAR newLo: Word, newHi: Word | 

<< newLo := lo + 1 // base; newHi := hi1 + 1 >>; 

IF << newLo # 0 => lo := newLo >> 

[*] << hi2 := newHi >>; << lo := newLo >>; << hi1 := newHi >> 

FI OD 


PROC Read() -> Int = VAR tLo: Word, tH1: Word, tH2: Word | 

<< tH1 := h1 >>; 

<< tLo := lo >>; 

<< tH2 := h2; RET T(tLo, tH1, tH2) >> 


FUNC T(l: Int, h1: Int, h2: Int) -> Int = h2 * base + (h1 = h2 => l [*] 0) 


END ClockImpl 


Given this code for reading a two-word clock atomically starting with atomic reads of the low 
and high parts, it’s obvious how to apply it recursively n–1 times to read an n word clock. 

User and kernel mutexes and condition variables 

This section presents code for mutexes and condition variables based on the Taos operating 
system from DEC SRC. Instead of spinning like SpinLock, it explicitly queues threads waiting 
for locks or conditions. The code for mutexes has a fast path that stays out of the kernel in acq 
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when the mutex is free, and in rel when no other thread is waiting for the mutex. There is also a 
fast path for signal, for the common case that there’s nobody waiting on the condition. There’s 
no fast path for wait, since that always requires the kernel to run in order to reschedule the 
processor (unless a signal sneaks in before the kernel gets around to the rescheduling). 

Notes on the code for mutexes: 

1.	 MutexImpl maintains a queue of waiting threads, blocks a waiting thread using Deschedule, 
and uses Schedule to hand a ready thread over to the scheduler to run. 

2.	 SpinLock and ReleaseSpinLock acquire and release a global lock used in the kernel to 
protect thread queues. This is OK because code running in the kernel can’t be pre-empted. 

3.	 The loop in acq serves much the same purpose as a loop that waits on a condition variable. If 
the mutex is already held, the loop calls KernelQueue to wait until it becomes free, and then 
tries again. rel calls KernelRelease if there’s anyone waiting, and KernelRelease allows 
just one thread to run. That thread returns from its call of KernelQueue, and it will acquire 
the mutex unless another thread has called acq and slipped in since the mutex was released 
(roughly). 

4.	 There is clumsy code in KernelQueue that puts the thread on the queue and then takes it off 
if the mutex turns out to be free. This is not a mistake; it avoids a race with rel, which calls 
KernelRelease to take a thread off the queue only if it sees that the queue is not empty. 
KernelQueue changes q and looks at s; rel uses the opposite order to change s and look at 
q. 

This opposite-order access pattern often works in hard concurrency, that is, when there’s not 
enough locking to do the job in a straightforward way. We saw another version of it in 
Mutex2Impl, which sets req(h) before reading req(h*). In this case req(h) acts like a lock to 
keep h*.$pc = a2 from changing from true to false. We also saw it in ClockImpl, where the 
reader and the writer of the clock touch its pieces in the opposite order. 

The boxes show how the state, acq, and rel differ from the versions in SpinLock. 

CLASS MutexImpl EXPORT acq, rel = % implements ForgetfulMutex 

TYPE FH = Mutex.FH 

VAR fh := free 


q : SEQ Thread := {}


PROC acq() = VAR t: FH | 

DO << t := fh; fh := held >>; IF t#held => RET [*] SKIP FI; KernelQueue() OD 


PROC rel() = fh := free; IF q # {} => KernelRelease() [*] SKIP FI


% KernelQueue and KernelRelease run in the kernel so they can hold the spin lock and call the scheduler.


PROC KernelQueue() = 

% This is just a delay until there’s a chance to acquire the lock. When it returns acq will retry.

% Queuing SELF before testing fh ensures that the test in rel doesn’t miss us. 

% The spin lock keeps KernelRelease from getting ahead of us.


SpinLock(); % indented code holds the lock 

q + := {SELF}; 

IF fh = free => q := q.reml % undo previous line; will retry at acq 

[*] Deschedule(SELF) % wait, then retry at acq 

FI; 


ReleaseSpinLock() 


PROC KernelRelease() = 
SpinLock(); % indented code holds the lock 

IF q # {} => Schedule(q.head); q := q.tail [*] SKIP FI; 
ReleaseSpinLock() 
% The newly scheduled thread competes with others to acquire the mutex. 

END MutexImpl 


Now for conditions. Note that: 

The ‘event count’ ecSig deals with the standard ‘wakeup-waiting’ race condition: the signal 
arrives after the m.rel but before the thread is queued. Note the use of the global spin lock as 
part of this. It looks as though signal always schedules exactly one thread if the queue is not 
empty, but other threads that are in wait but have not yet acquired the spin lock may keep 
running; in terms of the spec they are awakened by signal as well. 

signal and broadcast test for any waiting threads without holding any locks, in order to avoid 
calling the kernel in this common case. The other event count ecWait ensures that this test 
doesn’t miss a thread that is in KernelWait but hasn’t yet blocked. 

CLASS ConditionImpl EXPORT wait, signal, broadcast = % implements Condition 

TYPE M = Mutex 


VAR 	ecSig : Int := 0 

ecWait : Int := 0 

q : SEQ Thread := {} 


PROC wait(m) = VAR i := ecSig | m.rel; KernelWait(i); m.acq 


PROC signal() = VAR i := ecWait | 

ecSig + := 1; IF q # 0 \/ i # ecWait => KernelSig 


PROC broadcast() = VAR i := ecWait | 

ecSig + := 1; IF q # 0 \/ i # ecWait => KernelBroadcast 


PROC KernelWait(i: Int) = % internal kernel procedure 
SpinLock(); % indented code holds the lock 

ecWait + := 1; 
% if ecSig changed, there must have been a Signal, so return, else queue 
IF i = ecSig => q + := {SELF}; Deschedule(SELF) [*] SKIP FI; 


ReleaseSpinLock() 


PROC KernelSig() = % internal kernel procedure 
SpinLock(); % indented code holds the lock 

IF q # {} => Schedule(q.head); q := q.tail [*] SKIP FI; 
ReleaseSpinLock() 

PROC KernelBroadcast() = 
SpinLock(); % indented code holds the lock 
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DO q # {} => Schedule(q.head); q := q.tail OD; 

ReleaseSpinLock() 


END ConditionImpl 


The code for mutexes and conditions are quite similar; in fact, both are cases of a general 
semaphore. 

Proving concurrent modules correct 

This section explains how to prove the correctness of concurrent program modules. It reviews 
the simulation method that we have already studied, which works just as well for concurrent as 
for sequential modules. Then several examples illustrate how the method works in practice. 
Things are more complicated in the concurrent case because there are many more atomic 
transitions, and because the program counters of the threads are part of the state. 

Before using this method in its full generality, you should first apply the theorem on big atomic 
actions as much as possible, in order to reduce the number of transitions that your proofs need to 
consider. If you are programming with easy concurrency, that is, if your code uses a standard 
locking discipline, this will get rid of nearly all the work. If you are doing hard concurrency, 
there will still be lots of transitions, and in doing the proof you will probably find bugs in your 
program. 

The formal method 

We use the same simulation technique that we used for sequential modules, as described in 
handouts 6 and 8 on abstraction functions. In particular, we use the most general version of this 
method, presented near the end of handout 8. This version does not require the transitions of the 
code to correspond one-for-one with the transitions of the spec. Only the external behavior 
(invocations and responses) must be the same—there can be any number of internal steps. The 
method proves that every trace (external behavior sequence) produced by the code can also be 
produced by the spec. 

Of course, the utility of this method depends on an assumption that the external behavior of a 
module is all that is of interest to callers of the module. In other words, we are assuming here, as 
everywhere in this course, that the only interaction between the module and the rest of the 
program is through calls to the external routines provided by the module. 

We need to show that each transition of the code simulates a sequence of transitions of the spec. 
An external transition must simulate a sequence that contains exactly one instance of the same 
external transition and no other external transitions; it can also contain any number of internal 
transitions. An internal transition must simulate a sequence that contains only internal transitions. 

Here, once again, are the definitions: 

Suppose T and S are modules with same external interface. An abstraction function F is a 
function from states(T) to states(S) such that: 

Start: If u is any initial state of T then F(u) is an initial state of S. 

Step: If u and F(u) are reachable states of T and S respectively, and (u, π, u') is a step of T, 
then there is an execution fragment of S from F(u) to F(u'), having the same trace. 

Thus, if π is an invocation or response, the fragment consists of a single π step, with any number 
of internal steps before and/or after. If π is internal, the fragment consists of any number 
(possibly 0) of internal steps. 

As we saw in handout 8, we may have to add history variables to T in order to find an abstraction 
function to S (and perhaps prophecy variables too). The values of history variables are calculated 
in terms of the actual variables, but they are not allowed to affect the real steps. 

An alternative to adding history variables is to define an abstraction relation instead of an 
abstraction function. An abstraction relation AR is a relation between states(T) and states(S) such 
that: 

Start: If u is any initial state of T then there exists an initial state s of S such that (u, s) ∈ AR. 

Step: If u and s are reachable states of T and S respectively, (u, s) ∈ AR, and (u, π, u') is a step 
of T, then there is an execution fragment of S from s to some s' having the same trace, and 
such that (u', s') ∈ AR. 

Theorem: If there exists an abstraction function or relation from T to S then T implements S; that 
is, every trace of T is a trace of S. 

Proof: By induction. 

The strategy 

The formal method suggests the following strategy for doing hard concurrency proofs. 

1. Start with a spec, which has an abstract state. 

2. Choose a concrete state for the code. 

3. Choose an abstraction function, perhaps with history variables, or an abstraction relation. 

4. Write code, identifying the critical actions that change the abstract state. 

5. While (checking the simulation fails) do 

Add an invariant, checking that all actions of the code preserve it, or 

Change the abstraction function (step 3), the code (step 4), the invariant (step 5), or more 
than one, or 

Change the spec (step 1). 

This approach always works. The first four steps require creativity; step 5 is quite mechanical 
except when you find an error. It is somewhat laborious, but experience shows that if you are 
doing hard concurrency and you omit any of these steps, your program won’t work. Be warned. 
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Owicki-Gries proofs 

Owicki and Gries invented a special case of this general method that is well known and 
sometimes useful.11 Their idea is to do an ordinary sequential proof of correctness for each 
thread h, annotating each atomic command in the usual style with an assertion that is true at that 
point if h is the only thread running. This proof shows that the code of h establishes each 
assertion. Then you show that each of these assertions remains true after any command that any 
other thread can execute while h is at that point. This condition is called ‘non-interference’; 
meaning not that other threads don’t interfere with access to shared variables, but rather that they 
don’t interfere with the proof. 

The Owicki-Gries method amounts to defining an invariant of the form 

h.$pc = α ==> Aα /\ h.$pc = β ==> Aβ /\ ... 

and showing that it’s an invariant in two steps: first, that every step of h maintains it, and then 
that every step of any other thread maintains it. The hope is that this decomposition will pay 
because the most complicated parts of the invariant have to do with private variables of h that 
aren’t affected by other threads. 

Prospectus for proofs 

The remainder of this handout contains example proofs of correctness for several of the 
examples above: the RWLockImpl code for a read/write lock, the BufferImpl code for a FIFO 
buffer, the SpinLock code for a mutex (given in two versions), the Mutex2Impl code for a mutex 
used by two threads, and the ClockImpl code for a multi-word clock. 

The amount of detail in these proofs is uneven. The proof of the FIFO buffer code and the 
second proof of the Spinlock code are the most detailed. The others give the abstraction 
functions and key invariants, but do not discuss each simulation step. 

Read/write locks 

We sketch how to prove directly that the module RWLockImpl implements ForgetfulRWL.This 
could be done by big atomic actions, since the code uses easy concurrency, but as an easy 
introduction discuss how to do it directly. The two modules are based on the same data, the 
variable rw. The difference is that RWLockImpl uses a condition variable to prevent threads in 
acq from busy-waiting when they don’t see the condition they require. It also uses a mutex to 
restrict accesses to rw, so that a series of accesses to rw can be done atomically. 

An abstraction function maps RWLockImpl to ForgetfulRWL. The interesting part of the state of 
ForgetfulRWL is the rw variable. We define that by the identity mapping from RWLockImpl. 

The mapping for steps is mostly determined by the rw identity mapping: the steps that assign to 
rw in RWLockImpl are the ones that correspond to the procedure bodies in ForgetfulRWL Then 
the checking of the state and step correspondences is pretty routine. 

11 S. Owicki and D. Gries, An axiomatic proof technique for parallel programs. Acta Informatica 6, 1976, pp 319-
340. 

There is one subtlety. It would be bad if a series of rw steps done atomically in ForgetfulRWL 
were interleaved in RWLockImpl. Of course, we know they aren’t, because they are always done 
by a thread holding the mutex. But how does this fact show up in the proof? 

The answer is that we need some invariants for RWLockImpl. The first, a “dominant thread 
invariant”, says that only a thread whose name is in m (a ‘dominant thread’) can be in certain 
portions of its code (those guarded by the mutex). The dominant thread invariant is in turn used 
to prove other invariants called “data protection invariants”. 

For example, one data protection invariant says that if a thread (in RWLockImpl) is in middle of 
the assignment statement rw + := 1, then in fact rw ≥ 0 (that is, the test is still true). We need 
this data protection invariant to show that the corresponding abstract step (the body of rAcq in 
ForgetfulRWLock) is enabled. 

BufferImpl implements Buffer 

The FIFO buffer is another example of easy concurrency, so again we don’t need to do a 
transition-by-transition proof for it. Instead, it suffices to show that a thread holds the lock m 
whenever it touches the shared variable b. Then we can treat the whole critical section during 
which the lock is held as a big atomic action, and the proof is easy. We will work out the 
important details of a low-level proof, however, in order to get some practice in a situation that is 
slightly more complicated but still straightforward, and in order to convince you that the theorem 
about big atomic actions can save you a lot of work. 

First, we give the abstraction function; then we use it to show that the code simulates the spec. 
We use a slightly simplified version of Produce that always signals, and we introduce a local 
variable temp to make explicit the atomicity of assignment to the shared variable b. 

Abstraction function 

The abstraction function on the state must explain how to interpret a state of the code as a state 
of the spec. Remember that to prove a concurrent program correct, we need to consider the entire 
state of a module, including the program counters and local variables of threads. For sequential 
programs, we can avoid this by treating each external operation as a single atomic action. 

To describe the abstraction function, we thus need to explain how to construct a state of the spec 
from a state of the code. So what is a state of the Buffer module above? It consists of: 

• A sequence of items b (the buffer itself); 

• for each thread that is active in the module, a program counter; and 

• for each thread that is active in the module, values for local variables. 

A state of the code is similar, except that it includes the state of the Mutex and Condition 
modules. 

To define the mapping, we need to enumerate the possible program counters. For the spec, they 
are: 
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P1 — before the body of Produce 
P2 — after the body of Produce 
C1 — before the body of Consume 
C2 — after the body of Consume 

or as annotations to the code: 

PROC Produce(t) = [P1] << b + := {t} >> [P2] 

PROC Consume() -> T = 
[C1] << b # {} => VAR t := b.head | b := b.tail; RET t >> [C2] 

For the code, they are: 

• For a thread in Produce: 

p1 — before m.acq

in m.acq—either before or after the action 

p2 — before temp := b + {t}

p3 — before b := temp

p4 — before c.signal

in c.signal—either before or after the action 

p5 — before m.rel

in m.rel—either before or after the action 

p6 — after m.rel


• For a thread in Consume: 

c1 — before m.acq

in m.acq—either before or after action 

c2 — before the test b # {}

c3 — before c.wait

in c.wait—at beginning, in middle, or at end 

c4 — before t := b.head

c5 — before temp := b.tail

c6 — before b := temp

c7 — before m.rel

in m.rel—either before or after action 

c8 — before RET t

c9 — after RET t 


or as annotations to the code: 

PROC Produce(t) = VAR temp | 
[p1] m.acq; 
[p2] temp = b + {t}; 
[p3] b := temp; 
[p4] c.signal; 
[p5] m.rel [p6] 

PROC Consume() -> T = VAR t, temp | 


[c1] m.acq; 

DO [c2] b # {} => [c3] c.wait OD; 

[c4] t := b.head; 

[c5] temp := b.tail; [c6] b := temp; 

[c7] m.rel; 

[c8] RET t [c9] 


Notice that we have broken the assignment statements into their constituent atomic actions, 
introducing a temporary variable temp to hold the result of evaluating the right hand side. Also, 
the PC’s in the Mutex and Condition operations are taken from the specs of those modules (not 
the code; we prove their correctness separately). Here for reference is the relevant code. 

APROC acq() = << m = nil => m := SELF; RET >> 

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 


APROC signal() = << VAR hs: SET Thread |

IF hs <= c /\ hs # {} => c - := hs [*] SKIP FI >> 


Now we can define the mapping on program counters: 

•	 If a thread h is not in Produce or Consume in the code, then it is not in either procedure in the 
spec. 

•	 If a thread h is in Produce in the code, then: 

If h.$pc is in {p1, p2, p3} or is in m.acq, then in the spec h.$pc = P1. 

If h.$pc is in {p4, p5, p6} or is in m.rel or c.signal then in the spec h.$pc = P2. 

• If a thread h is in Consume in the code, then: 

If h.$pc ∈ {c1, …, c6} or is in m.acq or c.wait then in the spec h.$pc = C1. 

If h.$pc is in {c7, c8, c9} or is in m.rel then in the spec h.$pc = C2. 

The general strategy here is to pick, for each atomic transition in the spec, some atomic transition 
in the code to simulate it. Here, we have chosen the modification of b in the code to simulate the 
corresponding operation in the spec. Thus, program counters before that point in the code map to 
program counters before the body in the spec, and similarly for program counters after that point 
in the code. 

This choice of the abstraction function for program counters determines how each transition of 
the code simulates transitions of the spec as follows: 

• If π is an external transition, π simulates the singleton sequence containing just π. 

•	 If π takes a thread from a PC of p3 to a PC of p4, π simulates the singleton sequence 
containing just the body of Produce. 

•	 If π takes a thread from a PC of c6 to a PC of c7, π simulates the singleton sequence 
containing just the body of Consume. 

• All other transitions π simulate the empty sequence. 
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This example illustrates a typical situation: we usually find that a transition in the code simulates 
a sequence of either zero or one transitions in the spec. Transitions that have no effect on the 
abstract state simulate the empty sequence, while transitions that change the abstract state 
simulate a single transition in the spec. The proof technique used here works fine if a transition 
simulates a sequence with more than one transition in it, but this doesn’t show up in most 
examples. 

In addition to defining the abstract program counters for threads that are active in the module, we 
also need to define the values of their local variables. For this example, the only local variables 
are temp and the item t. For threads active in either Produce or Consume, the abstraction 
function on temp and t is the identity; that is, it defines the values of temp and t in a state of the 
spec to be the value of the identically named variable in the corresponding operation of the code. 

Finally, we need to describe how to construct the state of the buffer b from the state of the code. 
Given the choices above, this is simple: the abstraction function is the identity on b. 

Proof sketch 

To prove the code correct, we need to prove some invariants on the state. Here are some obvious 
ones; the others we need will become clear as we work through the rest of the proof. 

First, define a thread h to be dominant if h.$pc is in Produce and h.$pc is in {p2, p3, p4, p5} or is 
at the end of m.acq, in c.signal, or at the beginning of m.rel, or if h.$pc is in Consume and 
h.$pc is in {c2, c3, c4, c5, c6, c7} or is at the end of m.acq, at the beginning or end of c.wait (but 
not in the middle), or at the beginning of m.rel. 

Now, we claim that the following property is invariant: a thread h is dominant if and only if 
Mutex.m = h. This simply says that h holds the mutex if and only if its PC is at an appropriate 
point. This is the basic mutual exclusion property. Amazingly enough, given this property we 
can easily show that operations are mutually exclusive: for all threads h, h' such that h ≠ h', if h 
is dominant then h' is not dominant. In other words, at most one thread can be in the middle of 
one of the operations in the code at any time. 

Now let’s consider what needs to be shown to prove the code correct. First, we need to show that 
the claimed invariants actually are invariants. We do this using the standard inductive proof 
technique: Show that each initial state of the code satisfies the invariants, and then show that 
each atomic action in the code preserves the invariants. This is left as an exercise. 

Next, we need to show that the abstraction function defines a simulation of the spec by the code. 
Again, this is an inductive proof. The first step is to show that an initial state of the code is 
mapped by the abstraction function to an initial state of the spec. This should be straightforward, 
and is left as an exercise. The second step is to show that the effects of each transition are 
preserved by the abstraction function. Let’s consider a couple of examples. 

• Consider a transition π from r to r' in which an invocation of an operation occurs for thread 
h. Then in state r, h was not active in the module, and in r', its PC is at the beginning of the 
operation. This transition simulates the identical transition in the spec, which has the effect of 
moving the PC of this thread to the beginning of the operation. So AF(r) is taken to AF(r') by 
the transition. 

•	 Consider a transition in which a thread h moves from h.$pc = p3 to h.$pc = p4, setting b to 
the value stored in temp. The corresponding abstract transition sets b to b + {t}. To show 
that this transition does the right thing, we need an additional invariant: 

If h.$pc = p3, then temp = b + {t}. 

To prove this, we use the fact that if h.$pc = p3, then no other thread is dominant, so no other 
transition can change b. We also have to show that any transition that puts h.$pc at this point 
establishes the consequent of the implication — but there is only one transition that does this 
(the one that assigns to temp), and it clearly establishes the desired property. 

The transition in Consume that assigns to b relies on a similar invariant. The rest of the transitions 
involve straightforward case analyses. For the external transitions, it is clear that they correspond 
directly. For the other internal transitions, we must show that they have no abstract effect, i.e., if 
they take r to r', then AF(r) = AF(r'). This is left as an exercise. 

SpinLock implements Mutex, first version 

The proof is done in two layers. First, we show that ForgetfulMutex implements Mutex. 
Second, we show that SpinLock implements ForgetfulMutex. For convenience, we repeat the 
definitions of the two modules. 

CLASS Mutex EXPORT acq, rel = 


VAR m : (Thread + Null) := nil 


PROC acq() = << m = nil => m := SELF; RET >> 

PROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 


END Mutex 


CLASS ForgetfulMutex EXPORT acq, rel = 


TYPE M = ENUM[free, held] 

VAR m := free 


PROC acq() = << m = free => m := held; RET >> 

PROC rel() = << m := free; RET >> 


END ForgetfulMutex 


Proof that ForgetfulMutex implements Mutex 

These two modules have the same atomicity. The difference is that ForgetfulMutex forgets 
which thread owns the mutex, and so it can’t check that the “right” thread releases it. We use an 
abstraction relation AR. It needs to be multi-valued in order to put back the information that is 
forgotten in the code. Instead of using a relation, we could use a function and history variables to 
keep track of the owner and havoc. The single-level proof given later on that Spinlock 
implements Mutex uses history variables. 

The main interesting relationship that AR must express is: 
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s.m is non-nil if and only if u.m = held. 

In addition, AR must include less interesting relationships. For example, it has to relate the $pc 
values for the various threads. In each module, each thread is either not there at all, before the 
body, or after the body. Thus, AR also includes the condition: 

The $pc value for each thread is the same in both modules. 

Finally, there is the technicality of the special $havoc = true state that occurs in Mutex. We 
handle this by allowing AR to relate all states of ForgetfulMutex to any state with $havoc = 
true. 

Having defined AR, we just show that the two conditions of the abstraction relation definition are 
satisfied. 

The start condition is obvious. In the unique start states of both modules, no thread is in the 
module. Also, if u is the state of ForgetfulMutex and s is the state of Mutex, then we have u.m = 
free and s.m = nil. It follows that (u, s) ∈ AR, as needed. 

Now we turn to the step condition. Let u and s be reachable states of ForgetfulMutex and 
Mutex, respectively, and suppose that (u, π, u') is a step of ForgetfulMutex and that (u, s) ∈ AR. 
If s.$havoc, then it is easy to show the existence of a corresponding execution fragment of 
Mutex, because any transition is possible. So we suppose that s.$havoc = false. Invocation and 
response steps are straightforward; the interesting cases are the internal steps. 

So suppose that π is an internal action of ForgetfulMutex. We argue that the given step 
corresponds to a single step of Mutex, with “the same” action. There are two cases: 

1.	 π is the body of an acq, by some thread h. Since acq is enabled in ForgetfulMutex, we have 
u.m = free, and h.$pc is right before the acq body in u. Since (u, s) ∈ AR, we have s.m = 
nil, and also h.$pc is just before the acq body in s. Therefore, the acq body for thread h is 
also enabled in Mutex. Let s' be the resulting state of Mutex. 

By the code, u'.m = held and s'.m = h, which correspond correctly according to AR. Also, 
since the same thread h gets the mutex in both steps, the PC’s are changed in the same way in 
both steps. So (u', s') ∈ AR. 

2.	 π is the body of a rel, by some thread h. If u.m = free then ForgetfulMutex does 
something sensible, as indicated by its code. But since (u, s) ∈ AR, s.m = nil and Mutex 
does HAVOC. Since $havoc in Mutex is defined to correspond to everything in 
ForgetfulMutex, we have (u', s') ∈ AR in this case. 

On the other hand, if u.m = held then ForgetfulMutex sets u'.m := free. Since (u, s) ∈ 
AR, we have s.m ≠ nil. Now there are two cases: If s.m = h, then corresponding changes 
occur in both modules, which allows us to conclude (u', s') ∈ AR. Otherwise, Mutex goes to 
$havoc = true. But as before, this is OK because $havoc = true corresponds to 
everything in ForgetfulMutex. 

The conclusion is that every trace of ForgetfulMutex is also a trace of Mutex. Note that this 
proof does not imply anything about liveness, though in fact the two modules have the same 
liveness properties. 

Proof that SpinLock implements ForgetfulMutex 

We repeat the definition of SpinLock. 

CLASS SpinLock EXPORT acq, rel = 


TYPE M = ENUM[free, held] 

VAR m := free 


PROC acq() = VAR t: FH | 

DO << t := m; m := held >>; IF t # held => RET [*] SKIP FI OD 


PROC rel() = << m := free >> 


END SpinLock 


These two modules use the same basic data. The difference is their atomicity. Because they use 
the same data, an abstraction function AF will work. Indeed, the point of introducing 
ForgetfulMutex was to take care of the need for history variables or abstraction relations there. 

The key to defining AF is to identify the exact moment in an execution of SpinLock when we 
want to say the abstract acq body occurs. There are two logical choices: the moment when a 
thread converts u.m from free to held, or the later moment when the thread discovers that it has 
done this. Either will work, but to be definite we consider the earlier of these two possibilities. 

Then AF is defined as follows. If u is any state of SpinLock then AF(u) is the unique state s of 
ForgetfulMutex such that: 

• s.m = u.m, and 

• The PC values of all threads “correspond”. 

We must define the sense in which the PC values correspond. The correspondence is 
straightforward for threads that aren’t there, or are engaged in a rel operation. For a thread h 
engaged in an acq operation, we say that 

•	 h.$pc in ForgetfulMutex, s.h.$pc, is just before the body of acq if and only if u.h.$pc is 
in SpinLock either (a) at the DO, and before the test-and-set ,or (b) after the test-and-set with 
h’s local variable t equal to held. 

•	 h.$pc in ForgetfulMutex, s.h.$pc, is just after the body of acq if and only if u.h.$pc is 
either (a) after the test-and-set with h’s local variable t equal to free or (b) after the 
t # held test. 

The proof that this is an abstraction function is interesting. The start condition is easy. For the 
step condition, the invocation and response cases are easy, so consider the internal steps. The rel 
body corresponds exactly in both modules, so the interesting steps to consider are those that are 
part of the acq. acq in SpinLock has two kinds of internal steps: the atomic test-and-set and the 
test for t # held. We consider these two cases separately: 
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1)	 The atomic test-and-set, (u, test-and-set, u'). Say this is done by thread h. In this case, the 
value of m might change. It depends on whether the step of SpinLock changes m from free to 
held. If it does, then we map the step to the acq body. If not, then we map it to the empty 
sequence of steps. We consider the two cases separately: 

a)	 The step changes m. Then in SpinLock, h.$pc moves after the test-and-set with h’s local 
variable t = free. We claim first that the acq body in ForgetfulMutex is enabled in 
state AF(u). This is true because it requires only that s.m = free, and this follows from 
the abstraction function since u.m = free. Then we claim that the new states in the two 
modules are related by AF. To see this, note that m = held in both cases. And the new 
PC’s correspond: in ForgetfulMutex, h.$pc moves to right after the acq body, which 
corresponds to the position of h.$pc in SpinLock, by the definition of the abstraction 
function. 

b)	 The step does not change m. Then h.$pc in SpinLock moves to the test, with t = held. 
Thus, there is no change in the abstract value of h.$pc. 

2)	 The test for t # held, (u, test, u’). Say this is done by thread h. We always map this to the 
empty sequence of steps in ForgetfulMutex. We must argue that this step does not change 
anything in the abstract state, i.e., that AF(u') = AF(u). There are two cases: 

a)	 If t = held, then the step of SpinLock moves h.$pc to after the DO. But this does not 
change the abstract value of h.$pc, according to the abstraction function, because both 
before and after the step, the abstract h.$pc value is before the body of acq. 

b)	 On the other hand, if t = free, then the step of SpinLock moves h.$pc to after the =>. 
Again, this does not change the abstract value of h.$pc because both before and after the 
step, the abstract h.$pc value is after the body of acq. 

SpinLock implements Mutex, second version 

Now we show again that SpinLock implements Mutex, this time with a direct proof that 
combines the work done in both levels of the proof in the previous section. For contrast, we use 
history variables instead of an abstraction relation. 

Abstraction function 

As usual, we need to be precise about what constitutes a state of the code and what constitutes a 
state of the spec. A state of the spec consists of: 

• A value for m (either a thread or nil); and 

• for each thread that is active in the module, a program counter. 

There are no local variables for threads in the spec. 

A state of the code is similar; it consists of: 

• A value for m (either free or held); 

• for each thread that is active in the module, a program counter; and 

• for each thread that is active in acq, a value for the local variable t. 

Now we have a problem: there is no way to define an abstraction function from a code state to a 
spec state. The problem here is that the code does not record which thread holds the mutex, yet 
the spec keeps track of this information. To solve this problem, we have to introduce a history 
variable or use an abstraction relation. We choose the history variable, and add it as follows: 

• We augment the state of the code with two additional variables: 
ms: (Thread + Null) := nil % m in the Spec 
hs: Bool := false % $havoc in the Spec 

•	 We define the effect of each atomic action in the code on the history variable; written in 
Spec, this results in the following modified code: 

PROC acq() = VAR t: FH | 

DO <<t := m; m := held>>; IF t # held => <<ms := SELF>>; RET [*] SKIP FI OD


PROC rel() = << m := free; hs := hs \/ (ms # SELF); ms := nil >> 


You can easily check that these additions to the code satisfy the constraints required for adding 
history variables. 

This treatment of ms is the obvious way to keep track of the spec’s m. Unfortunately, it turns out 
to require a rather complicated proof, which we now proceed to give. At the end of this section 
we will see a less obvious ms that allows a much simpler proof; skip to there if you get worn out. 

Now we can proceed to define the abstraction function. First, we enumerate the program 
counters. For the spec, they are: 

A1 — before the body of acq 
A2 — after the body of acq 
R1 — before the body of rel 
R2 — after the body of rel 

For the code, they are: 

• For a thread in acq: 

a  — before the VAR t

a  — after the VAR t and before the DO loop

a  — before the test-and-set in the body of the DO loop

a  — after the test-and-set in the body of the DO loop

a  — before the assignment to ms

a  — after the assignment to ms


• For a thread in rel: 

r1 — before the body 
r2 — after the body 
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The transitions in acq may be a little confusing: there’s a transition from a4 to a3, as well as 
transitions from a4 to a5. 

Here are the routines in Mutex annotated with the PC values: 

APROC acq() = [A1] << m = nil => m := SELF >> [A2] 

APROC rel() = [R1] << m # SELF => HAVOC [*] m := nil >> [R2] 

Here are the routines in SpinLock annotated with the PC values: 

PROC acq() = [a1] VAR t := FH | 
[a2] DO [a3] << t := m; m := held >>; 
[a4] IF t # held => [a5] << ms := SELF >>; [a6] RET [*] SKIP FI OD; 

PROC rel() = [r1] << m := free; hs := hs \/ (ms # SELF); ms := nil >> [r2] 

Now we can define the mappings on program counters: 

• If a thread is not in acq or rel in the code, then it is not in either in the spec. 

• {a1, a2, a3, a4, a5} maps to A1, a6 maps to A2 

• r1 maps to R1, r2 maps to R2 

The part of the abstraction function dealing with the global variables of the module simply 
defines m in the spec to have the value of ms in the code, and $havoc in the spec to have the value 
of hs in the code. As in handout 8, we just throw away all but the spec part of the state. 

Since there are no local variables in the spec, the mapping on program counters and the mapping 
on the global variables are enough to define how to construct a state of the spec from a state of 
the code. 

Once again, the abstraction function on program counters determines how transitions in the code 
simulate sequences of transitions in the spec: 

• If π is an external transition, π simulates the singleton sequence containing just π. 

•	 If π takes a thread from a5 to a6, π simulates the singleton sequence containing just the 
transition from A1 to A2. 

•	 If π takes a thread from r1 to r2, π simulates the singleton sequence containing just the 
transition from R1 to R2. 

• All other transitions simulate the empty sequence. 

Proof sketch 

As in the previous example, we will need some invariants to do the proof. Rather than trying to 
write them down first, we will see what we need as we do the proof. 

First, we show that initial states of the code map to initial states of the spec. This is easy; all the 
thread states correspond, and the initial state of ms in the code is nil. 

Next, we show that transitions in the code and the spec correspond. All transitions from outside 
the module to just before a routine’s body are straightforward, as are transitions from the end a 
routine’s body to outside the module (i.e., when a routine returns). The transition in the body of 
rel is also straightforward. The hard cases are in the body of acq. 

Consider all the transitions in acq before the one from a5 to a6. These all simulate the null 
transition, so they should leave the abstract state unchanged. And they do, because none of them 
changes ms. 

The transition from a5 to a6 simulates the transition from A1 to A2. There are two cases: when 
ms = nil, and when ms ≠ nil. 

1.	 In the first case, the transition from A1 to A2 is enabled and, when taken, changes the state so 
that m = SELF. This is just what the transition from a5 to a6 does. 

2.	 Now consider the case when ms ≠ nil. We claim this case is possible only if a thread that 
didn’t hold the mutex has done a rel. Then hs = true, the spec has done HAVOC, and 
anything can happen. In the absence of havoc, if a thread is at a5, then ms = nil. But even 
though this invariant is what we want, it’s too weak to prove itself inductively; for that, we 
need the following, stronger invariant: 

Either 

If m = free then ms = nil, and 

If a thread is at a5, or at a4 with t = free, then ms = nil, m = held, there are no 
other threads at a5, and for all other threads at a4, t = held 

or hs is true. 

Given this invariant, we are done: we have shown the appropriate correspondence for all the 
transitions in the code. So we must prove the invariant. We do this by induction. It’s vacuously 
true in the initial state, since no thread could be at a4 or a5 in the initial state. Now, for each 
transition, we assume that the invariant is true before the transition and prove that it still holds 
afterwards. 

The external transitions preserve the invariant, since they change nothing relevant to it. 

The transition in rel preserves the first conjunct of the invariant because afterwards both 
m = free and ms = nil. To prove that the transition in rel preserves the second conjunct of the 
invariant, there are two cases, depending on whether the spec allows HAVOC. 

1.	 If it does, then the code sets hs true; this corresponds to the HAVOC transition in the spec, and 
thereafter anything can happen in the spec, so any transition of the code simulates the spec. 
The reason for explicitly simulating HAVOC is that the rest of the invariant may not hold after 
a rogue thread does rel. Because the rogue thread resets m to free, if there’s a thread at a5 or 
at a4 with t = free, and m = held, then after the rogue rel, m is no longer held and hence 
the second conjunct is false This means that it’s possible for several threads to get to a5, or to 
a4 with t = free. The invariant still holds, because hs is now true. 
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2.	 In the normal case ms ≠ nil, and since we’re assuming the invariant is true before the 
transition, this implies that no thread is at a4 with t = free or at a5. After the transition to r2 
it’s still the case that no thread is at a4 with t = free or at a5, so the invariant is still true. 

Now we consider the transitions in acq. The transitions from a1 to a2 and from a2 to a3 obviously 
preserve the invariant. The transition from a4 to a5 puts a thread at a5, but t = free in this case 
so the invariant is true after the transition by induction. The transition from a4 to a3 also clearly 
preserves the invariant. 

The transition from a3 to a4 is the first interesting one. We need only consider the case 
hs = false, since otherwise the spec allows anything. This transition certainly preserves the 
first conjunct of the invariant, since it doesn’t change ms and only changes m to held. Now we 
assume the second conjunct of the invariant true before the transition. There are two cases: 

1.	 Before the transition, there is a thread at a5, or at a4 with t = free. Then we have m = held 
by induction, so after the transition both t = held and m = held. This preserves the 
invariant. 

2.	 Before the transition, there are no threads at a5 or at a4 with t = free. Then after the 
transition, there is still no thread at a5, but there is a new thread at a4. (Any others must have 
t = held.) Now, if this thread has t = held, the second part of the invariant is true 
vacuously; but if t = free, then we have: 

ms = nil (since when the thread was at a3 m must have been free, hence the first part of 
the invariant applies); 

m = held (as a direct result of the transition); 

there are no threads at a5 (by assumption); and 

there are no other threads at a4 with t = free (by assumption). 

So the invariant is still true after the transition. 

Finally, assume a thread h is at a5, about to transition to a6. If the invariant is true here, then h is 
the only thread at a5, and all threads at a4 have t = held. So after it makes the transition, the 
invariant is vacuously true, because there is no other thread at a5 and the threads at a4 haven’t 
changed their state. 

We have proved the invariant. The invariant implies that if a thread is at a5, ms = nil, which is 
what we wanted to show. 

Simplifying the proof 

This proof is a good example of how to use invariants and of the subtleties associated with 
preconditions. It’s possible to give a considerably simpler proof, however, by handling the 
history variable ms in a less natural way. This version is closer to the two-stage proof we saw 
earlier. In particular, it uses the transition from a3 to a4 to simulate the body of Mutex.acq. We 
omit the hs history variable and augment the code as follows: 

PROC acq() = [a1] VAR t := FH | 
[a2] DO [a3] << t := m; m := held; IF t # held => ms := SELF [*] SKIP FI  >>; 
[a4] IF t # held => [a6] RET [a7] [*] SKIP FI OD; 

PROC rel() = [r1] << m := free; ms := nil >> [r2] 

The abstraction function maps ms to Mutex.m as before, and it maps PC’s a1- a3 to A1 and a6-a7 to 
A2. It maps a4 to A1 if t = held, and to A2 if t = free; thus a3 to a4 simulates Mutex.acq only if 
m was free, as we should expect. There is no need for an invariant; we only used it at a5 to a6, 
which no longer exists. 

The simulation argument is the same as before except for a3 to a4, which is the only place where 
we changed the code. If m = held, then m and ms don’t change; hence Mutex.m doesn’t change, 
and neither does the abstract PC; in this case the transition simulates the empty trace. If m = 
free, then m becomes held, ms becomes SELF, and the abstract PC becomes A2; in this case the 
transition simulates A1 to A2, as promised. 

The moral of this story is that it can make a big difference how you choose the abstraction 
function. The crucial decision is the choice of the ‘critical transition’ that models the body of 
Mutex.acq, that is, how to abstract the PC. It seems very natural to change ms in the code after 
the test of t # held that is already there, but this forces the critical transition to be after the test. 
Then there has to be an invariant to carry forward the relationship between the local variable t 
and the global variable m, which complicates things, and the HAVOC case in rel complicates them 
further by falsifying the natural statement of the invariant and requiring the additional hs 
variable to patch things up. The uglier code with a second test of t # held inside the atomic 
test-and-set command makes it possible to use that action, which does the real work, to simulate 
the body of Mutex.acq, and then everything falls out nicely. 

More complicated code requires invariants even when we choose the best abstraction function, as 
we see in the next two examples. 

Mutex2Impl implements Mutex 

This is the rather subtle code that implements a mutex for two threads using only memory reads 
and writes. We begin with a proof in the style of the last few, and then give an entirely different 
proof based on model checking. 

First we show that the simple, deadlocking version acq0 maintains mutual exclusion. Recall that 
we write h* for the thread that is the partner of thread h. Here are the spec and code again: 

CLASS Mutex EXPORT acq, rel = 


VAR m : (Thread + Null) := nil 


PROC acq() = << m = nil => m := SELF; RET >> 

PROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >> 


END Mutex 
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CLASS Mutex2Impl0 EXPORT acq, rel = 


VAR 	req : Thread -> Bool := {* -> false} 

lastReq : Int 


PROC acq0() = 
[a1] req(SELF) := true; 
DO [a2] req(SELF*) => SKIP OD [a3] 

PROC rel() = req(SELF) := false 


END Mutex2Impl0 


Intuitively, we get mutual exclusion because once req(h) is true, h* can’t get from a2 to a3. It’s 
convenient to define 

FUNC Holds0(h: Thread) = RET req(h) /\ h.$pc # a2 

Abstractly, h has the mutex if Holds0(h), and the transition from a2 to a3 simulates the body of 
Mutex.acq. Precisely, the abstraction function is 

Mutex.m = (Holds0.set = {} => nil [*] Holds0.set.choose) 


Recall that if P is a predicate, P.set is the set of arguments for which it is true. 

To make precise the idea that req(h) stops h* from getting to a3, the invariant we need is 

Holds0.set.size <= 1 /\ (h.$pc = a2 ==> req(h)) 

The first conjunct is the mutual exclusion. It holds because, given the first conjunct, only (a2, a3) 
can increase the size of Holds0.set, and h can take that step only if req(h*) = false, so 
Holds0.set goes from {} to {h}. The second conjunct holds because it can never be 
true ==> false, since only the step (a1, req(h) := true, a2) can make the antecedent true, 
this step also makes the consequent true, and no step away from a2 makes the consequent false. 

This argument applies to acq0 as written, but you might think that it’s unrealistic to fetch the 
shared variable req(SELF*) and test it in a single atomic action; certainly this will take more 
than one machine instruction. We can appeal to big atomic actions, since the whole sequence 
from a2 to a3 has only one action that touches a shared variable (the fetch of req(SELF*)) and 
therefore is atomic. 

This is the right thing to do in practice, but it’s instructive to see how to do it by hand. We break 
the last line down into two atomic actions: 

VAR t | DO [a2] << t := req(SELF*) >>; [a21] << t => SKIP >> OD [a3] 

We examine several ways to show the correctness of this; they all have the same idea, but the 
details differ. The most obvious one is to add the conjunct h.$pc # a21 to Holds0, and extend 
the mutual exclusion conjunct of the invariant so that it covers a thread that has reached a21 with 
t = false: 

(Holds0.set \/ {h | h.$pc = a21 /\ h.t = false}).size <= 1 

Or we could get the same effect by saying that a thread acquires the lock by reaching a21 with t 
= false, so that it’s the transition (a2, a21) with t = false that simulates the body of 
Mutex.acq, rather than the transition to a3 as before. This means changing the definition of 
Holds0 to 

FUNC Holds0(h: Thread) = 
RET req(h) /\ h.$pc # a2 /\ (h.$pc = a21 ==> h.t = false) 

Yet another approach is to make explicit in the invariant what h knows about the global state. 
One purpose of an invariant is to remember things about the global state that a thread has 
discovered in the past; the fact that it’s an invariant means that those things stay true, even 
though other threads are taking steps. In this case, t = false in h means that either req(h*) = 
false or h* is at a2 or a21, in other words, Holds(h*) = false. We can put this into the 
invariant with the conjunct 

h.$pc = a21 /\ h.t = false ==> Holds(h*) = false 

and this is enough to ensure that the transition (a21, a3) maintains the invariant. 

We return from this digression on proof methodology to study the non-deadlocking acq: 

PROC acq() = 
[a0] req(SELF) := true; 
[a1] lastReq := self; 
DO [a2] (req(SELF*) /\ lastReq = SELF) => SKIP OD [a3] 

We discussed liveness informally earlier, and we don’t attempt to prove it. To prove mutual 
exclusion, we need to extend Holds0 in the obvious way: 

FUNC Holds(h: Thread) = req(h) /\ h.$pc # a1 /\ h.$pc # a2 

and add \/ h.$pc = a1 to the antecedent of the invariant In order to have mutual exclusion, it 
must be true that h won’t find lastReq = h* as long as h* holds the lock. We need to add a 
conjunct to the invariant to express this. This leaves us with: 

Holds0.set.size <= 1 
/\ (h.$pc = a2 \/ h.$pc = a1 ==> req(h)) 
/\ (Holds(h*) /\ h.$pc = a2  ==> lastReq = h) 

The last conjunct holds because (a1, a2) makes it true, and the only way to make it false is for h* 
to do lastReq := SELF, which it can only do from a1, so that Holds(h*) is false. With this 
invariant it’s obvious that (a2, a3) maintains the invariant. 

Proof by model checking 

We have been doing all our proofs by establishing invariants; these are called assertional proofs. 
An alternative method is to explore the state space exhaustively; this is called model checking. It 
only works when the state space not too big. In this case, if the two threads are a and b, the state 
space is just: 

a.$pc IN {a0, a1, a2, a3} 

b.$pc IN {a0, a1, a2, a3} 

req(a) IN {false, true} 
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req(b) IN {false, true} 

lastReq IN {a, b} 


We can write down a state concisely with one digit to represent each PC, a t or f for each req, 
and an a or b for lastReq. Thus 00ffa is a.$pc = a0, b.$pc = a0, req(a) = false, req(b) = 
false, lastReq = a. When the value of a component is unimportant we write x for it. 

Now we can display the complete state machine. 
` 

10tfx 

20tfa 11ttx 

30tfa 21tta 12ttb 

01ftx 

02ftb 

03ftb 

00ffx 

31tta 

32ttb 

22ttb 22tta 

23tta 

13ttb 

Note the extensive symmetries. Nominally there are 128 states, but many are not reachable: 

1. The value of req follows from the PC’s, which cuts the number of reachable states to 32. 

2.	 33xxx is not reachable. This is the mutual exclusion invariant, which is that both PC’s cannot 
be in the critical section at the end of acq.This removes 2 states. 

3.	 At the top of the picture the value of lastReq is not important, so we have shown it as x. 
This removes 4 states. 

4.	 We can’t have 20xxb or 21xxb or 30xxb or 31xxb or 32xxa, or the 5 symmetric states, 
because of the way lastReq is set. This removes 10 states. 

In the end there are only 16 reachable states, and 7 of them are obtained from the others simply 
by exchanging the two threads a and b. 

Since there is no non-determinism in this algorithm and a thread is never blocked from making a 
transition, there are two transitions from each state, one for each thread. If there were no 
transitions from a state, the system would deadlock in that state. It’s easy to see that the 

algorithm is live if both threads are scheduled fairly, since there are no non-trivial cycles that 
don’t reach the end of acq. It is fair because the transitions from 00ffx and 11ttx are fair. 

The appeal of model-checking should be clear from the example: we don’t have to think, but can 
just search the state space mechanically. The drawback is that the space may be too large. This 
small example illustrates that symmetries can cut the size of the search dramatically, but the 
symmetries are often not obvious. 

ClockImpl implements Clock 

We conclude with the proof of the clock implementation. The spec says that a Read returns some 
value that the clock had between the beginning and the end of the Read. Here it is, with labels. 

MODULE Clock EXPORT Read =

VAR t : Int := 0 % the current time 

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t 
PROC Read() -> Int = VAR t1: Int | 

[R1] << t1 := t >>; [R2] << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> [R3] 

END Clock 

To show that ClockImpl implements this we introduce a history variable t1Hist in Read that 
corresponds to t1 in the spec, recording the time at the beginning of Read’s execution. The 
invariant that is needed is based on the idea that Read might complete before the next Tick, and 
therefore the value Read would return by reading the rest of the shared variables must be 
between t1Hist and Clock.t. We can write this most clearly by annotating the labels in Read 
with assertions that are true when the PC is there. 

MODULE ClockImpl EXPORT Read =

CONST base := 2**32 


TYPE Word = Int SUCHTHAT (\ i: Int | i IN base.seq) 


VAR lo : Word := 0 


hi1 : Word := 0 


hi2 : Word := 0 


% ABSTRACTION FUNCTION Clock.t = T(lo, hi1, hi2), Clock.Read.t1 = Read.t1Hist, 

Clock.Read.t2 = T(Read.tLo, Read.tH1, read.tH2) 


% The PC correspondence is R1 ↔ r1, R2 ↔ r2, r3, R3 ↔ r4 

THREAD Tick() = DO VAR newLo: Word, newHi: Word | 

<< newLo := lo + 1 // base; newHi := hi1 + 1 >>; 

IF << newLo # 0 => lo := newLo >> 

[*] << hi2 := newHi >>; << lo := newLo >>; << hi1 := newHi >> 

FI OD 


PROC Read() -> Int = VAR tLo: Word, tH1: Word, tH2: Word, t1Hist: Int | 


[r1] << tH1 := hi1; t1Hist := T(lo, hi1, hi2) >>; 
[r2] % I2: T(lo , tH1, hi2) IN t1Hist .. T(lo, hi1, hi2) 

<< tLo := lo; >> 
[r3] % I3: T(tLo, tH1, hi2) IN t1Hist .. T(lo, hi1, hi2) 

<< tH2 := hi2; RET T(tLo, tH1, tH2) >> 
[r4] % I4: $a IN t1Hist .. T(lo, hi1, hi2) 
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FUNC T(l: Int, h1: Int, h2: Int) -> Int = h2 * base + (h1 = h2 => l [*] 0) 

END ClockImpl 


The whole invariant is thus 

h.$pc = r2 ==> I2 /\ h.$pc = r3 ==> I3 /\ h.$pc = r4 ==> I4 

The steps of Read clearly maintain this invariant, since they don’t change the value before IN. 
The steps of Tick maintain it by case analysis. 
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