
6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

17. Formal Concurrency

In this handout we take a more formal view of concurrency than in handout 14 on practical
concurrency. Our goal is to be able to prove that a general concurrent program implements a
spec.

We begin with a fairly precise account of the non-atomic semantics of Spec, though our
treatment is less formal than the one for atomic semantics in handout 9. Next we explain the
general method for making large atomic actions out of small ones (easy concurrency) and prove
its correctness. We continue with a number of examples of concurrency, both easy and hard:
mutexes, condition variables, read-write locks, buffers, and non-atomic clocks. Finally, we give
fairly careful proofs of correctness for some of the examples.

Non-atomic semantics of Spec

We have already seen that a Spec module is a way of defining an automaton, or state machine,
with transitions corresponding to the invocations of external atomic procedures. This view is
sufficient if we only have functions and atomic procedures, but when we consider concurrency
we need to extend it to include internal transitions. To properly model crashes, we introduced the
idea of atomic commands that may not be interrupted. We did this informally, however, and
since a crash “kills” any active procedure, we did not have to describe the possible behaviors
when two or more procedures are invoked and running concurrently. This section describes the
concurrent semantics of Spec.

The most general way to describe a concurrent system is as a collection of independent atomic
actions that share a collection of variables. If the actions are A1, ..., An then the entire system
is just the ‘or’ of all these actions: A1 [] ... [] An. In general only some of the actions will be
enabled, but for each transition the system non-deterministically chooses an action to execute
from all the enabled actions. Thus non-determinism encompasses concurrency.

Usually, however, we find it convenient to carry over into the concurrent world as much of the
framework of sequential computing as possible. To this end, we model the computation as a set
of threads (also called ‘tasks’ or ‘processes’), each of which executes a sequence of atomic
actions; we denote threads by variables h, h', etc. To define its sequence, each thread has a state
variable called its ‘program counter’ $pc, and each of its actions has the form (h.$pc = α) =>
c, so that c can only execute when h’s program counter equals α. Different actions have different
values for α, so that at most one action of a thread is enabled at a time. Each action advances the
program counter with an assignment of the form h.$pc := β, thus enabling the thread’s next
action.

It’s important to understand there is nothing truly fundamental about threads, that is, about
organizing the state transitions into sets such that at most one action is enabled in each set. We
do so because we can then carry forward much of what we know about sequential computing
into the concurrent world. In fact, we want to achieve our performance goals with as little
concurrency as possible, since concurrency is confusing and error-prone.

We now explain how to use this view to understand the non-atomic semantics of Spec.

Non-atomic commands and threads

Unlike an atomic command, a non-atomic command cannot be described simply as a relation
between states and outcomes, that is, an atomic transition. The simple example, given in handout
14, of a non-atomic assignment x := x + 1 executed by two threads should make this clear: the
outcome can increase x by 1 or 2, depending on the interleaving of the transitions in the two
threads. Rather, a non-atomic command corresponds to a sequence of atomic transitions, which
may be interleaved with the sequences of other commands executing concurrently. To describe
this interleaving, we use labels and program counters. We also need to distinguish the various
threads of concurrent computation.

Intuitively, threads represent sequential processes. Roughly speaking, each point in the program
between two atomic commands is assigned a label. Each thread’s program counter $pc takes a
label as its value,1 indicating where that thread is in the program, that is, what command it is
going to execute next.

Spec threads are created by top level THREAD declarations in a module. They make all possible
concurrency explicit at the top level of each module. A thread is syntactically much like a
procedure, but instead of being invoked by a client or by another procedure, it is automatically
invoked in parallel initially, for every possible value of its arguments.2 When it executes a RET
(or reaches the end of its body), a thread simply makes no more transitions. However, threads are
often written to loop indefinitely.

Spec does not have COBEGIN or FORK constructs, as many programming languages do, these are
considerably more difficult to define precisely, since they are tangled up with the control
structure of the program. Also, because one Spec thread starts up for every possible argument of
the THREAD declaration, they tend to be more convenient for most of the specs and code in this
course. To keep the thread from doing anything until a certain point in the computation (or at
all), use an initial guard for the entire body as in the Sieve example below.

A thread is named by the name in the declaration and the argument values. Thus, the threads
declared by THREAD Foo(bool) = ..., for example, would be named Foo(true) and
Foo(false) The names of local variables are qualified by both the name of the thread that is the
root of the call stack, and by the name of the procedure invoked.3 In other words, each procedure
in each thread has its own set of local variables. So for example, the local variable p in the Sieve
example appears in the state as Sieve(0).p, Sieve(1).p, If there were a PROC Foo
called by Sieve with a local variable baz, the state might be defined at Sieve(0).Foo.baz,
Sieve(1).Foo.baz, The pseudo-names $a, $x, and $pc are qualified only by the thread.

1 The variables declared by a program are not allowed to have labels as their values, hence there is no Label type.
2 This differs from the threads in Java, in Modula 3, or in many C implementations. These languages start a
computation with one thread and allow it to create and destroy threads dynamically using fork and join
operations.
3 This works for non-recursive procedures. To accommodate recursive procedures, the state must involve something
equivalent to a stack. Probably the simplest solution is to augment the state space by tacking on the nesting depth of
the procedure to all the names and program counter values defined above. For example, h + ".P.v" becomes h +
".P.v" + d.enc, for every positive integer d. An invocation transition at depth d goes to depth d+1.

Handout 17. Formal Concurrency 1 Handout 17. Formal Concurrency 2

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Each atomic command defines a transition, just as in the sequential semantics. However, now a
transition is enabled by the program counter value. That is, a transition can only occur if the
program counter of some thread equals the label before the command, and the transition sets the
program counter of that thread to the label after the command. If the command at the label in the
program counter fails (for example, because it has a guard that tests for a buffer to be non-empty,
and the buffer is empty in the current state), the thread is “stuck” and does not make any
transitions. However, it may become unstuck later, because of the transitions of some other
threads. Thus, a command failing does not necessarily (or even usually) mean that the thread
fails.

We won’t give the non-atomic semantics precisely here as we did for the atomic semantics in
handout 9, since it involves a number of fussy details that don’t add much insight. Also, it’s
somewhat arbitrary. You can always get exactly the atomicity you want by adding local variables
and semicolons to increase the number of atomic transitions (see the examples below), or
<<...>> brackets to decrease it.

It’s important, however, to understand the basic ideas.

•	 Each atomic command in a thread or procedure defines a transition (atomic procedures and
functions are taken care of by the atomic semantics).

•	 The program counters enable transitions: a transition can only occur if the program counter
for some thread equals the label before the command, and the transition sets that program
counter to the label after the command.

Thus the state of the system is the global state plus the state of all the threads. The state of a
thread is its $pc, $a, and $x values, the local variables of the thread, and the local variables of
each procedure that has been called by the thread and has not yet returned.

Suppose the label before the command c is α and the one after the command is β, and the
transition function defined by MC(c) in handout 9 is (\ s, o | rel). Then if c is in thread h,
its transition function is

(\ s, o | s(h+".$pc") = α /\ o(h+".$pc) = β /\ rel')
If c is in procedure P, that is, c can execute for any thread whose program counter has reached α,
its transition function is

(\ s, o | (EXISTS h: Thread |

s(h+".P.$pc") = α /\ o(h+".P.$pc) = β /\ rel'))

Here rel' is rel with each reference to a local variable v changed to h + ".v" or h + ".P.v".

Labels in Spec

What are the atomic transitions in a Spec program? In other words, where do we put the labels?
The basic idea is to build in as little atomicity as possible (since you can always put in what you
need with <<...>>). However, expression evaluation must be atomic, or reasoning about
expressions would be a mess. To use Spec to model code in which expression evaluation is not
atomic (C code, for example), you must add temporary variables. Thus x := a + b + c
becomes

VAR t | << t := a >>; << t := t + b >>; << x := t + c >>

For a real-life example of this, see MutexImpl.acq below.

The simple commands, SKIP, HAVOC, RET, and RAISE, are atomic, as is any command in
atomicity brackets <<...>>.

For an invocation, there is a transition to evaluate the argument and set the $a variable, and one
to send control to the start of the body. The RET command’s transition sets $a and leaves control
at the end of the body. The next transition leaves control after the invocation. So every procedure
invocation has at least four transitions: evaluate the argument and set $a, send control to the
body, do the RET and set $a, and return control from the body. The reason for these fussy details
is to ensure that the invocation of an external procedure has start and end transitions that do not
change any other state. These are the transitions that appear in the trace and therefore must be
identical in both the spec and the code that implements it.

Minimizing atomicity means that an assignment is broken into separate transitions, one to
evaluate the right hand side and one to change the left hand variable. This also has the advantage
of consistency with the case where the right hand side is a non-atomic procedure invocation.
Each transition happens atomically, even if the variable is “big”. Thus x := exp is

VAR t | << t := exp >> ; << x := t >>

and x := p(y) is
p(y); << x := $a >>

Since there are no additional labels for the c1 [] c2 command, the initial transition of the
compound command is enabled exactly when the initial transition of either of the subcommands
is enabled (or if they both are). Thus, the choice is made based only on the first transition. After
that, the thread may get stuck in one branch (though, of course, some other thread might unstick
it later). The same is true for [*], except that the initial transition for c1 [*] c2 can only be the
initial transition of c2 if the initial transition of c1 is not enabled. And the same is also true for
VAR. The value chosen for id in VAR id | c must allow c to make at least one transition; after
that the thread might get stuck.

DO has a label, but OD does not introduce any additional labels. The starting and ending program
counter value for c in DO c OD is the label on the DO. Thus, the initial transition of c is enabled
when the program counter is the label on the DO, and the last transition sets the program counter
back to that label. When c fails, the program counter is set to the label following the OD.

To sum up, there’s a label on each :=, =>, ‘;’, EXCEPT, and DO outside of <<...>>. There is
never any label inside atomicity brackets. It’s convenient to write the labels in brackets after
these symbols.

There’s also a label at the start of a procedure, which we write on the = of the declaration, and a
label at the end. There is one label for a procedure invocation, after the argument is evaluated;
we write it just before the closing ‘)’. After the invocation is complete, the PC goes to the next
label after the invocation, which is the one on the := if the invocation is in an assignment.

As a consequence of this labeling, as we said before, a procedure invocation has
one transition to evaluate the argument expression,
one to set the program counter to the label immediately before the procedure body,
one for every transition of the procedure body (using the labels of the body),
one for the RET command in the body, which sets the program counter after the body,
and a final transition that sets it to the label immediately following the invocation.

Handout 17. Formal Concurrency 3 Handout 17. Formal Concurrency 4

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Here is a meaningless sequential example, just to show where the labels go. They are numbered
in the order they are reached during execution.

PROC P() = [P1] VAR x, y |
IF x > 5 => [P2] x := [P4] Q(x + 1, 2 [P3]); [P5] y := [P6] 3
[] << y := 4 >>

FI; [P7]
VAR z | DO [P8] << P() >> OD [P9]

External actions

In sequential Spec a module has only external actions; each invocation of a function or atomic
procedure is an external action. In concurrent Spec there are two differences:

There are internal actions. These can be actions of an externally invoked PROC or actions of a
thread declared and executing in the module.

There are two external actions in the external invocation of a (non-atomic) procedure: the call,
which sends control from after evaluation of the argument to the entry point of the procedure,
and the return, which sends control from after the RET command in the procedure to just after the
invocation in the caller. These external transitions do not affect the $a variable that
communicates the argument and result values. That variable is set by the internal transitions that
compute the argument and do the RET command.

There’s another style of defining external interfaces in which every external action is an APROC.
If you want to get the effect of a non-atomic procedure, you have to break it into two APROC’s,
one that delivers the arguments and sets the internal state so that internal actions will do the work
of the procedure body, and a second that retrieves the result. This style is used in I/O automata4,
but we will not use it.

Examples

Here are two Spec programs that search for prime numbers and collect the result in a set primes;
both omit the even numbers, initializing primes to {2}. Both are based on the sieve of
Eratosthenes, testing each prime less than n1/2 to see whether it divides n. Since the threads may
not be synchronized, we must ensure that all the numbers ≤ n1/2 have been checked before we
check n.

The first example is more like a spec, using an infinite number of threads, one for every odd
number.

CONST Odds = {i: Nat | i // 2 = 1 /\ i > 1 }

VAR 	primes : SET Nat := {2}
done : SET Nat := {} % numbers checked

INVARIANT (ALL n: Nat | n IN done /\ IsPrime(n) ==> n IN primes

/\ n IN primes ==> IsPrime(n))

4 Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996, Chapter 8.

THREAD Sieve1(n :IN Odds) =

{i :IN Odds | i <= Sqrt(n)} <= done => % Wait for possible factors

IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) =>

<< primes \/ := {n} >>

[*] SKIP

FI;

<< done \/ := {n} >> % No more transitions

FUNC Sqrt(n: Nat) -> Int = RET { i: Nat | i*i <= n }.max

The second example, on the other hand, is closer to code, running ten parallel searches. Although
there is one thread for every integer, only threads Sieve(0), Sieve(1), …, Sieve(9) are
“active”, because of the initial guard, Differences from Sieve1 are boxed.

CONST nThreads := 10

THREAD Sieve(i: Int) = next!i =>
next(i) := 2*i + 3;
DO VAR n: Int

(ALL j :IN next.rng | j >= Sqrt(n)) =>
:= next(i) |

VAR primes : SET Int := {2}
next nThreads.seq :=

IF (ALL p :IN primes | p <= Sqrt(n) ==> n // p # 0) =>

<< primes \/ := {n} >>

[*] SKIP

FI;

next(i) := n + 2*nThreads

OD

Big atomic actions

As we saw earlier, we need atomic actions for practical, easy concurrency. Spec lets you specify
any grain of atomicity in the program just by writing << ... >> brackets.5 It doesn’t tell you where
to write the brackets. If the environment in which the program has to run doesn’t impose any
constraints, it’s usually best to make the atomic actions as big as possible, because big atomic
actions are easier to reason about. But big atomic actions are often too hard or too expensive to
code, or the reduction in concurrency hurts performance too much, so that we have to make do
with small ones. For example, in a shared-memory multiprocessor typically only the individual
instructions are atomic, and we can only write one disk block atomically. So we are faced with
the problem of showing that code with small atomic actions satisfies a spec with bigger ones.

The idea

The standard way of doing this is by some kind of ‘non-interference’. The idea is based on the
following observation. Suppose we have a program with a thread h that contains the sequence

A; B (1)

5 As we have seen, Spec does treat expression evaluation as atomic. Recall that if you are dealing with an
environment in which an expression like x(i) + f(y) can’t be evaluated atomically, you should model this by
writing VAR t1, t2 | t1 := x(i); t2 := f(y); ... t1 + t2

Handout 17. Formal Concurrency 5 Handout 17. Formal Concurrency 6

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

as well as an arbitrary collection of other commands. We denote the program counter value
before A by α and at the semi-colon by β. We are thinking of the program as

h.$pc = α => A [] h.$pc = β => B [] C1 [] C2 [] ...
where each command has an appropriate guard that enables it only when the program counter for
its thread has the right value. We have written the guards for A and B explicitly.

Suppose B denotes an arbitrary atomic command, and A denotes an atomic command that
commutes with every command in the program (other than B) that is enabled when h is at the
semicolon, that is, when h.$pc = β. (We give a precise meaning for ‘commutes’ below.) In
addition, both A and B have only internal actions. Then it’s intuitively clear that the program with
(1) simulates a program with the same commands except that instead of (1) it has

<< A; B >> (2)
Informally this is true because any C’s that happen between A and B have the same effect on the
state that they would have if they happened before A, since they all commute with A. Note that
the C’s don’t have to commute with B; commuting with A is enough to let us ‘push’ C before A. A
symmetric argument works if all the C’s commute with B, even if they don’t commute with A.

Thus we have achieved the goal of making a bigger atomic command << A; B >> out of two
small ones A and B. We can call the big command D and repeat the process on E; D to get a still
bigger command << E; A; B >>.

How do we ensure that only a command C that commutes with A can execute while h.$pc = β?
The simplest way is to ensure that the variables that A touches (reads or writes) are disjoint from
the variables that C writes, and vice versa; then they will surely commute. Two such commands
are called ‘non-interfering’. There are two easy ways to show that commands are non-interfering.
One is that A touches only local variables of h. Only actions of h touch local variables of h, and
the only action of h that is enabled when h.$pc = β is B. So any sequence of commands that
touch only local variables is atomic, and if it is preceded or followed by a single arbitrary atomic
command the whole thing is still atomic.6

The other easy case is a critical section protected by a mutex. Recall that a critical section for v is
a command with the property that if some thread’s PC is in the command, then no other thread’s
PC can be in any critical section for v. If the only commands that touch v are in critical sections
for v, then we know that only B and commands that don’t touch v can execute while h.$pc = β.
So if every command in any critical section for v only touches v (and perhaps local variables),
then the program simulates another program in which every critical section is an atomic
command. A critical section is usually coded by acquiring a lock or mutex and holding it for the
duration of the section. The property of a lock is that it’s not possible to acquire it when it is
already held, and this ensures the mutual exclusion property for critical sections.

It’s not necessary to have exclusive locks; reader/writer locks are sufficient for non-interference,
because read operations all commute with each other. Indeed, any locking scheme will work in
which non-commuting operations hold mutually exclusive locks; this is the basis of rules for

6 See Leslie Lamport and Fred B. Schneider. Pretending atomicity. Research Report 44, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, May 1989.
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-044.html

‘lock conflicts’. See handout 14 on practical concurrency for more details on different kinds of
locks.

Another important case is mutex acquire and release operations. These operations only touch the
mutex, so they commute with everything else. What about these operations on the same mutex in
different threads? If both can execute, they certainly don’t yield the same result in either order;
that is, they don’t commute. When can both operations execute? We have the following cases
(writing the executing thread as an explicit argument of each operation):

A C Possible sequence?
m.acq(h) m.acq(h') No: C is blocked by h holding m
m.acq(h) m.rel(h') No: C won’t be reached because h' doesn’t hold m
m.rel(h) m.acq(h') OK
m.rel(h) m.rel(h') No: one thread doesn’t hold m, hence won’t do rel

So m.acq commutes with everything that’s enabled at β, since neither mutex operation is enabled
at β in a program that avoids havoc. But m.rel(h) doesn’t commute with m.acq(h'). The
reason is that the A; C sequence can happen, but the C; A sequence m.acq(h'); m.rel(h)
cannot, because in this case h doesn’t hold m and therefore can’t be doing a rel. Hence it’s not
possible to flip every C in front of m.rel(h) in order to make A; B atomic.

What does this mean? You can acquire more locks and still keep things atomic, but as soon as
you release one, you no longer have atomicity.7

A third important case of commuting operations, producer-consumer, is similar to the mutex
case. A producer and a consumer thread share no state except a buffer. The operations on the
buffer are put and get, and these operations commute with each other. The interesting case is
when the buffer is empty. In this case get is blocked until a put occurs, just as in the mutex
example when h holds the lock m.acq(h') is blocked until m.rel(h) occurs. This is why
programming with buffers, or dataflow programming, is so easy.

Proofs

How can we make all this precise and prove that a program containing (1) implements the same
program with (2) replacing (1), using our trusty method of abstraction relations? For easy
reference, we repeat (1) and (2).

A; [β] B (1)
<< A; B >> (2)

As usual, we call the complete program containing (2) the spec S and the complete program
containing (1) the code T. We need an abstraction relation AR between the states of T and the
states of S under which every transition of T simulates a (possibly empty) trace of S. Note that
the state spaces of T and S are the same, except that h.$pc can never be β in S. We use s and u
for states of S and T, to avoid confusion with various other uses of t.

7 Actually, this is not quite right. If you hold several locks, and touch data only when you hold its lock, you have
atomicity until you release all the locks.

Handout 17. Formal Concurrency 7 Handout 17. Formal Concurrency 8

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

First we need a precise definition of “C is enabled at β and commutes with A”. For any command
X, we write u X u' for MC(X)(u, u'), that is, if X relates u to u'. The idea of ‘commutes’ is that
<<A; C>> is the same as <<C; A>>, and the definition follows from the meaning of semicolon:

(ALL u1, u2 | (EXISTS u | u1 A u /\ u C u2 /\ u("h.$pc") = β)
==> (EXISTS u' | u1 C u' /\ u’ A u2))

This says that any result that you could get by doing A; C you could also get by doing C; A.

It seems reasonable to do the proof by making A simulate the empty trace and B simulate
<<A; B>>, since we know more about A than about B; every other command simulates itself.

SKIP

s s

<< A ; B >>
s'

= ~ =

s
A

u
B

s'

u("$pc") = β

So we make AR the identity everywhere except at β, where it relates any state u that can be
reached from s by A to s. This expresses the intention that at β we haven’t yet done A in S, but we
have done A in T. (Since A may take many states to s, this can’t just be an abstraction function.)
We write u ~ s for “AR relates u to s”. Precisely, we say that u ~ s if

u("h.$pc") ≠ β /\ s = u
\/ u("h.$pc") = β /\ s A u.

Why is this an abstraction relation? It certainly relates an initial state to an initial state, and it
certainly works for any transition u -> u' that stays away from β, that is, in which u("h.$pc")
≠ β and u'("h.$pc") ≠ β, since the abstract and concrete states are the same. What about
transitions that do involve β?

• If h.$pc changes to β then we must have executed A. The picture is

=

s s'

= A

u
A

u'

The abstract trace is empty, so the abstract state doesn’t change: s = s'. Also, s' = u
because only equal states are related when h.$pc # β. But we executed A, so u A u', so
s' ~ u' because of the equalities.

•	 If h.$pc starts at β then the command must be either B or some C that commutes with A. If the
command is B, then the picture is

s
<<A; B>>

s'

A =

u
B

u'

To show the top relation, we have to show that there exists an s0 such that s A s0 and
s0 B s', by the meaning of semicolon. But u has exactly this property, since s' = u'.

• If the command is C, then the picture is

u1 s
C

s' u'

A A

u
C

u' u2

But this follows from the definition of ‘commutes’: we are given s, u, and u' related as
shown, and we need s' related as shown, which is just what the definition gives us, with
u1 = s, u2 = u', and u' = s'.

Examples of concurrency

This section contains a number of example specs and codes that illustrate various aspects of
concurrency. The specs have large atomic actions that keep them simple. The codes have smaller
atomic actions that reflect the realities of the machines on which they have to run. Some of the
examples of code illustrate easy concurrency (that is, that use locks): RWLockImpl and
BufferImpl. Others illustrate hard concurrency: SpinLock, Mutex2Impl, ClockImpl,
MutexImpl, and ConditionImpl.

Incrementing a register

The first example involves incrementing a register that has Read and Write operations. Here is
the unsurprising spec of the register, which makes both operations atomic:

MODULE Register EXPORT Read, Write =

VAR x : Int := 0

APROC Read() -> Int = << RET x >>

APROC Write(i: Int) = << x := i >>

END Register

To increment the register, we could use the following procedure:

Handout 17. Formal Concurrency 9 Handout 17. Formal Concurrency 10

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

PROC Increment() = VAR t: Int | t := Register.Read(); t := t + 1; Register.Write(t)

Suppose that, starting from the initial state where x = 0, n threads execute Increment in parallel.
Then, depending on the interleaving of the low-level steps, the final value of the register could be
anything from 1 to n. This is unlikely to be what was intended. Certainly this code doesn’t
implement the spec

PROC Increment() = << x := x + 1 >>

Exercise: Suppose that we weaken our atomicity assumptions to say that the value of a register is
represented as a sequence of bits, and that the only atomic operations are reading and writing
individual bits. Now what are the possible final states if n threads execute Increment in parallel?

Alternatively, consider a new module RWInc that explicitly supports Increment operations in
addition to Read and Write. This might add the following (exported) procedure to the Register
module:

PROC Increment() = x := x+1

Or, more explicitly:

PROC Increment() = VAR t: Int | << t := x >>; << x := t+1 >>

Because of the fine grain of atomicity, it is still true that if n threads execute Increment in
parallel then, depending on the interleaving of the low-level steps, the final value of the register
could be anything from 1 to n. Putting the procedure inside the Register module doesn’t help.
Of course, making Increment an APROC would certainly do the trick.

Mutexes

Here is a spec of a simple Mutex module, which can be used to ensure mutually exclusive
execution of critical sections; it is copied from handout 14 on practical concurrency. The state of
a mutex is nil if the mutex is free, and otherwise is the thread that holds the mutex.

CLASS Mutex EXPORT acq, rel =

VAR m : (Thread + Null) := nil

% Each mutex is either nil or the thread holding the mutex.

% The variable SELF is defined to be the thread currently making a transition.

APROC acq() = << m = nil => m := SELF; RET >>

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

END Mutex

If a thread invokes acq when m ≠ nil, then the body fails, This means that there’s no possible
transition for that thread, and the thread is blocked, waiting at this point until the guard becomes
true. If many threads are blocked at this point, then when m is set to nil, one is scheduled first,
and it sets m to itself atomically; the other threads are still blocked.

The spec says that if a thread that doesn’t hold m does m.rel, the result is HAVOC. As usual, this
means that the code is free to do anything when this happens. As we shall see in the SpinLock
code below, one possible ‘anything’ is to free the mutex anyway.

Here is a simple use of a mutex m to make the Increment procedure atomic:

PROC Increment() = VAR t: Int |

m.acq; t := Register.Read(); t := t + 1; Register.Write(t); m.rel

This keeps concurrent calls of Increment from interfering with each other. If there are other
write accesses to the register, they must also use the mutex to avoid interfering with threads
executing Increment.

Spin locks

A simple way to code a mutex is to use a spin lock. The name is derived from the behavior of a
thread waiting to acquire the lock—it “spins”, repeatedly attempting to acquire the lock until it is
finally successful.

Here is incorrect code:

CLASS BadSpinLock EXPORT acq, rel =

TYPE FH = ENUM[free, held]

VAR fh := free

PROC acq() =

DO << fh = held => SKIP >> OD; % wait for fh = free
<< fh := held >> % and acquire it

PROC rel() = << fh := free >>

END BadSpinLock

This is wrong because two concurrent invocations of acq could both find fh = free and
subsequently both set fh := held and return.

Here is correct code. It uses a more complex atomic command in the acq procedure. This
command corresponds to the atomic “test-and-set” instruction provided by many real machines
to code locks. It records the initial value of the lock, and then sets it to held. Then it tests the
initial value; if it was free, then this thread was successful in atomically changing the state of
the lock from free to held. Otherwise some other thread must hold the lock, so we “spin”,
repeatedly trying to acquire it until we succeed. The important difference in SpinLock is that the
guard now involves only the local variable t, instead of the global variable fh in BadSpinLock.
A thread acquires the lock when it is the one that changes it from free to held, which it checks
by testing the value returned by the test-and-set.

CLASS SpinLock EXPORT acq, rel =

TYPE FH = ENUM[free, held]

VAR fh := free

PROC acq() = VAR t: FH |

DO << t := fh; fh := held >>; IF t = free => RET [*] SKIP FI OD

PROC rel() = << fh := free >>

END SpinLock

Handout 17. Formal Concurrency 11 Handout 17. Formal Concurrency 12

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Of course this code is not practical in general unless each thread has its own processor; it is used,
however, in the kernels of most operating systems for computers with several processors. Later,
in MutexImpl, we give practical code that queues a waiting thread.

The SpinLock code differs from the Mutex spec in another important way. It “forgets” which
thread owns the mutex. The following ForgetfulMutex module is useful in understanding the
SpinLock code—in ForgetfulMutex, the threads get forgotten, but the atomicity is the same as
in Mutex.

CLASS ForgetfulMutex EXPORT acq, rel =

TYPE FH = ENUM[free, held]

VAR fh := free

PROC acq() = << fh = free => fh := held >>

PROC rel() = << fh := free >>

END ForgetfulMutex

Note that ForgetfulMutex releases a mutex regardless of which thread acquired it, and it does a
SKIP if the mutex is already free. This is one of the behaviors permitted by the Mutex spec,
which allows anything under these conditions.

Later we will show that SpinLock implements ForgetfulMutex and that ForgetfulMutex
implements Mutex, from which it follows that SpinLock implements Mutex. We don’t give the
abstraction function here because it involves the details of program counters.

Read/write locks

Here is a spec of a module that provides locks with two modes, read and write, rather than the
single mode of a mutex. Several threads can hold a lock in read mode, but only one thread can
hold a lock in write mode, and no thread can hold a lock in read mode if some thread holds it in
write mode. In other words, read locks can be shared, but write locks are exclusive; hence the
locks are also known as ‘shared’ and ‘exclusive’.

CLASS RWLock EXPORT rAcq, rRel, wAcq, wRel =

TYPE ST = SET Thread

VAR r : ST := {}

w : ST := {}

APROC rAcq() = % Acquires r if no current write locks
<< SELF IN (r \/ w) => HAVOC [*] w = {} => r \/ := {SELF} >>

APROC wAcq() = % Acquires w if no current locks
<< SELF IN (r \/ w) => HAVOC [*] (r \/ w) = {} => w := {SELF} >>

APROC rRel() = % Releases r if the thread has it
<< ~ (SELF IN r) => HAVOC [*] r - := {SELF} >>

APROC wRel() =
<< ~ (SELF IN w) => HAVOC [*] w := {} >>

END RWLock

The following simple code is similar to ForgetfulMutex. It has the same atomicity as RWLock,
but uses a different data structure to represent possession of the lock. Specifically, it uses a single
integer variable rw to keep track of the number of readers (positive) or the existence of a writer
(-1).

CLASS ForgetfulRWL EXPORT rAcq, rRel, wAcq, wRel =

VAR rw := 0

% >0 gives number of readers, 0 means free, -1 means one writer

APROC rAcq() = << rw >= 0 => rw + := 1 >>

APROC wAcq() = << rw = 0 => rw := -1 >>

APROC rRel() = << rw - := 1 >>

APROC wRel() = << rw := 0 >>

END ForgetfulRWL

We will see later how to code ForgetfulRWL using a mutex.

Condition variables

Mutexes are used to protect shared variables. Often a thread h cannot proceed until some
condition is true of the shared variables, a condition produced by some other thread. Since the
variables are protected by a lock, and can be changed only by the thread holding the lock, h has
to release the lock. It is not efficient to repeatedly release the lock and then re-acquire it to check
the condition. Instead, it’s better for h to wait on a condition variable, as we saw in handout 14.
Whenever any thread changes the shared variables in such a way that the condition might
become true, it signals the threads waiting on that variable. Sometimes we say that the waiting
threads ‘wake up’ when they are signaled. Depending on the application, a thread may signal one
or several of the waiting threads.

Here is the spec for condition variables, copied from handout 14 on practical concurrency.

CLASS Condition EXPORT wait, signal, broadcast =

TYPE M = Mutex

VAR c : SET Thread := {}

% Each condition variable is the set of waiting threads.

PROC wait(m) =
<< c \/ := {SELF}; m.rel >>; % m.rel=HAVOC unless SELF IN m
<< ~ (SELF IN c) => m.acq >>

APROC signal() = <<
% Remove at least one thread from c. In practice, usually just one.

IF VAR t: SET Thread | t <= c /\ t # {} => c - := t [*] SKIP FI >>

APROC broadcast() = << c := {} >>

END Condition

Handout 17. Formal Concurrency 13 Handout 17. Formal Concurrency 14

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

As we saw in handout 14, it’s not necessary to have a single condition for each set of shared
variables. We want enough condition variables so that we don’t wake up too many threads whose
conditions are not yet satisfied, but not so many that the cost of doing all the signals is
excessive.

Coding read/write lock using condition variables

This example shows how to use easy concurrency to make more complex locks and scheduling
out of basic mutexes and conditions. We use a single mutex and condition for all the read-write
locks here, but we could have separate ones for each read-write lock, or we could partition the
locks into groups that share a mutex and condition. The choice depends on the amount of
contention for the mutex.

Compare the code with ForgetfulRWL; the differences are highlighted with boxes. The <<...>>
in ForgetfulRWL have become m.acq ... m.rel; this provides atomicity because shared
variables are only touched while the lock is held. The other change is that each guard that could
block (in this example, all of them) is replaced by a loop that tests the guard and does c.wait if
it doesn’t hold. The release operations do the corresponding signal or broadcast operations.

CLASS RWLockImpl EXPORT rAcq, rRel, wAcq, wRel = % implements ForgetfulRWL

VAR 	rw : Int := 0

m := m.new()

c := c.new()

% ABSTRACTION FUNCTION ForgetfulRWL.rw = rw

PROC rAcq(l) = m.acq; DO ~ rw >= 0 => c.wait(m) OD; rw + := 1; m.rel

PROC wAcq(l) = m.acq; DO ~ rw = 0 => c.wait(m) OD; rw := -1; m.rel

PROC rRel(l) =

m.acq; rw - := 1; IF rw = 0 => c.signal [*] SKIP FI; m.rel

PROC wRel(l) =

m.acq; rw := 0; c.broadcast; m.rel

END RWLockImpl

This is the prototypical example for scheduling resources. There are mutexes (just m in this case)
to protect the scheduling data structures, conditions (just c in this case) on which to delay threads
that are waiting for a resource, and logic that figures out when it’s all right to allocate a resource
(the read or write lock in this case) to a thread.

Note that this code may starve a writer: if readers come and go but there’s always at least one of
them, a waiting writer will never acquire the lock. How could you fix this?

An unbounded FIFO buffer

In this section, we give a spec and code for a simple unbounded buffer that could be used as a
communication channel between two threads. This is the prototypical example of a producer-
consumer relation between threads. Other popular names for Produce and Consume are Put and
Get.

MODULE Buffer[T] EXPORT Produce, Consume =

VAR b : SEQ T := {}

APROC Produce(t) = << b + := {t} >>

APROC Consume() -> T = VAR t | << b # {} => t := b.head; b := b.tail; RET t >>

END Buffer

The code is another example of easy concurrency.

MODULE BufferImpl[T] EXPORT Produce, Consume =

VAR 	b : SEQ T := {}

m := m.new()

c := c.new()

% ABSTRACTION FUNCTION Buffer.b = b

PROC Produce(t) = m.acq; IF b = {} => c.signal [*] SKIP FI; b + := {t}; m.rel

PROC Consume() -> T = VAR t |

m.acq; DO b = {} => c.wait(m) OD; t := b.head; b := b.tail; m.rel; RET t

END BufferImpl

Coding Mutex with memory

The usual way to code Mutex is to use an atomic test-and-set operation; we saw this in the
MutexImpl module above. If such an operation is not available, however, it’s possible to code
Mutex using only atomic read and write operations on memory. This requires an amount of
storage linear in the number of threads, however. We give a fair algorithm due to Peterson8 for
two threads; if thread h is competing for the mutex, we write h* for its competitor.

CLASS Mutex2Impl EXPORT acq, rel =

VAR 	req : Thread -> Bool := {* -> false}

lastReq : Int

PROC acq() =
[a0] req(SELF) := true;
[a1] lastReq := SELF;
DO [a2] (req(SELF*) /\ lastReq = SELF) => SKIP OD [a3]

PROC rel() = req(SELF) := false

END Mutex2Impl

This is hard concurrency, and it’s tricky to show that it works. To see the idea, consider first a
simpler version of acq that ensures mutual exclusion but can deadlock:

PROC acq0() =
[a0] req(SELF) := true;

8 G. Peterson, A new solution to Lamport’s concurrent programming problem using small shared variables. ACM
Trans. Programming Languages and Systems 5, 1 (Jan. 1983), pp 56-65.

Handout 17. Formal Concurrency 15 Handout 17. Formal Concurrency 16

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

DO [a2] req(SELF*) => SKIP OD [a3] % busy wait

We get mutual exclusion because once req(h) is true, h* can’t get from a2 to a3. Thus req(h)
acts as a lock that keeps the predicate h*.$pc = a2 true once it becomes true. Only one of the
threads can get to a3 and acquire the lock. We might call the algorithm ‘polite’ because each
thread defers to the other one at a2.

Of course, acq0 is no good because it can deadlock—if both threads get to a2 then neither can
progress. acq avoids this problem by making it a little easier for a thread to progress: even if
req(h*), h can take (a2, a3) if lastReq # h. Intuitively this maintains mutual exclusion because:

If both threads are at a2, only the one ≠ lastReq, say h, can progress to a3 and acquire the
lock. Since lastReq won’t change, h* will remain at a2 until h releases the lock.

Once h has acquired the lock with h* not at a2, h* can only reach a2 by setting
lastReq := h*, and again h* will remain at a2 until h releases the lock.

It ensures progress because the DO is the only place to get stuck, and whichever thread is not in
lastReq will get past it. It ensures fairness because the first thread to get to a2 is the one that will
get the lock first.

Abstractly, h has the mutex if req(h) /\ h.$pc # a2, and the transition from a2 to a3 simulates
the body of Mutex.acq. Precisely, the abstraction function is

Mutex.m = (Holds0.set = {} => nil [*] Holds0.set.choose)

We sketch the proof that Mutex2Impl implements Mutex later.

There is lots more to say about coding Mutex efficiently, especially in the context of shared-
memory multiprocessors.9 Even on a uniprocessor you still need an implementation that can
handle pre-emption; often the most efficient implementation gets the necessary atomicity by
modifying the code for pre-emption to detect when a thread is pre-empted in the middle of the
mutex code and either complete the operation or back up the state.

Multi-word clock

Often it’s possible to get better performance by avoiding locking. Algorithms that do this are
called ‘wait-free’; we gave a brief discussion in handout 14. Here we present a wait-free
algorithm due to Lamport10 for reading and incrementing a clock, even if clock values do not fit
into a single memory location that can be read and written atomically.

We begin with the spec. It says that a Read returns some value that the clock had between the
beginning and the end of the Read. As we saw in handout 8 on generalized abstraction functions,

9 J. Mellor-Crummey and M. Scott, Algorithms for scalable synchronization of shared-memory multiprocessors.

ACM Transactions on Computer Systems 9, 1 (Feb. 1991), pp 21-65. A. Karlin et al., Empirical studies of

competitive spinning for a shared-memory multiprocessor. ACM Operating Systems Review 25, 5 (Oct. 1991), pp

41-55.

10 L. Lamport, Concurrent reading and writing of clocks. ACM Transactions on Computer Systems 8, 4 (Nov. 1990),

pp 305-310.

where this spec is called LateClock, it takes a prophecy variable to show that this spec is
equivalent to the simpler spec that just reads the clock value.

MODULE Clock EXPORT Read =

VAR t : Int := 0 % the current time

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t

PROC Read() -> Int = VAR t1: Int |

<< t1 := t >>; << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >>

END Clock

The code below is based on the idea of doing reads and writes of the same multi-word data in
opposite orders. Tick writes hi2, then lo, then hi1. Read reads hi1, then lo, then hi2; if it sees
different values in hi1 and hi2, there must have been at least one carry during the read, so t
must have taken on the value hi2 * base. The function T expresses this idea. The atomicity
brackets in the code are the largest ones that are justified by big atomic actions.

MODULE ClockImpl EXPORT Read =

CONST base := 2**32

TYPE Word = Int SUCHTHAT (\ i: Int | i IN base.seq)

VAR 	lo : Word := 0

hi1 : Word := 0

hi2 : Word := 0

% ABSTRACTION FUNCTION Clock.t = T(lo, hi1, hi2), Clock.Read.t1 = Read.t1Hist,

Clock.Read.t2 = T(Read.tLo, Read.tH1, read.tH2)

THREAD Tick() = DO VAR newLo: Word, newHi: Word |

<< newLo := lo + 1 // base; newHi := hi1 + 1 >>;

IF << newLo # 0 => lo := newLo >>

[*] << hi2 := newHi >>; << lo := newLo >>; << hi1 := newHi >>

FI OD

PROC Read() -> Int = VAR tLo: Word, tH1: Word, tH2: Word |

<< tH1 := h1 >>;

<< tLo := lo >>;

<< tH2 := h2; RET T(tLo, tH1, tH2) >>

FUNC T(l: Int, h1: Int, h2: Int) -> Int = h2 * base + (h1 = h2 => l [*] 0)

END ClockImpl

Given this code for reading a two-word clock atomically starting with atomic reads of the low
and high parts, it’s obvious how to apply it recursively n–1 times to read an n word clock.

User and kernel mutexes and condition variables

This section presents code for mutexes and condition variables based on the Taos operating
system from DEC SRC. Instead of spinning like SpinLock, it explicitly queues threads waiting
for locks or conditions. The code for mutexes has a fast path that stays out of the kernel in acq

Handout 17. Formal Concurrency 17 Handout 17. Formal Concurrency 18

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

when the mutex is free, and in rel when no other thread is waiting for the mutex. There is also a
fast path for signal, for the common case that there’s nobody waiting on the condition. There’s
no fast path for wait, since that always requires the kernel to run in order to reschedule the
processor (unless a signal sneaks in before the kernel gets around to the rescheduling).

Notes on the code for mutexes:

1.	 MutexImpl maintains a queue of waiting threads, blocks a waiting thread using Deschedule,
and uses Schedule to hand a ready thread over to the scheduler to run.

2.	 SpinLock and ReleaseSpinLock acquire and release a global lock used in the kernel to
protect thread queues. This is OK because code running in the kernel can’t be pre-empted.

3.	 The loop in acq serves much the same purpose as a loop that waits on a condition variable. If
the mutex is already held, the loop calls KernelQueue to wait until it becomes free, and then
tries again. rel calls KernelRelease if there’s anyone waiting, and KernelRelease allows
just one thread to run. That thread returns from its call of KernelQueue, and it will acquire
the mutex unless another thread has called acq and slipped in since the mutex was released
(roughly).

4.	 There is clumsy code in KernelQueue that puts the thread on the queue and then takes it off
if the mutex turns out to be free. This is not a mistake; it avoids a race with rel, which calls
KernelRelease to take a thread off the queue only if it sees that the queue is not empty.
KernelQueue changes q and looks at s; rel uses the opposite order to change s and look at
q.

This opposite-order access pattern often works in hard concurrency, that is, when there’s not
enough locking to do the job in a straightforward way. We saw another version of it in
Mutex2Impl, which sets req(h) before reading req(h*). In this case req(h) acts like a lock to
keep h*.$pc = a2 from changing from true to false. We also saw it in ClockImpl, where the
reader and the writer of the clock touch its pieces in the opposite order.

The boxes show how the state, acq, and rel differ from the versions in SpinLock.

CLASS MutexImpl EXPORT acq, rel = % implements ForgetfulMutex

TYPE FH = Mutex.FH

VAR fh := free

q : SEQ Thread := {}

PROC acq() = VAR t: FH |

DO << t := fh; fh := held >>; IF t#held => RET [*] SKIP FI; KernelQueue() OD

PROC rel() = fh := free; IF q # {} => KernelRelease() [*] SKIP FI

% KernelQueue and KernelRelease run in the kernel so they can hold the spin lock and call the scheduler.

PROC KernelQueue() =

% This is just a delay until there’s a chance to acquire the lock. When it returns acq will retry.

% Queuing SELF before testing fh ensures that the test in rel doesn’t miss us.

% The spin lock keeps KernelRelease from getting ahead of us.

SpinLock(); % indented code holds the lock

q + := {SELF};

IF fh = free => q := q.reml % undo previous line; will retry at acq

[*] Deschedule(SELF) % wait, then retry at acq

FI;

ReleaseSpinLock()

PROC KernelRelease() =
SpinLock(); % indented code holds the lock

IF q # {} => Schedule(q.head); q := q.tail [*] SKIP FI;
ReleaseSpinLock()
% The newly scheduled thread competes with others to acquire the mutex.

END MutexImpl

Now for conditions. Note that:

The ‘event count’ ecSig deals with the standard ‘wakeup-waiting’ race condition: the signal
arrives after the m.rel but before the thread is queued. Note the use of the global spin lock as
part of this. It looks as though signal always schedules exactly one thread if the queue is not
empty, but other threads that are in wait but have not yet acquired the spin lock may keep
running; in terms of the spec they are awakened by signal as well.

signal and broadcast test for any waiting threads without holding any locks, in order to avoid
calling the kernel in this common case. The other event count ecWait ensures that this test
doesn’t miss a thread that is in KernelWait but hasn’t yet blocked.

CLASS ConditionImpl EXPORT wait, signal, broadcast = % implements Condition

TYPE M = Mutex

VAR 	ecSig : Int := 0

ecWait : Int := 0

q : SEQ Thread := {}

PROC wait(m) = VAR i := ecSig | m.rel; KernelWait(i); m.acq

PROC signal() = VAR i := ecWait |

ecSig + := 1; IF q # 0 \/ i # ecWait => KernelSig

PROC broadcast() = VAR i := ecWait |

ecSig + := 1; IF q # 0 \/ i # ecWait => KernelBroadcast

PROC KernelWait(i: Int) = % internal kernel procedure
SpinLock(); % indented code holds the lock

ecWait + := 1;
% if ecSig changed, there must have been a Signal, so return, else queue
IF i = ecSig => q + := {SELF}; Deschedule(SELF) [*] SKIP FI;

ReleaseSpinLock()

PROC KernelSig() = % internal kernel procedure
SpinLock(); % indented code holds the lock

IF q # {} => Schedule(q.head); q := q.tail [*] SKIP FI;
ReleaseSpinLock()

PROC KernelBroadcast() =
SpinLock(); % indented code holds the lock

Handout 17. Formal Concurrency 19 Handout 17. Formal Concurrency 20

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

DO q # {} => Schedule(q.head); q := q.tail OD;

ReleaseSpinLock()

END ConditionImpl

The code for mutexes and conditions are quite similar; in fact, both are cases of a general
semaphore.

Proving concurrent modules correct

This section explains how to prove the correctness of concurrent program modules. It reviews
the simulation method that we have already studied, which works just as well for concurrent as
for sequential modules. Then several examples illustrate how the method works in practice.
Things are more complicated in the concurrent case because there are many more atomic
transitions, and because the program counters of the threads are part of the state.

Before using this method in its full generality, you should first apply the theorem on big atomic
actions as much as possible, in order to reduce the number of transitions that your proofs need to
consider. If you are programming with easy concurrency, that is, if your code uses a standard
locking discipline, this will get rid of nearly all the work. If you are doing hard concurrency,
there will still be lots of transitions, and in doing the proof you will probably find bugs in your
program.

The formal method

We use the same simulation technique that we used for sequential modules, as described in
handouts 6 and 8 on abstraction functions. In particular, we use the most general version of this
method, presented near the end of handout 8. This version does not require the transitions of the
code to correspond one-for-one with the transitions of the spec. Only the external behavior
(invocations and responses) must be the same—there can be any number of internal steps. The
method proves that every trace (external behavior sequence) produced by the code can also be
produced by the spec.

Of course, the utility of this method depends on an assumption that the external behavior of a
module is all that is of interest to callers of the module. In other words, we are assuming here, as
everywhere in this course, that the only interaction between the module and the rest of the
program is through calls to the external routines provided by the module.

We need to show that each transition of the code simulates a sequence of transitions of the spec.
An external transition must simulate a sequence that contains exactly one instance of the same
external transition and no other external transitions; it can also contain any number of internal
transitions. An internal transition must simulate a sequence that contains only internal transitions.

Here, once again, are the definitions:

Suppose T and S are modules with same external interface. An abstraction function F is a
function from states(T) to states(S) such that:

Start: If u is any initial state of T then F(u) is an initial state of S.

Step: If u and F(u) are reachable states of T and S respectively, and (u, π, u') is a step of T,
then there is an execution fragment of S from F(u) to F(u'), having the same trace.

Thus, if π is an invocation or response, the fragment consists of a single π step, with any number
of internal steps before and/or after. If π is internal, the fragment consists of any number
(possibly 0) of internal steps.

As we saw in handout 8, we may have to add history variables to T in order to find an abstraction
function to S (and perhaps prophecy variables too). The values of history variables are calculated
in terms of the actual variables, but they are not allowed to affect the real steps.

An alternative to adding history variables is to define an abstraction relation instead of an
abstraction function. An abstraction relation AR is a relation between states(T) and states(S) such
that:

Start: If u is any initial state of T then there exists an initial state s of S such that (u, s) ∈ AR.

Step: If u and s are reachable states of T and S respectively, (u, s) ∈ AR, and (u, π, u') is a step
of T, then there is an execution fragment of S from s to some s' having the same trace, and
such that (u', s') ∈ AR.

Theorem: If there exists an abstraction function or relation from T to S then T implements S; that
is, every trace of T is a trace of S.

Proof: By induction.

The strategy

The formal method suggests the following strategy for doing hard concurrency proofs.

1. Start with a spec, which has an abstract state.

2. Choose a concrete state for the code.

3. Choose an abstraction function, perhaps with history variables, or an abstraction relation.

4. Write code, identifying the critical actions that change the abstract state.

5. While (checking the simulation fails) do

Add an invariant, checking that all actions of the code preserve it, or

Change the abstraction function (step 3), the code (step 4), the invariant (step 5), or more
than one, or

Change the spec (step 1).

This approach always works. The first four steps require creativity; step 5 is quite mechanical
except when you find an error. It is somewhat laborious, but experience shows that if you are
doing hard concurrency and you omit any of these steps, your program won’t work. Be warned.

Handout 17. Formal Concurrency 21 Handout 17. Formal Concurrency 22

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

Owicki-Gries proofs

Owicki and Gries invented a special case of this general method that is well known and
sometimes useful.11 Their idea is to do an ordinary sequential proof of correctness for each
thread h, annotating each atomic command in the usual style with an assertion that is true at that
point if h is the only thread running. This proof shows that the code of h establishes each
assertion. Then you show that each of these assertions remains true after any command that any
other thread can execute while h is at that point. This condition is called ‘non-interference’;
meaning not that other threads don’t interfere with access to shared variables, but rather that they
don’t interfere with the proof.

The Owicki-Gries method amounts to defining an invariant of the form

h.$pc = α ==> Aα /\ h.$pc = β ==> Aβ /\ ...

and showing that it’s an invariant in two steps: first, that every step of h maintains it, and then
that every step of any other thread maintains it. The hope is that this decomposition will pay
because the most complicated parts of the invariant have to do with private variables of h that
aren’t affected by other threads.

Prospectus for proofs

The remainder of this handout contains example proofs of correctness for several of the
examples above: the RWLockImpl code for a read/write lock, the BufferImpl code for a FIFO
buffer, the SpinLock code for a mutex (given in two versions), the Mutex2Impl code for a mutex
used by two threads, and the ClockImpl code for a multi-word clock.

The amount of detail in these proofs is uneven. The proof of the FIFO buffer code and the
second proof of the Spinlock code are the most detailed. The others give the abstraction
functions and key invariants, but do not discuss each simulation step.

Read/write locks

We sketch how to prove directly that the module RWLockImpl implements ForgetfulRWL.This
could be done by big atomic actions, since the code uses easy concurrency, but as an easy
introduction discuss how to do it directly. The two modules are based on the same data, the
variable rw. The difference is that RWLockImpl uses a condition variable to prevent threads in
acq from busy-waiting when they don’t see the condition they require. It also uses a mutex to
restrict accesses to rw, so that a series of accesses to rw can be done atomically.

An abstraction function maps RWLockImpl to ForgetfulRWL. The interesting part of the state of
ForgetfulRWL is the rw variable. We define that by the identity mapping from RWLockImpl.

The mapping for steps is mostly determined by the rw identity mapping: the steps that assign to
rw in RWLockImpl are the ones that correspond to the procedure bodies in ForgetfulRWL Then
the checking of the state and step correspondences is pretty routine.

11 S. Owicki and D. Gries, An axiomatic proof technique for parallel programs. Acta Informatica 6, 1976, pp 319-
340.

There is one subtlety. It would be bad if a series of rw steps done atomically in ForgetfulRWL
were interleaved in RWLockImpl. Of course, we know they aren’t, because they are always done
by a thread holding the mutex. But how does this fact show up in the proof?

The answer is that we need some invariants for RWLockImpl. The first, a “dominant thread
invariant”, says that only a thread whose name is in m (a ‘dominant thread’) can be in certain
portions of its code (those guarded by the mutex). The dominant thread invariant is in turn used
to prove other invariants called “data protection invariants”.

For example, one data protection invariant says that if a thread (in RWLockImpl) is in middle of
the assignment statement rw + := 1, then in fact rw ≥ 0 (that is, the test is still true). We need
this data protection invariant to show that the corresponding abstract step (the body of rAcq in
ForgetfulRWLock) is enabled.

BufferImpl implements Buffer

The FIFO buffer is another example of easy concurrency, so again we don’t need to do a
transition-by-transition proof for it. Instead, it suffices to show that a thread holds the lock m
whenever it touches the shared variable b. Then we can treat the whole critical section during
which the lock is held as a big atomic action, and the proof is easy. We will work out the
important details of a low-level proof, however, in order to get some practice in a situation that is
slightly more complicated but still straightforward, and in order to convince you that the theorem
about big atomic actions can save you a lot of work.

First, we give the abstraction function; then we use it to show that the code simulates the spec.
We use a slightly simplified version of Produce that always signals, and we introduce a local
variable temp to make explicit the atomicity of assignment to the shared variable b.

Abstraction function

The abstraction function on the state must explain how to interpret a state of the code as a state
of the spec. Remember that to prove a concurrent program correct, we need to consider the entire
state of a module, including the program counters and local variables of threads. For sequential
programs, we can avoid this by treating each external operation as a single atomic action.

To describe the abstraction function, we thus need to explain how to construct a state of the spec
from a state of the code. So what is a state of the Buffer module above? It consists of:

• A sequence of items b (the buffer itself);

• for each thread that is active in the module, a program counter; and

• for each thread that is active in the module, values for local variables.

A state of the code is similar, except that it includes the state of the Mutex and Condition
modules.

To define the mapping, we need to enumerate the possible program counters. For the spec, they
are:

Handout 17. Formal Concurrency 23 Handout 17. Formal Concurrency 24

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

P1 — before the body of Produce
P2 — after the body of Produce
C1 — before the body of Consume
C2 — after the body of Consume

or as annotations to the code:

PROC Produce(t) = [P1] << b + := {t} >> [P2]

PROC Consume() -> T =
[C1] << b # {} => VAR t := b.head | b := b.tail; RET t >> [C2]

For the code, they are:

• For a thread in Produce:

p1 — before m.acq

in m.acq—either before or after the action

p2 — before temp := b + {t}

p3 — before b := temp

p4 — before c.signal

in c.signal—either before or after the action

p5 — before m.rel

in m.rel—either before or after the action

p6 — after m.rel

• For a thread in Consume:

c1 — before m.acq

in m.acq—either before or after action

c2 — before the test b # {}

c3 — before c.wait

in c.wait—at beginning, in middle, or at end

c4 — before t := b.head

c5 — before temp := b.tail

c6 — before b := temp

c7 — before m.rel

in m.rel—either before or after action

c8 — before RET t

c9 — after RET t

or as annotations to the code:

PROC Produce(t) = VAR temp |
[p1] m.acq;
[p2] temp = b + {t};
[p3] b := temp;
[p4] c.signal;
[p5] m.rel [p6]

PROC Consume() -> T = VAR t, temp |

[c1] m.acq;

DO [c2] b # {} => [c3] c.wait OD;

[c4] t := b.head;

[c5] temp := b.tail; [c6] b := temp;

[c7] m.rel;

[c8] RET t [c9]

Notice that we have broken the assignment statements into their constituent atomic actions,
introducing a temporary variable temp to hold the result of evaluating the right hand side. Also,
the PC’s in the Mutex and Condition operations are taken from the specs of those modules (not
the code; we prove their correctness separately). Here for reference is the relevant code.

APROC acq() = << m = nil => m := SELF; RET >>

APROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

APROC signal() = << VAR hs: SET Thread |

IF hs <= c /\ hs # {} => c - := hs [*] SKIP FI >>

Now we can define the mapping on program counters:

•	 If a thread h is not in Produce or Consume in the code, then it is not in either procedure in the
spec.

•	 If a thread h is in Produce in the code, then:

If h.$pc is in {p1, p2, p3} or is in m.acq, then in the spec h.$pc = P1.

If h.$pc is in {p4, p5, p6} or is in m.rel or c.signal then in the spec h.$pc = P2.

• If a thread h is in Consume in the code, then:

If h.$pc ∈ {c1, …, c6} or is in m.acq or c.wait then in the spec h.$pc = C1.

If h.$pc is in {c7, c8, c9} or is in m.rel then in the spec h.$pc = C2.

The general strategy here is to pick, for each atomic transition in the spec, some atomic transition
in the code to simulate it. Here, we have chosen the modification of b in the code to simulate the
corresponding operation in the spec. Thus, program counters before that point in the code map to
program counters before the body in the spec, and similarly for program counters after that point
in the code.

This choice of the abstraction function for program counters determines how each transition of
the code simulates transitions of the spec as follows:

• If π is an external transition, π simulates the singleton sequence containing just π.

•	 If π takes a thread from a PC of p3 to a PC of p4, π simulates the singleton sequence
containing just the body of Produce.

•	 If π takes a thread from a PC of c6 to a PC of c7, π simulates the singleton sequence
containing just the body of Consume.

• All other transitions π simulate the empty sequence.

Handout 17. Formal Concurrency 25 Handout 17. Formal Concurrency 26

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

This example illustrates a typical situation: we usually find that a transition in the code simulates
a sequence of either zero or one transitions in the spec. Transitions that have no effect on the
abstract state simulate the empty sequence, while transitions that change the abstract state
simulate a single transition in the spec. The proof technique used here works fine if a transition
simulates a sequence with more than one transition in it, but this doesn’t show up in most
examples.

In addition to defining the abstract program counters for threads that are active in the module, we
also need to define the values of their local variables. For this example, the only local variables
are temp and the item t. For threads active in either Produce or Consume, the abstraction
function on temp and t is the identity; that is, it defines the values of temp and t in a state of the
spec to be the value of the identically named variable in the corresponding operation of the code.

Finally, we need to describe how to construct the state of the buffer b from the state of the code.
Given the choices above, this is simple: the abstraction function is the identity on b.

Proof sketch

To prove the code correct, we need to prove some invariants on the state. Here are some obvious
ones; the others we need will become clear as we work through the rest of the proof.

First, define a thread h to be dominant if h.$pc is in Produce and h.$pc is in {p2, p3, p4, p5} or is
at the end of m.acq, in c.signal, or at the beginning of m.rel, or if h.$pc is in Consume and
h.$pc is in {c2, c3, c4, c5, c6, c7} or is at the end of m.acq, at the beginning or end of c.wait (but
not in the middle), or at the beginning of m.rel.

Now, we claim that the following property is invariant: a thread h is dominant if and only if
Mutex.m = h. This simply says that h holds the mutex if and only if its PC is at an appropriate
point. This is the basic mutual exclusion property. Amazingly enough, given this property we
can easily show that operations are mutually exclusive: for all threads h, h' such that h ≠ h', if h
is dominant then h' is not dominant. In other words, at most one thread can be in the middle of
one of the operations in the code at any time.

Now let’s consider what needs to be shown to prove the code correct. First, we need to show that
the claimed invariants actually are invariants. We do this using the standard inductive proof
technique: Show that each initial state of the code satisfies the invariants, and then show that
each atomic action in the code preserves the invariants. This is left as an exercise.

Next, we need to show that the abstraction function defines a simulation of the spec by the code.
Again, this is an inductive proof. The first step is to show that an initial state of the code is
mapped by the abstraction function to an initial state of the spec. This should be straightforward,
and is left as an exercise. The second step is to show that the effects of each transition are
preserved by the abstraction function. Let’s consider a couple of examples.

• Consider a transition π from r to r' in which an invocation of an operation occurs for thread
h. Then in state r, h was not active in the module, and in r', its PC is at the beginning of the
operation. This transition simulates the identical transition in the spec, which has the effect of
moving the PC of this thread to the beginning of the operation. So AF(r) is taken to AF(r') by
the transition.

•	 Consider a transition in which a thread h moves from h.$pc = p3 to h.$pc = p4, setting b to
the value stored in temp. The corresponding abstract transition sets b to b + {t}. To show
that this transition does the right thing, we need an additional invariant:

If h.$pc = p3, then temp = b + {t}.

To prove this, we use the fact that if h.$pc = p3, then no other thread is dominant, so no other
transition can change b. We also have to show that any transition that puts h.$pc at this point
establishes the consequent of the implication — but there is only one transition that does this
(the one that assigns to temp), and it clearly establishes the desired property.

The transition in Consume that assigns to b relies on a similar invariant. The rest of the transitions
involve straightforward case analyses. For the external transitions, it is clear that they correspond
directly. For the other internal transitions, we must show that they have no abstract effect, i.e., if
they take r to r', then AF(r) = AF(r'). This is left as an exercise.

SpinLock implements Mutex, first version

The proof is done in two layers. First, we show that ForgetfulMutex implements Mutex.
Second, we show that SpinLock implements ForgetfulMutex. For convenience, we repeat the
definitions of the two modules.

CLASS Mutex EXPORT acq, rel =

VAR m : (Thread + Null) := nil

PROC acq() = << m = nil => m := SELF; RET >>

PROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

END Mutex

CLASS ForgetfulMutex EXPORT acq, rel =

TYPE M = ENUM[free, held]

VAR m := free

PROC acq() = << m = free => m := held; RET >>

PROC rel() = << m := free; RET >>

END ForgetfulMutex

Proof that ForgetfulMutex implements Mutex

These two modules have the same atomicity. The difference is that ForgetfulMutex forgets
which thread owns the mutex, and so it can’t check that the “right” thread releases it. We use an
abstraction relation AR. It needs to be multi-valued in order to put back the information that is
forgotten in the code. Instead of using a relation, we could use a function and history variables to
keep track of the owner and havoc. The single-level proof given later on that Spinlock
implements Mutex uses history variables.

The main interesting relationship that AR must express is:

Handout 17. Formal Concurrency 27 Handout 17. Formal Concurrency 28

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

s.m is non-nil if and only if u.m = held.

In addition, AR must include less interesting relationships. For example, it has to relate the $pc
values for the various threads. In each module, each thread is either not there at all, before the
body, or after the body. Thus, AR also includes the condition:

The $pc value for each thread is the same in both modules.

Finally, there is the technicality of the special $havoc = true state that occurs in Mutex. We
handle this by allowing AR to relate all states of ForgetfulMutex to any state with $havoc =
true.

Having defined AR, we just show that the two conditions of the abstraction relation definition are
satisfied.

The start condition is obvious. In the unique start states of both modules, no thread is in the
module. Also, if u is the state of ForgetfulMutex and s is the state of Mutex, then we have u.m =
free and s.m = nil. It follows that (u, s) ∈ AR, as needed.

Now we turn to the step condition. Let u and s be reachable states of ForgetfulMutex and
Mutex, respectively, and suppose that (u, π, u') is a step of ForgetfulMutex and that (u, s) ∈ AR.
If s.$havoc, then it is easy to show the existence of a corresponding execution fragment of
Mutex, because any transition is possible. So we suppose that s.$havoc = false. Invocation and
response steps are straightforward; the interesting cases are the internal steps.

So suppose that π is an internal action of ForgetfulMutex. We argue that the given step
corresponds to a single step of Mutex, with “the same” action. There are two cases:

1.	 π is the body of an acq, by some thread h. Since acq is enabled in ForgetfulMutex, we have
u.m = free, and h.$pc is right before the acq body in u. Since (u, s) ∈ AR, we have s.m =
nil, and also h.$pc is just before the acq body in s. Therefore, the acq body for thread h is
also enabled in Mutex. Let s' be the resulting state of Mutex.

By the code, u'.m = held and s'.m = h, which correspond correctly according to AR. Also,
since the same thread h gets the mutex in both steps, the PC’s are changed in the same way in
both steps. So (u', s') ∈ AR.

2.	 π is the body of a rel, by some thread h. If u.m = free then ForgetfulMutex does
something sensible, as indicated by its code. But since (u, s) ∈ AR, s.m = nil and Mutex
does HAVOC. Since $havoc in Mutex is defined to correspond to everything in
ForgetfulMutex, we have (u', s') ∈ AR in this case.

On the other hand, if u.m = held then ForgetfulMutex sets u'.m := free. Since (u, s) ∈
AR, we have s.m ≠ nil. Now there are two cases: If s.m = h, then corresponding changes
occur in both modules, which allows us to conclude (u', s') ∈ AR. Otherwise, Mutex goes to
$havoc = true. But as before, this is OK because $havoc = true corresponds to
everything in ForgetfulMutex.

The conclusion is that every trace of ForgetfulMutex is also a trace of Mutex. Note that this
proof does not imply anything about liveness, though in fact the two modules have the same
liveness properties.

Proof that SpinLock implements ForgetfulMutex

We repeat the definition of SpinLock.

CLASS SpinLock EXPORT acq, rel =

TYPE M = ENUM[free, held]

VAR m := free

PROC acq() = VAR t: FH |

DO << t := m; m := held >>; IF t # held => RET [*] SKIP FI OD

PROC rel() = << m := free >>

END SpinLock

These two modules use the same basic data. The difference is their atomicity. Because they use
the same data, an abstraction function AF will work. Indeed, the point of introducing
ForgetfulMutex was to take care of the need for history variables or abstraction relations there.

The key to defining AF is to identify the exact moment in an execution of SpinLock when we
want to say the abstract acq body occurs. There are two logical choices: the moment when a
thread converts u.m from free to held, or the later moment when the thread discovers that it has
done this. Either will work, but to be definite we consider the earlier of these two possibilities.

Then AF is defined as follows. If u is any state of SpinLock then AF(u) is the unique state s of
ForgetfulMutex such that:

• s.m = u.m, and

• The PC values of all threads “correspond”.

We must define the sense in which the PC values correspond. The correspondence is
straightforward for threads that aren’t there, or are engaged in a rel operation. For a thread h
engaged in an acq operation, we say that

•	 h.$pc in ForgetfulMutex, s.h.$pc, is just before the body of acq if and only if u.h.$pc is
in SpinLock either (a) at the DO, and before the test-and-set ,or (b) after the test-and-set with
h’s local variable t equal to held.

•	 h.$pc in ForgetfulMutex, s.h.$pc, is just after the body of acq if and only if u.h.$pc is
either (a) after the test-and-set with h’s local variable t equal to free or (b) after the
t # held test.

The proof that this is an abstraction function is interesting. The start condition is easy. For the
step condition, the invocation and response cases are easy, so consider the internal steps. The rel
body corresponds exactly in both modules, so the interesting steps to consider are those that are
part of the acq. acq in SpinLock has two kinds of internal steps: the atomic test-and-set and the
test for t # held. We consider these two cases separately:

Handout 17. Formal Concurrency 29 Handout 17. Formal Concurrency 30

1

2

3

4

5

6

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

1)	 The atomic test-and-set, (u, test-and-set, u'). Say this is done by thread h. In this case, the
value of m might change. It depends on whether the step of SpinLock changes m from free to
held. If it does, then we map the step to the acq body. If not, then we map it to the empty
sequence of steps. We consider the two cases separately:

a)	 The step changes m. Then in SpinLock, h.$pc moves after the test-and-set with h’s local
variable t = free. We claim first that the acq body in ForgetfulMutex is enabled in
state AF(u). This is true because it requires only that s.m = free, and this follows from
the abstraction function since u.m = free. Then we claim that the new states in the two
modules are related by AF. To see this, note that m = held in both cases. And the new
PC’s correspond: in ForgetfulMutex, h.$pc moves to right after the acq body, which
corresponds to the position of h.$pc in SpinLock, by the definition of the abstraction
function.

b)	 The step does not change m. Then h.$pc in SpinLock moves to the test, with t = held.
Thus, there is no change in the abstract value of h.$pc.

2)	 The test for t # held, (u, test, u’). Say this is done by thread h. We always map this to the
empty sequence of steps in ForgetfulMutex. We must argue that this step does not change
anything in the abstract state, i.e., that AF(u') = AF(u). There are two cases:

a)	 If t = held, then the step of SpinLock moves h.$pc to after the DO. But this does not
change the abstract value of h.$pc, according to the abstraction function, because both
before and after the step, the abstract h.$pc value is before the body of acq.

b)	 On the other hand, if t = free, then the step of SpinLock moves h.$pc to after the =>.
Again, this does not change the abstract value of h.$pc because both before and after the
step, the abstract h.$pc value is after the body of acq.

SpinLock implements Mutex, second version

Now we show again that SpinLock implements Mutex, this time with a direct proof that
combines the work done in both levels of the proof in the previous section. For contrast, we use
history variables instead of an abstraction relation.

Abstraction function

As usual, we need to be precise about what constitutes a state of the code and what constitutes a
state of the spec. A state of the spec consists of:

• A value for m (either a thread or nil); and

• for each thread that is active in the module, a program counter.

There are no local variables for threads in the spec.

A state of the code is similar; it consists of:

• A value for m (either free or held);

• for each thread that is active in the module, a program counter; and

• for each thread that is active in acq, a value for the local variable t.

Now we have a problem: there is no way to define an abstraction function from a code state to a
spec state. The problem here is that the code does not record which thread holds the mutex, yet
the spec keeps track of this information. To solve this problem, we have to introduce a history
variable or use an abstraction relation. We choose the history variable, and add it as follows:

• We augment the state of the code with two additional variables:
ms: (Thread + Null) := nil % m in the Spec
hs: Bool := false % $havoc in the Spec

•	 We define the effect of each atomic action in the code on the history variable; written in
Spec, this results in the following modified code:

PROC acq() = VAR t: FH |

DO <<t := m; m := held>>; IF t # held => <<ms := SELF>>; RET [*] SKIP FI OD

PROC rel() = << m := free; hs := hs \/ (ms # SELF); ms := nil >>

You can easily check that these additions to the code satisfy the constraints required for adding
history variables.

This treatment of ms is the obvious way to keep track of the spec’s m. Unfortunately, it turns out
to require a rather complicated proof, which we now proceed to give. At the end of this section
we will see a less obvious ms that allows a much simpler proof; skip to there if you get worn out.

Now we can proceed to define the abstraction function. First, we enumerate the program
counters. For the spec, they are:

A1 — before the body of acq
A2 — after the body of acq
R1 — before the body of rel
R2 — after the body of rel

For the code, they are:

• For a thread in acq:

a — before the VAR t

a — after the VAR t and before the DO loop

a — before the test-and-set in the body of the DO loop

a — after the test-and-set in the body of the DO loop

a — before the assignment to ms

a — after the assignment to ms

• For a thread in rel:

r1 — before the body
r2 — after the body

Handout 17. Formal Concurrency 31 Handout 17. Formal Concurrency 32

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

The transitions in acq may be a little confusing: there’s a transition from a4 to a3, as well as
transitions from a4 to a5.

Here are the routines in Mutex annotated with the PC values:

APROC acq() = [A1] << m = nil => m := SELF >> [A2]

APROC rel() = [R1] << m # SELF => HAVOC [*] m := nil >> [R2]

Here are the routines in SpinLock annotated with the PC values:

PROC acq() = [a1] VAR t := FH |
[a2] DO [a3] << t := m; m := held >>;
[a4] IF t # held => [a5] << ms := SELF >>; [a6] RET [*] SKIP FI OD;

PROC rel() = [r1] << m := free; hs := hs \/ (ms # SELF); ms := nil >> [r2]

Now we can define the mappings on program counters:

• If a thread is not in acq or rel in the code, then it is not in either in the spec.

• {a1, a2, a3, a4, a5} maps to A1, a6 maps to A2

• r1 maps to R1, r2 maps to R2

The part of the abstraction function dealing with the global variables of the module simply
defines m in the spec to have the value of ms in the code, and $havoc in the spec to have the value
of hs in the code. As in handout 8, we just throw away all but the spec part of the state.

Since there are no local variables in the spec, the mapping on program counters and the mapping
on the global variables are enough to define how to construct a state of the spec from a state of
the code.

Once again, the abstraction function on program counters determines how transitions in the code
simulate sequences of transitions in the spec:

• If π is an external transition, π simulates the singleton sequence containing just π.

•	 If π takes a thread from a5 to a6, π simulates the singleton sequence containing just the
transition from A1 to A2.

•	 If π takes a thread from r1 to r2, π simulates the singleton sequence containing just the
transition from R1 to R2.

• All other transitions simulate the empty sequence.

Proof sketch

As in the previous example, we will need some invariants to do the proof. Rather than trying to
write them down first, we will see what we need as we do the proof.

First, we show that initial states of the code map to initial states of the spec. This is easy; all the
thread states correspond, and the initial state of ms in the code is nil.

Next, we show that transitions in the code and the spec correspond. All transitions from outside
the module to just before a routine’s body are straightforward, as are transitions from the end a
routine’s body to outside the module (i.e., when a routine returns). The transition in the body of
rel is also straightforward. The hard cases are in the body of acq.

Consider all the transitions in acq before the one from a5 to a6. These all simulate the null
transition, so they should leave the abstract state unchanged. And they do, because none of them
changes ms.

The transition from a5 to a6 simulates the transition from A1 to A2. There are two cases: when
ms = nil, and when ms ≠ nil.

1.	 In the first case, the transition from A1 to A2 is enabled and, when taken, changes the state so
that m = SELF. This is just what the transition from a5 to a6 does.

2.	 Now consider the case when ms ≠ nil. We claim this case is possible only if a thread that
didn’t hold the mutex has done a rel. Then hs = true, the spec has done HAVOC, and
anything can happen. In the absence of havoc, if a thread is at a5, then ms = nil. But even
though this invariant is what we want, it’s too weak to prove itself inductively; for that, we
need the following, stronger invariant:

Either

If m = free then ms = nil, and

If a thread is at a5, or at a4 with t = free, then ms = nil, m = held, there are no
other threads at a5, and for all other threads at a4, t = held

or hs is true.

Given this invariant, we are done: we have shown the appropriate correspondence for all the
transitions in the code. So we must prove the invariant. We do this by induction. It’s vacuously
true in the initial state, since no thread could be at a4 or a5 in the initial state. Now, for each
transition, we assume that the invariant is true before the transition and prove that it still holds
afterwards.

The external transitions preserve the invariant, since they change nothing relevant to it.

The transition in rel preserves the first conjunct of the invariant because afterwards both
m = free and ms = nil. To prove that the transition in rel preserves the second conjunct of the
invariant, there are two cases, depending on whether the spec allows HAVOC.

1.	 If it does, then the code sets hs true; this corresponds to the HAVOC transition in the spec, and
thereafter anything can happen in the spec, so any transition of the code simulates the spec.
The reason for explicitly simulating HAVOC is that the rest of the invariant may not hold after
a rogue thread does rel. Because the rogue thread resets m to free, if there’s a thread at a5 or
at a4 with t = free, and m = held, then after the rogue rel, m is no longer held and hence
the second conjunct is false This means that it’s possible for several threads to get to a5, or to
a4 with t = free. The invariant still holds, because hs is now true.

Handout 17. Formal Concurrency 33 Handout 17. Formal Concurrency 34

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

2.	 In the normal case ms ≠ nil, and since we’re assuming the invariant is true before the
transition, this implies that no thread is at a4 with t = free or at a5. After the transition to r2
it’s still the case that no thread is at a4 with t = free or at a5, so the invariant is still true.

Now we consider the transitions in acq. The transitions from a1 to a2 and from a2 to a3 obviously
preserve the invariant. The transition from a4 to a5 puts a thread at a5, but t = free in this case
so the invariant is true after the transition by induction. The transition from a4 to a3 also clearly
preserves the invariant.

The transition from a3 to a4 is the first interesting one. We need only consider the case
hs = false, since otherwise the spec allows anything. This transition certainly preserves the
first conjunct of the invariant, since it doesn’t change ms and only changes m to held. Now we
assume the second conjunct of the invariant true before the transition. There are two cases:

1.	 Before the transition, there is a thread at a5, or at a4 with t = free. Then we have m = held
by induction, so after the transition both t = held and m = held. This preserves the
invariant.

2.	 Before the transition, there are no threads at a5 or at a4 with t = free. Then after the
transition, there is still no thread at a5, but there is a new thread at a4. (Any others must have
t = held.) Now, if this thread has t = held, the second part of the invariant is true
vacuously; but if t = free, then we have:

ms = nil (since when the thread was at a3 m must have been free, hence the first part of
the invariant applies);

m = held (as a direct result of the transition);

there are no threads at a5 (by assumption); and

there are no other threads at a4 with t = free (by assumption).

So the invariant is still true after the transition.

Finally, assume a thread h is at a5, about to transition to a6. If the invariant is true here, then h is
the only thread at a5, and all threads at a4 have t = held. So after it makes the transition, the
invariant is vacuously true, because there is no other thread at a5 and the threads at a4 haven’t
changed their state.

We have proved the invariant. The invariant implies that if a thread is at a5, ms = nil, which is
what we wanted to show.

Simplifying the proof

This proof is a good example of how to use invariants and of the subtleties associated with
preconditions. It’s possible to give a considerably simpler proof, however, by handling the
history variable ms in a less natural way. This version is closer to the two-stage proof we saw
earlier. In particular, it uses the transition from a3 to a4 to simulate the body of Mutex.acq. We
omit the hs history variable and augment the code as follows:

PROC acq() = [a1] VAR t := FH |
[a2] DO [a3] << t := m; m := held; IF t # held => ms := SELF [*] SKIP FI >>;
[a4] IF t # held => [a6] RET [a7] [*] SKIP FI OD;

PROC rel() = [r1] << m := free; ms := nil >> [r2]

The abstraction function maps ms to Mutex.m as before, and it maps PC’s a1- a3 to A1 and a6-a7 to
A2. It maps a4 to A1 if t = held, and to A2 if t = free; thus a3 to a4 simulates Mutex.acq only if
m was free, as we should expect. There is no need for an invariant; we only used it at a5 to a6,
which no longer exists.

The simulation argument is the same as before except for a3 to a4, which is the only place where
we changed the code. If m = held, then m and ms don’t change; hence Mutex.m doesn’t change,
and neither does the abstract PC; in this case the transition simulates the empty trace. If m =
free, then m becomes held, ms becomes SELF, and the abstract PC becomes A2; in this case the
transition simulates A1 to A2, as promised.

The moral of this story is that it can make a big difference how you choose the abstraction
function. The crucial decision is the choice of the ‘critical transition’ that models the body of
Mutex.acq, that is, how to abstract the PC. It seems very natural to change ms in the code after
the test of t # held that is already there, but this forces the critical transition to be after the test.
Then there has to be an invariant to carry forward the relationship between the local variable t
and the global variable m, which complicates things, and the HAVOC case in rel complicates them
further by falsifying the natural statement of the invariant and requiring the additional hs
variable to patch things up. The uglier code with a second test of t # held inside the atomic
test-and-set command makes it possible to use that action, which does the real work, to simulate
the body of Mutex.acq, and then everything falls out nicely.

More complicated code requires invariants even when we choose the best abstraction function, as
we see in the next two examples.

Mutex2Impl implements Mutex

This is the rather subtle code that implements a mutex for two threads using only memory reads
and writes. We begin with a proof in the style of the last few, and then give an entirely different
proof based on model checking.

First we show that the simple, deadlocking version acq0 maintains mutual exclusion. Recall that
we write h* for the thread that is the partner of thread h. Here are the spec and code again:

CLASS Mutex EXPORT acq, rel =

VAR m : (Thread + Null) := nil

PROC acq() = << m = nil => m := SELF; RET >>

PROC rel() = << m = SELF => m := nil ; RET [*] HAVOC >>

END Mutex

Handout 17. Formal Concurrency 35 Handout 17. Formal Concurrency 36

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

CLASS Mutex2Impl0 EXPORT acq, rel =

VAR 	req : Thread -> Bool := {* -> false}

lastReq : Int

PROC acq0() =
[a1] req(SELF) := true;
DO [a2] req(SELF*) => SKIP OD [a3]

PROC rel() = req(SELF) := false

END Mutex2Impl0

Intuitively, we get mutual exclusion because once req(h) is true, h* can’t get from a2 to a3. It’s
convenient to define

FUNC Holds0(h: Thread) = RET req(h) /\ h.$pc # a2

Abstractly, h has the mutex if Holds0(h), and the transition from a2 to a3 simulates the body of
Mutex.acq. Precisely, the abstraction function is

Mutex.m = (Holds0.set = {} => nil [*] Holds0.set.choose)

Recall that if P is a predicate, P.set is the set of arguments for which it is true.

To make precise the idea that req(h) stops h* from getting to a3, the invariant we need is

Holds0.set.size <= 1 /\ (h.$pc = a2 ==> req(h))

The first conjunct is the mutual exclusion. It holds because, given the first conjunct, only (a2, a3)
can increase the size of Holds0.set, and h can take that step only if req(h*) = false, so
Holds0.set goes from {} to {h}. The second conjunct holds because it can never be
true ==> false, since only the step (a1, req(h) := true, a2) can make the antecedent true,
this step also makes the consequent true, and no step away from a2 makes the consequent false.

This argument applies to acq0 as written, but you might think that it’s unrealistic to fetch the
shared variable req(SELF*) and test it in a single atomic action; certainly this will take more
than one machine instruction. We can appeal to big atomic actions, since the whole sequence
from a2 to a3 has only one action that touches a shared variable (the fetch of req(SELF*)) and
therefore is atomic.

This is the right thing to do in practice, but it’s instructive to see how to do it by hand. We break
the last line down into two atomic actions:

VAR t | DO [a2] << t := req(SELF*) >>; [a21] << t => SKIP >> OD [a3]

We examine several ways to show the correctness of this; they all have the same idea, but the
details differ. The most obvious one is to add the conjunct h.$pc # a21 to Holds0, and extend
the mutual exclusion conjunct of the invariant so that it covers a thread that has reached a21 with
t = false:

(Holds0.set \/ {h | h.$pc = a21 /\ h.t = false}).size <= 1

Or we could get the same effect by saying that a thread acquires the lock by reaching a21 with t
= false, so that it’s the transition (a2, a21) with t = false that simulates the body of
Mutex.acq, rather than the transition to a3 as before. This means changing the definition of
Holds0 to

FUNC Holds0(h: Thread) =
RET req(h) /\ h.$pc # a2 /\ (h.$pc = a21 ==> h.t = false)

Yet another approach is to make explicit in the invariant what h knows about the global state.
One purpose of an invariant is to remember things about the global state that a thread has
discovered in the past; the fact that it’s an invariant means that those things stay true, even
though other threads are taking steps. In this case, t = false in h means that either req(h*) =
false or h* is at a2 or a21, in other words, Holds(h*) = false. We can put this into the
invariant with the conjunct

h.$pc = a21 /\ h.t = false ==> Holds(h*) = false

and this is enough to ensure that the transition (a21, a3) maintains the invariant.

We return from this digression on proof methodology to study the non-deadlocking acq:

PROC acq() =
[a0] req(SELF) := true;
[a1] lastReq := self;
DO [a2] (req(SELF*) /\ lastReq = SELF) => SKIP OD [a3]

We discussed liveness informally earlier, and we don’t attempt to prove it. To prove mutual
exclusion, we need to extend Holds0 in the obvious way:

FUNC Holds(h: Thread) = req(h) /\ h.$pc # a1 /\ h.$pc # a2

and add \/ h.$pc = a1 to the antecedent of the invariant In order to have mutual exclusion, it
must be true that h won’t find lastReq = h* as long as h* holds the lock. We need to add a
conjunct to the invariant to express this. This leaves us with:

Holds0.set.size <= 1
/\ (h.$pc = a2 \/ h.$pc = a1 ==> req(h))
/\ (Holds(h*) /\ h.$pc = a2 ==> lastReq = h)

The last conjunct holds because (a1, a2) makes it true, and the only way to make it false is for h*
to do lastReq := SELF, which it can only do from a1, so that Holds(h*) is false. With this
invariant it’s obvious that (a2, a3) maintains the invariant.

Proof by model checking

We have been doing all our proofs by establishing invariants; these are called assertional proofs.
An alternative method is to explore the state space exhaustively; this is called model checking. It
only works when the state space not too big. In this case, if the two threads are a and b, the state
space is just:

a.$pc IN {a0, a1, a2, a3}

b.$pc IN {a0, a1, a2, a3}

req(a) IN {false, true}

Handout 17. Formal Concurrency 37 Handout 17. Formal Concurrency 38

6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

req(b) IN {false, true}

lastReq IN {a, b}

We can write down a state concisely with one digit to represent each PC, a t or f for each req,
and an a or b for lastReq. Thus 00ffa is a.$pc = a0, b.$pc = a0, req(a) = false, req(b) =
false, lastReq = a. When the value of a component is unimportant we write x for it.

Now we can display the complete state machine.
`

10tfx

20tfa 11ttx

30tfa 21tta 12ttb

01ftx

02ftb

03ftb

00ffx

31tta

32ttb

22ttb 22tta

23tta

13ttb

Note the extensive symmetries. Nominally there are 128 states, but many are not reachable:

1. The value of req follows from the PC’s, which cuts the number of reachable states to 32.

2.	 33xxx is not reachable. This is the mutual exclusion invariant, which is that both PC’s cannot
be in the critical section at the end of acq.This removes 2 states.

3.	 At the top of the picture the value of lastReq is not important, so we have shown it as x.
This removes 4 states.

4.	 We can’t have 20xxb or 21xxb or 30xxb or 31xxb or 32xxa, or the 5 symmetric states,
because of the way lastReq is set. This removes 10 states.

In the end there are only 16 reachable states, and 7 of them are obtained from the others simply
by exchanging the two threads a and b.

Since there is no non-determinism in this algorithm and a thread is never blocked from making a
transition, there are two transitions from each state, one for each thread. If there were no
transitions from a state, the system would deadlock in that state. It’s easy to see that the

algorithm is live if both threads are scheduled fairly, since there are no non-trivial cycles that
don’t reach the end of acq. It is fair because the transitions from 00ffx and 11ttx are fair.

The appeal of model-checking should be clear from the example: we don’t have to think, but can
just search the state space mechanically. The drawback is that the space may be too large. This
small example illustrates that symmetries can cut the size of the search dramatically, but the
symmetries are often not obvious.

ClockImpl implements Clock

We conclude with the proof of the clock implementation. The spec says that a Read returns some
value that the clock had between the beginning and the end of the Read. Here it is, with labels.

MODULE Clock EXPORT Read =

VAR t : Int := 0 % the current time

THREAD Tick() = DO << t + := 1 >> OD % demon thread advances t
PROC Read() -> Int = VAR t1: Int |

[R1] << t1 := t >>; [R2] << VAR t2 | t1 <= t2 /\ t2 <= t => RET t2 >> [R3]

END Clock

To show that ClockImpl implements this we introduce a history variable t1Hist in Read that
corresponds to t1 in the spec, recording the time at the beginning of Read’s execution. The
invariant that is needed is based on the idea that Read might complete before the next Tick, and
therefore the value Read would return by reading the rest of the shared variables must be
between t1Hist and Clock.t. We can write this most clearly by annotating the labels in Read
with assertions that are true when the PC is there.

MODULE ClockImpl EXPORT Read =

CONST base := 2**32

TYPE Word = Int SUCHTHAT (\ i: Int | i IN base.seq)

VAR lo : Word := 0

hi1 : Word := 0

hi2 : Word := 0

% ABSTRACTION FUNCTION Clock.t = T(lo, hi1, hi2), Clock.Read.t1 = Read.t1Hist,

Clock.Read.t2 = T(Read.tLo, Read.tH1, read.tH2)

% The PC correspondence is R1 ↔ r1, R2 ↔ r2, r3, R3 ↔ r4

THREAD Tick() = DO VAR newLo: Word, newHi: Word |

<< newLo := lo + 1 // base; newHi := hi1 + 1 >>;

IF << newLo # 0 => lo := newLo >>

[*] << hi2 := newHi >>; << lo := newLo >>; << hi1 := newHi >>

FI OD

PROC Read() -> Int = VAR tLo: Word, tH1: Word, tH2: Word, t1Hist: Int |

[r1] << tH1 := hi1; t1Hist := T(lo, hi1, hi2) >>;
[r2] % I2: T(lo , tH1, hi2) IN t1Hist .. T(lo, hi1, hi2)

<< tLo := lo; >>
[r3] % I3: T(tLo, tH1, hi2) IN t1Hist .. T(lo, hi1, hi2)

<< tH2 := hi2; RET T(tLo, tH1, tH2) >>
[r4] % I4: $a IN t1Hist .. T(lo, hi1, hi2)

Handout 17. Formal Concurrency 39 Handout 17. Formal Concurrency 40

6.826—Principles of Computer Systems 2002

FUNC T(l: Int, h1: Int, h2: Int) -> Int = h2 * base + (h1 = h2 => l [*] 0)

END ClockImpl

The whole invariant is thus

h.$pc = r2 ==> I2 /\ h.$pc = r3 ==> I3 /\ h.$pc = r4 ==> I4

The steps of Read clearly maintain this invariant, since they don’t change the value before IN.
The steps of Tick maintain it by case analysis.

Handout 17. Formal Concurrency 41

