
6.826—Principles of Computer Systems 2002

Handout 1. Course Information 1

1. Course Information

Staff

Faculty

Butler Lampson

Martin Rinard

Office Hours

Messrs. Lampson and Rinard will arrange individual appointments. The TA will hold
scheduled office hours at a time to be announced. In addition to
holding regularly scheduled office hours, the TA will also be available by appointment.

Lectures and handouts

Lectures are held on Tuesdays and Thursdays from 1:00 to 2:30PM.
Messrs. Lampson and Rinard will split the lectures. The tentative schedule is
at the end of this handout.

The source material for this course is an extensive set of handouts. There are about 400 pages of
topic handouts that take the place of a textbook; you will need to study them to do well in the
course. Since we don’t want to simply repeat the written handouts in class, we will hand out the
material for each lecture one week in advance. We expect you to read the day’s handouts before
the class and come prepared to ask questions, discuss the material, or follow extensions of it or
different ways of approaching the topic.

Seven research papers supplement the topic handouts. In addition there are 5 problem sets, and
the project described below. Solutions for each problem set will be available shortly after the due
date.

Current handouts will generally be available in lecture. If you miss any in lecture, you can obtain
them afterwards from the course secretary. She keeps them in a file cabinet outside her office.

6.826—Principles of Computer Systems 2002

Handout 1. Course Information 2

Problem sets

There is a problem set approximately once a week for the first half of the course. Problem sets
are handed out on Wednesdays and are due in class the following Wednesday. They normally
cover the material discussed in class during the week they are handed out. Delayed submission of
the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM.

Students in the class will be asked to help grade the problem sets. Each week a team of students
will work with the TA to grade the week’s problems. This takes about 3-4 hours. Each student
will probably only have to do it once during the term.

We will try to return the graded problem sets, with solutions, within a week after their due date.

Policy on collaboration

We encourage discussion of the issues in the lectures, readings, and problem sets. However, if
you collaborate on problem sets, you must tell us who your collaborators are. And in any case,
you must write up all solutions on your own.

Project

During the last half of the course there is a project in which students will work in groups of three
or so to apply the methods of the course to their own research projects. Each group will pick a
real system, preferably one that some member of the group is actually working on but possibly
one from a published paper or from someone else’s research, and write:

A specification for it.

High-level code that captures the novel or tricky aspects of the actual implementation.

The abstraction function and key invariants for the correctness of the code. This is not
optional; if you can’t write these things down, you don’t understand what you are doing.

Depending on the difficulty of the specification and code, the group may also write a correctness
proof for the code.

Projects may range in style from fairly formal, like handout 18 on consensus, in which the ‘real
system’ is a simple one, to fairly informal (at least by the standards of this course), like the
section on copying file systems in handout 7. These two handouts, along with the ones on
naming, sequential transactions, concurrent transactions, and caching, are examples of the
appropriate size and possible styles of a project.

The result of the project should be a write-up, in the style of one of these handouts. During the
last two weeks of the course, each group will give a 25-minute presentation of its results. We
have allocated four class periods for these presentations, which means that there will be twelve
or fewer groups.

The projects will have five milestones. The purpose of these milestones is not to assign grades,
but to make it possible for the instructors to keep track of how the projects are going and give
everyone the best possible chance of a successful project

6.826—Principles of Computer Systems 2002

Handout 1. Course Information 3

1. We will form the groups around March 5, to give most of the people that will drop the course
a chance to do so.

2. Each group will write up a 2-3 page project proposal, present it to one of the instructors
around spring break, and get feedback about how appropriate the project is and suggestions
on how to carry it out. Any project that seems to be seriously off the rails will have a second
proposal meeting a week later.

3. Each group will submit a 5-10 page interim report in the middle of the project period.

4. Each group will give a presentation to the class during the last two weeks of classes.

5. Each group will submit a final report, which is due on Friday, May 17, the last day allowed
by MIT regulations. Of course you are free to submit it early.

Half the groups will be ‘early’ ones; the other half will be ‘late’ ones that give their presentations
one week later. The due dates of proposals and interim reports will be spread out over two weeks
in the same way. See the schedule later in this handout for precise dates.

Grades

There are no exams. Grades are based 30% on the problem sets, 50% on the project, and 20% on
class participation and quality and promptness of grading.

6.826—Principles of Computer Systems 2002

Handout 1. Course Information 4

Course Schedule

Date No By HO Topic PS
out

PS
due

Tues., Feb. 5 1 L Overview. The Spec language. State machine
semantics. Examples of specifications and code.

1

 1 Course information
 2 Background
 3 Introduction to Spec
 4 Spec reference manual
 5 Examples of specs and code

Thurs., Feb. 7 2 L Spec and code for sequential programs. Correctness
notions and proofs. Proof methods: abstraction
functions and invariants.

 6 Abstraction functions

Tues., Feb. 12 3 L File systems 1: Disks, simple sequential file system,
caching, logs for crash recovery.

2 1

 7 Disks and file systems

Thurs., Feb. 14 4 L File systems 2: Copying file system.

Tues., Feb. 19 No class, Monday schedule from Presidents’ Day

Thurs., Feb. 21 5 R Proof methods: History and prophecy variables;
abstraction relations.

3 2

 8 History variables

Tues., Feb. 26 6 R Semantics and proofs: Formal sequential semantics
of Spec.

 9 Atomic semantics of Spec

Thurs., Feb. 28 7 L Performance: How to get it, how to analyze it. 4 3
 10 Performance
 11 Paper: Michael Schroeder and Michael Burrows,

Performance of Firefly RPC, ACM Transactions on
Computer Systems 8, 1, February 1990, pp 1-17.

Tues., Mar. 5 8 L Naming: Specs, variations, and examples of
hierarchical naming.

Form
groups

 12 Naming
 13 Paper: David Gifford et al, Semantic file systems,

Proc.13th ACM Symposium on Operating System
Principles, October 1991, pp 16-25.

Thurs., Mar. 7 9 R Concurrency 1: Practical concurrency, easy and hard.
Easy concurrency using locks and condition variables.
Problems with it: scheduling, deadlock.

5 4

6.826—Principles of Computer Systems 2002

Handout 1. Course Information 5

Date No By HO Topic PS
out

PS
due

 14 Practical concurrency
 15 Concurrent disks
 16 Paper: Andrew Birrell, An Introduction to

Programming with Threads, Digital Systems Research
Center Report 35, January 1989.

Tues., Mar. 12 10 R Concurrency 2: Concurrency in Spec: threads and
non-atomic semantics. Big atomic actions. Safety and
liveness. Examples of concurrency.

 17 Formal concurrency

Thurs., Mar. 14 11 R Concurrency 3: Proving correctness of concurrent
programs: assertional proofs, model checking

 5

Tues., Mar. 19 12 R Distributed consensus 1. Paxos algorithm for
asynchronous consensus in the presence of faults.

Thurs., Mar. 21 13 L Distributed consensus 2. Early
proposals

 18 Consensus

Mar. 25-29

 Spring Break

Tues., Apr. 2 14 R Sequential transactions with caching.
 19 Sequential transactions

Thurs., Apr. 4 15 R Concurrent transactions: Specs for serializability.
Ways to code the specs.

Late
proposals

 20 Concurrent transactions

Tues., Apr. 9 16 R Distributed transactions: Commit as a consensus
problem. Two-phase commit. Optimizations.

Late
interim
reports

 27 Distributed transactions

Thurs., Apr. 11 17 R Introduction to distributed systems: Characteristics
of distributed systems. Physical, data link, and
network layers. Design principles.
Networks 1: Links. Point-to-point and broadcast
networks.

 21 Distributed systems
 22 Paper: Michael Schroeder et al, Autonet: A high-

speed, self-configuring local area network, IEEE
Journal on Selected Areas in Communications 9, 8,
October 1991, pp 1318-1335.

 23 Networks: Links and switches

Tues., Apr. 16

 Patriot’s Day, no class.

6.826—Principles of Computer Systems 2002

Handout 1. Course Information 6

Date No By HO Topic PS
out

PS
due

Thurs., Apr. 18 18 L Networks 2: Links cont’d: Ethernet. Token Rings.
Switches. Coding switches. Routing. Learning
topologies and establishing routes.

Tues., Apr. 23 19 L Networks 3: Network objects and remote procedure
call (RPC).

Early
interim
reports

 24 Network objects
 25 Paper: Andrew Birrell et al., Network objects,

Proc.14th ACM Symposium on Operating Systems
Principles, Asheville, NC, December 1993.

Thurs., Apr. 25 20 L Networks 4: Reliable messages. 3-way handshake
and clock code. TCP as a form of reliable messages.

Late
interim
reports

 26 Paper: Butler Lampson, Reliable messages and
connection establishment. In Distributed Systems, ed.
S. Mullender, Addison-Wesley, 1993, pp 251-281.

Tues., Apr. 30 21 L Replication and availability: Coding replicated state
machines using consensus. Applications to replicated
storage.

 28 Replication
 29 Paper: Jim Gray and Andreas Reuter, Fault tolerance,

in Transaction Processing: Concepts and Techniques,
Morgan Kaufmann, 1993, pp 93-156.

Thurs., May 2 22 R Caching: Maintaining coherent memory. Broadcast
(snoopy) and directory protocols. Examples:
multiprocessors, distributed shared memory,
distributed file systems.

 30 Concurrent caching

Tues., May 7 23 Early project presentations

Thurs., May 9 24 Early project presentations

Tues., May 14 25 Late project presentations

Thurs., May 16 26 Late project presentations

Fri., May 17 Final reports due

May 20-24 Finals week. There is no final for 6.826.

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 1

2. Overview and Background

This is a course for computer system designers and builders, and for people who want to really
understand how systems work, especially concurrent, distributed, and fault-tolerant systems.

The course teaches you
how to write precise specifications for any kind of computer system,
what it means for code to satisfy a specification, and
how to prove that it does.

It also shows you how to use the same methods less formally, and gives you some suggestions
for deciding how much formality is appropriate (less formality means less work, and often a
more understandable spec, but also more chance to overlook an important detail).

The course also teaches you a lot about the topics in computer systems that we think are the most
important: persistent storage, concurrency, naming, networks, distributed systems, transactions,
fault tolerance, and caching. The emphasis is on

careful specifications of subtle and sometimes complicated things,
the important ideas behind good code, and
how to understand what makes them actually work.

We spend most of our time on specific topics, but we use the general techniques throughout. We
emphasize the ideas that different kinds of computer system have in common, even when they
have different names.

The course uses a formal language called Spec for writing specs and code; you can think of it as
a very high level programming language. There is a good deal of written introductory material on
Spec (explanations and finger exercises) as well as a reference manual and a formal semantics.
We introduce Spec ideas in class as we use them, but we do not devote class time to teaching
Spec per se; we expect you to learn it on your own from the handouts. The one to concentrate on
is handout 3, which has an informal introduction to the main features and lots of examples.
Section 9 of handout 4, the reference manual, should also be useful. The rest of the reference
manual is for reference, not for learning. Don’t overlook the one page summary at the end of
handout 3.

Because we write specs and do proofs, you need to know something about logic. Since many
people don’t, there is a concise treatment of the logic you will need at the end of this handout.

This is not a course in computer architecture, networks, operating systems, or databases. We will
not talk in detail about how to code pipelines, memory interconnects, multiprocessors, routers,
data link protocols, network management, virtual memory, scheduling, resource allocation, SQL,
relational integrity, or TP monitors, although we will deal with many of the ideas that underlie
these mechanisms.

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 2

Topics

General

Specifications as state machines.
The Spec language for describing state machines (writing specs and code).
What it means to implement a spec.
Using abstraction functions and invariants to prove that a program implements a spec.
What it means to have a crash.
What every system builder needs to know about performance.

Specific

Disks and file systems.
Practical concurrency using mutexes (locks) and condition variables; deadlock.
Hard concurrency (without locking): models, specs, proofs, and examples.
Transactions: simple, cached, concurrent, distributed.
Naming: principles, specs, and examples.
Distributed systems: communication, fault-tolerance, and autonomy.
Networking: links, switches, reliable messages and connections.
Remote procedure call and network objects.
Fault-tolerance, availability, consensus and replication.
Caching and distributed shared memory.

Previous editions of the course have also covered security (authentication, authorization,
encryption, trust) and system management, but this year we are omitting these topics in order to
spend more time on concurrency and semantics and to leave room for project presentations.

Prerequisites

There are no formal prerequisites for the course. However, we assume some knowledge both of
computer systems and of mathematics. If you have taken 6.033 and 6.042, you should be in good
shape. If you are missing some of this knowledge you can pick it up as we go, but if you are
missing a lot of it you can expect to have serious trouble. It’s also important to have a certain
amount of maturity: enough experience with systems and mathematics to feel comfortable with
the basic notions and to have some reliable intuition.

If you know the meaning of the following words, you have the necessary background. If a lot of
them are unfamiliar, this course is probably not for you.

Systems

Cache, virtual memory, page table, pipeline
Process, scheduler, address space, priority
Thread, mutual exclusion (locking), semaphore, producer-consumer, deadlock
Transaction, commit, availability, relational data base, query, join
File system, directory, path name, striping, RAID
LAN, switch, routing, connection, flow control, congestion

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 3

Capability, access control list, principal (subject)

If you have not already studied Lampson’s paper on hints for system design, you should do so as
background for this course. It is Butler Lampson, Hints for computer system design, Proceedings
of the Ninth ACM Symposium on Operating Systems Principles, October 1983, pp 33-48. There
is a pointer to it on the course Web page.

Programming

Invariant, precondition, weakest precondition, fixed point
Procedure, recursion, stack
Data type, sub-type, type-checking, abstraction, representation
Object, method, inheritance
Data structures: list, hash table, binary search, B-tree, graph

Mathematics

Function, relation, set, transitive closure
Logic: proof, induction, de Morgan’s laws, implication, predicate, quantifier
Probability: independent events, sampling, Poisson distribution
State machine, context-free grammar
Computational complexity, unsolvable problem

If you haven’t been exposed to formal logic, you should study the summary at the end of this
handout.

References

These are places to look when you want more information about some topic covered or alluded
to in the course, or when you want to follow current research. You might also wish to consult
Prof. Saltzer’s bibliography for 6.033, which you can find on the course web page.

Books

Some of these are fat books better suited for reference than for reading cover to cover, especially
Cormen, Leiserson, and Rivest, Jain, Mullender, Hennessy and Patterson, and Gray and Reuter.
But the last two are pretty easy to read in spite of their encyclopedic character.

Systems programming: Greg Nelson, ed., Systems Programming with Modula-3, Prentice-Hall,
1991. Describes the language, which has all the useful features of C++ but is much simpler and
less error-prone, and also shows how to use it for concurrency (a version of chapter 4 is a
handout in this course), an efficiently customizable I/O streams package, and a window system.

Performance: Jon Bentley, Writing Efficient Programs, Prentice-Hall, 1982. Short, concrete,
and practical. Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991. Tells
you much more than you need to know about this subject, but does have a lot of realistic
examples.

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 4

Algorithms and data structures: Robert Sedgwick, Algorithms, Addison-Wesley, 1983. Short,
and usually tells you what you need to know. Tom Cormen, Charles Leiserson, and Ron Rivest,
Introduction to Algorithms, McGraw-Hill, 1989. Comprehensive, and sometimes valuable for
that reason, but usually tells you a lot more than you need to know.

Distributed algorithms: Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996. The
bible for distributed algorithms. Comprehensive, but a much more formal treatment than in this
course. The topic is algorithms, not systems.

Computer architecture: John Hennessy and David Patterson, Computer Architecture: A
Quantitative Approach, 2nd edition, Morgan Kaufmann, 1995. The bible for computer
architecture. The second edition has lots of interesting new material, especially on
multiprocessor memory systems and interconnection networks. There’s also a good appendix on
computer arithmetic; it’s useful to know where to find this information, though it has nothing to
do with this course.

Transactions, data bases, and fault-tolerance: Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufmann, 1993. The bible for transaction
processing, with much good material on data bases as well; it includes a lot of practical
information that doesn’t appear elsewhere in the literature.

Networks: Radia Perlman, Interconnections: Bridges and Routers, Addison-Wesley, 1992. Not
exactly the bible for networking, but tells you nearly everything you might want to know about
how packets are actually switched in computer networks.

Distributed systems: Sape Mullender, ed., Distributed Systems, 2nd ed., Addison-Wesley, 1993.
A compendium by many authors that covers the field fairly well. Some chapters are much more
theoretical than this course. Chapters 10 and 11 are handouts in this course. Chapters 1, 2, 8, and
12 are also recommended. Chapters 16 and 17 are the best you can do to learn about real-time
computing; unfortunately, that is not saying much.

User interfaces: Alan Cooper, About Face, IDG Books, 1995. Principles, lots of examples, and
opinionated advice, much of it good, from the original designer of Visual Basic.

Journals

You can find all of these in the LCS reading room. The cryptic strings in brackets are call
numbers there. You can also find the last few years of the ACM publications in the ACM digital
library at www.acm.org.

For the current literature, the best sources are the proceedings of the following conferences. ‘Sig’
is short for “Special Interest Group”, a subdivision of the ACM that deals with one field of
computing. The relevant ones for systems are SigArch for computer architecture, SigPlan for
programming languages, SigOps for operating systems, SigComm for communications, SigMod
for data bases, and SigMetrics for performance measurement and analysis.

Symposium on Operating Systems Principles (SOSP; published as special issues of ACM
SigOps Operating Systems Review; fall of odd-numbered years) [P4.35.06]

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 5

Operating Systems Design and Implementation (OSDI; Usenix Association, now published
as special issues of ACM SigOps Review; fall of even-numbered years, except spring 1999
instead of fall 1998) [P4.35.U71]

Architectural Support for Programming Languages and Operating Systems (ASPLOS;
published as special issues of ACM SigOps Operating Systems Review, SigArch Computer
Architecture News, or SigPlan Notices; fall of even-numbered years) [P6.29.A7]

Applications, Technologies, Architecture, and Protocols for Computer Communication,
(SigComm conference; published as special issues of ACM SigComm Computer
Communication Review; annual) [P6.24.D31]

Principles of Distributed Computing (PODC; ACM; annual) [P4.32.D57]

Very Large Data Bases (VLDB; Morgan Kaufmann; annual) [P4.33.V4]

International Symposium on Computer Architecture (ISCA; published as special issues of
ACM SigArch Computer Architecture News; annual) [P6.20.C6]

Less up to date, but more selective, are the journals. Often papers in these journals are revised
versions of papers from the conferences listed above.

ACM Transactions on Computer Systems

ACM Transactions on Database Systems

ACM Transactions on Programming Languages and Systems

There are often good survey articles in the less technical IEEE journals:

IEEE Computer, Networks, Communication, Software

The Internet Requests for Comments (RFC’s) can be reached from

http://www.cis.ohio-state.edu/hypertext/information/rfc.html

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 6

Rudiments of logic

Propositional logic

The basic type is Bool, which contains two elements true and false. Expressions in these
operators (and the other ones introduced later) are called ‘propositions’.

Basic operators. These are ∧ (and), ∨ (or), and ~ (not).1 The meaning of these operators can be
conveniently given by a ‘truth table’ which lists the value of a op b for each possible
combination of values of a and b (the operators on the right are discussed later) along with some
popular names for certain expressions and their operands.

 negation conjunction disjunction equality implication
 not and or implies
a b ~a a ∧ b a ∨ b a = b a ≠ b a ⇒ b

T T F T T T F T

T F F T F T F

F T T F T F T T

F F F F T F T

name of a conjunct disjunct antecedent
name of b conjunct disjunct consequent

Note: In Spec we write ==> instead of the ⇒ that mathematicians use for implication. Logicians
write ⊃ for implication, which looks different but is shaped like the > part of ⇒.

In case you have an expression that you can’t simplify, you can always work out its truth value
by exhaustively enumerating the cases in truth table style. Since the table has only four rows,
there are only 16 Boolean operators, one for each possible arrangement of T and F in a column.
Most of the ones not listed don’t have common names, though ‘not and’ is called ‘nand’ and ‘not
or’ is called ‘nor’ by logic designers.

The ∧ and ∨ operators are
commutative and
associative and
distribute over each other.

That is, they are just like * (times) and + (plus) on integers, except that + doesn’t distribute over *:
a + (b * c) ≠ (a + b) * (a + c)

but ∨ does distribute over ∧ :
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

An operator that distributes over ∧ is called ‘conjunctive’; one that distributes over ∨ is called
‘disjunctive’. So both ∧ and ∨ are both conjunctive and disjunctive. This takes some getting used
to.

1 It’s possible to write all three in terms of the single operator ‘nor’ or ‘nand’, but our goal is clarity, not minimality.

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 7

The relation between these operators and ~ is given by DeMorgan’s laws (sometimes called the
“bubble rule” by logic designers), which say that you can push ~ inside ∧ or ∨ by flipping from
one to the other:

~ (a ∧ b) = ~a ∨ ~b
~ (a ∨ b) = ~a ∧ ~b

Because Bool is the result type of relations like =, we can write expressions that mix up relations
with other operators in ways that are impossible for any other type. Notably

(a = b) = ((a ∧ b) ∨ (~a ∧ ~b))
Some people feel that the outer = in this expression is somehow different from the inner one, and
write it ≡. Experience suggests, however, that this is often a harmful distinction to make.

Implication. We can define an ordering on Bool with false > true, that is, false is greater
than true. The non-strict version of this ordering is called ‘implication’ and written ⇒ (rather
than ≥ or >= as we do with other types; logicians write it ⊃ , which also looks like an ordering
symbol). So (true ⇒ false) = false (read this as: “true is greater than or equal to false”
is false) but all other combinations are true. The expression a ⇒ b is pronounced “a implies
b”, or “if a then b”.2

There are lots of rules for manipulating expressions containing ⇒; the most useful ones are
given below. If you remember that ⇒ is an ordering you’ll find it easy to remember most of the
rules, but if you forget the rules or get confused, you can turn the ⇒ into ∨ by the rule

(a ⇒ b) = ~a ∨ b
and then just use the simpler rules for ∧ , ∨ , and ~. So remember this even if you forget
everything else.

The point of implication is that it tells you when one proposition is stronger than another, in the
sense that if the first one is true, the second is also true (because if both a and a ⇒ b are true,
then b must be true since it can’t be false).3 So we use implication all the time when reasoning
from premises to conclusions. Two more ways to pronounce a ⇒ b are “a is stronger than b”
and “b follows from a”. The second pronunciation suggests that it’s sometimes useful to write
the operands in the other order, as b ⇐ a, which can also be pronounced “b is weaker than a” or
“b only if a”; this should be no surprise, since we do it with other orderings.

Of course, implication has the properties we expect of an ordering:

Transitive: If a ⇒ b and b ⇒ c then a ⇒ c.4

2 It sometimes seems odd that false implies b regardless of what b is, but the “if ... then” form makes it clearer
what is going on: if false is true you can conclude anything, but of course it isn’t. A proposition that implies
false is called ‘inconsistent’ because it implies anything. Obviously it’s bad to think that an inconsistent
proposition is true. The most likely way to get into this hole is to think that each of a collection of innocent looking
propositions is true when their conjunction turns out to be inconsistent.
3 It may also seem odd that false > true rather than the other way around, since true seems better and so
should be bigger. But in fact if we want to conclude lots of things, being close to false is better because if false
is true we can conclude anything, but knowing that true is true doesn’t help at all. Strong propositions are as
close to false as possible; this is logical brinkmanship. For example, a ∧ b is closer to false than a (there are
more values of the variables a and b that make it false), and clearly we can conclude more things from it than from
a alone.
4 We can also write this ((a ⇒ b) ∧ (b ⇒ c)) ⇒ (a ⇒ c).

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 8

Reflexive: a ⇒ a.

Anti-symmetric: If a ⇒ b and b ⇒ a then a = b.5

Furthermore, ~ reverses the sense of implication (this is called the ‘contrapositive’):
(a ⇒ b) = (~b ⇒ ~a)

More generally, you can move a disjunct on the right to a conjunct on the left by negating it.
Thus

(a ⇒ b ∨ c) = (a ∧ ~b ⇒ c)

As special cases in addition to the contrapositive we have
(a ⇒ b) = (a ∧ ~b ⇒ false) = ~ (a ∧ ~b) ∨ false = ~a ∨ b
(a ⇒ b) = (true ⇒ ~a ∨ b) = false ∨ ~a ∨ b = ~a ∨ b

since false and true are the identities for ∨ and ∧ .

We say that an operator op is ‘monotonic’ in an operand if replacing that operand with a stronger
(or weaker) one makes the result stronger (or weaker). Precisely, “op is monotonic in its first
operand” means that if a ⇒ b then (a op c) ⇒ (b op c). Both ∧ and ∨ are monotonic; in
fact, any conjunctive operator is monotonic, because if a ⇒ b then a = (a ∧ b), so a op c =
(a ∧ b) op c = a op c ∧ b op c ⇒ b op c.

If you know what a lattice is, you will find it useful to know that the set of propositions forms a
lattice with ⇒ as its ordering and (remember, think of ⇒ as “greater than or equal”):

top = false
bottom = true
meet = ∧ least upper bound, so (a ∧ b) ⇒ a and (a ∧ b) ⇒ b
join = ∨ greatest lower bound, so a ⇒ (a ∨ b) and b ⇒ (a ∨ b)

This suggests two more expressions that are equivalent to a ⇒ b:

(a ⇒ b) = (a = (a ∧ b)) ‘and’ing a weaker term makes no difference,
 because a ⇒ b iff a = least upper bound(a, b).

(a ⇒ b) = (b = (a ∨ b)) ‘or’ing a stronger term makes no difference,
 because a ⇒ b iff b = greatest lower bound(a, b).

Predicate logic

Propositions that have free variables, like x < 3 or x < 3 ⇒ x < 5, demand a little more
machinery. You can turn such a proposition into one without a free variable by substituting some
value for the variable. Thus if P(x) is x < 3 then P(5) is 5 < 3 = false. To get rid of the free
variable without substituting a value for it, you can take the ‘and’ or ‘or’ of the proposition for
all the possible values of the free variable. These have special names and notation6:

∀ x | P(x) = P(x1) ∧ P(x2) ∧ ... for all x, P(x). In Spec,
 (ALL x | P(x)) or ∧ : {x | P(x)}

5 Thus (a = b) = (a ⇒ b ∧ b ⇒ a), which is why a = b is sometimes pronounced “a if and only if b” and
written “a iff b”.
6 There is no agreement on what symbol should separate the ∀ x or ∃ x from the P(x). We use ‘|’ here as Spec does,
but other people use ‘.’ or ‘:’ or just a space, or write (∀ x) and (∃ x). Logicians traditionally write (x) and (∃ x).

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 9

∃ x | P(x) = P(x1) ∨ P(x2) ∨ ... there exists an x such that P(x). In Spec,
 (EXISTS x | P(x)) or ∨ : {x | P(x)}

Here the xi range over all the possible values of the free variables.7 The first is called ‘universal
quantification’; as you can see, it corresponds to conjunction. The second is called ‘existential
quantification’ and corresponds to disjunction. If you remember this you can easily figure out
what the quantifiers do with respect to the other operators.

In particular, DeMorgan’s laws generalize to quantifiers:
~ (∀ x | P(x)) = (∃ x | ~P(x))
~ (∃ x | P(x)) = (∀ x | ~P(x))

Also, because ∧ and ∨ are conjunctive and therefore monotonic, ∀ and ∃ are conjunctive and
therefore monotonic.

It is not true that you can reverse the order of ∀ and ∃ , but it’s sometimes useful to know that
having ∃ first is stronger:

∃ y | ∀ x | P(x, y) ⇒ ∀ x | ∃ y | P(x, y)

Intuitively this is clear: a y that works for every x can surely do the job for each particular x.

If we think of P as a relation, the consequent in this formula says that P is total (relates every x to
some y). It doesn’t tell us anything about how to find a y that is related to x. As computer
scientists, we like to be able to compute things, so we prefer to have a function that computes y,
or the set of y’s, from x. This is called a ‘Skolem function’; in Spec you write P.func (or P.setF
for the set). P.func is total if P is total. Or, to turn this around, if we have a total function f such
that ∀ x | P(x, f(x)), then certainly ∀ x | ∃ y | P(x, y); in fact, y = f(x) will do.
Amazing.

7 In general this might not be a countable set, so the conjunction and disjunction are written in a somewhat
misleading way, but this complication won’t make any difference to us.

6.826—Principles of Computer Systems 2002

Handout 2. Overview and Background 10

Summary of logic

The ∧ and ∨ operators are commutative and associative and distribute over each other.

DeMorgan’s laws: ~ (a ∧ b) = ~a ∨ ~b
 ~ (a ∨ b) = ~a ∧ ~b

Implication: (a ⇒ b) = ~a ∨ b

Implication is the ordering in a lattice (a partially ordered set in which every subset has a least
upper and a greatest lower bound) with

 top = false so false ⇒ true
 bottom = true
 meet = ∧ least upper bound, so (a ∧ b) ⇒ a
 join = ∨ greatest lower bound, so a ⇒ (a ∨ b)

For all x, P(x):
 ∀ x | P(x) = P(x1) ∧ P(x2) ∧ ...
There exists an x such that P(x):
 ∃ x | P(x) = P(x1) ∨ P(x2) ∨ ...

Index for logic

~, 6
==>, 6
⇒, 6
ALL, 9
and, 6
antecedent, 6
Anti-symmetric, 8
associative, 6
bottom, 8
commutative, 6
conjunction, 6
conjunctive, 6
consequent, 6
contrapositive, 8
DeMorgan’s laws, 7, 9
disjunction, 6
disjunctive, 6
distribute, 6
existential quantification, 9
EXISTS, 9
follows from, 7
free variables, 8
greatest lower bound, 8
if a then b, 7
implication, 6, 7
join, 8
lattice, 8
least upper bound, 8

meet, 8
monotonic, 8
negation, 6
not, 6
only if, 7
operators, 6
or, 6
ordering on Bool, 7
predicate logic, 8
propositions, 6
quantifiers, 9
reflexive, 8
Skolem function, 9
stronger than, 7
top, 8
transitive, 8
truth table, 6
universal quantification, 9
weaker than, 7

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 1

3. Introduction to Spec

This handout explains what the Spec language is for, how to use it effectively, and how it differs
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more
succinct and less burdened with trivial details. The handout also introduces the main constructs
that are likely to be unfamiliar to a programmer. You will probably find it worthwhile to read it
over more than once, until those constructs are familiar. Don’t miss the one-page summary of
spec at the end. The handout also has an index.

Spec is a language for writing precise descriptions of digital systems, both sequential and
concurrent. In Spec you can write something that differs from practical code (for instance, code
written in C) only in minor details of syntax. This sort of thing is usually called a program. Or
you can write a very high level description of the behavior of a system, usually called a
specification. A good specification is almost always quite different from a good program. You
can use Spec to write either one, but not the same style of Spec. The flexibility of the language
means that you need to know the purpose of your Spec in order to write it well.

Most people know a lot more about writing programs than about writing specs, so this
introduction emphasizes how Spec differs from a programming language and how to use it to
write good specs. It does not attempt to be either complete or precise, but other handouts fill
these needs. The Spec Reference Manual (handout 4) describes the language completely; it gives
the syntax of Spec precisely and the semantics informally. Atomic Semantics of Spec (handout 9)
describes precisely the meaning of an atomic command; here ‘precisely’ means that you should
be able to get an unambiguous answer to any question. The section “Non-Atomic Semantics of
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressions is derived from mathematics.

This handout starts with a discussion of specifications and how to write them, with many small
examples of Spec. Then there is an outline of the Spec language, followed by three extended
examples of specs and code. At the end are two handy tear-out one-page summaries, one of the
language and one of the official POCS strategy for writing specs and code.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 2

What is a specification for?

The purpose of a specification is to communicate precisely all the essential facts about the
behavior of a system. The important words in this sentence are:

communicate The spec should tell both the client and the implementer what each needs
to know.

precisely We should be able to prove theorems or compile machine instructions
based on the spec.

essential Unnecessary requirements in the spec may confuse the client or make it
more expensive to implement the system.

behavior We need to know exactly what we mean by the behavior of the system.

Communication

Spec mediates communication between the client of the system and its implementer. One way to
view the spec is as a contract between these parties:

The client agrees to depend only on the system behavior expressed in the spec; in return it
only has to read the spec, and it can count on the implementer to provide a system that
actually does behave as the spec says it should.

The implementer agrees to provide a system that behaves according to the spec; in return it is
free to arrange the internals of the system however it likes, and it does not have to deliver
anything not laid down in the spec.

Usually the implementer of a spec is a programmer, and the client is another programmer.
Usually the implementer of a program is a compiler or a computer, and the client is a
programmer.

Usually the system that the implementer provides is called an implementation, but in this course
we will call it code for short.

Behavior

What do we mean by behavior? In real life a spec defines not only the functional behavior of the
system, but also its performance, cost, reliability, availability, size, weight, etc. In this course we
will deal with these matters informally if at all. The Spec language doesn’t help much with them.

Spec is concerned only with the possible state transitions of the system, on the theory that the
possible state transitions tell the complete story of the functional behavior of a digital system. So
we make the following definitions:

A state is the values of a set of names (for instance, x=3, color=red).

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 3

A history is a sequence of states such that each pair of adjacent states is a transition of the
system (for instance, x=1; x=2; x=5 is the history if the initial state is x=1 and the
transitions are “if x = 1 then x := x + 1” and “if x = 2 then x := 2 * x + 1”).

A behavior is a set of histories (a non-deterministic system can have more than one history).

How can we specify a behavior?

One way to do this is to just write down all the histories in the behavior. For example, if the state
just consists of a single integer, we might write

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...
 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
....
 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 9 10

The example reveals two problems with this approach:

The sequences are long, and there are a lot of them, so it takes a lot of space to write them
down. In fact, in most cases of interest the sequences are infinite, so we can’t actually write
them down.

It isn’t too clear from looking at such a set of sequences what is really going on.

Another description of this set of sequences from which these examples are drawn is “18
integers, each one either 1 or one more than the preceding one.” This is concise and
understandable, but it is not formal enough either for mathematical reasoning or for directions to
a computer.

Precise

In Spec the set of sequences can be described in many ways, for example, by the expression

{s: SEQ Int | s.size = 18
 /\ (ALL i: Int | 0 <= i /\ i < s.size ==>
 s(i) = 1 \/ (i > 0 /\ s(i) = s(i-1) + 1)) }

Here the expression in {...} is very close to the usual mathematical notation for defining a set.
Read it as “The set of all s which are sequences of integers such that s.size = 18 and ...”. Spec
sequences are indexed from 0. The (ALL ...) is a universally quantified predicate, and ==>
stands for implication, since Spec uses the more familiar => for ‘then’ in a guarded command.
Throughout Spec the ‘|’ symbol separates a declaration of some new names and their types from
the scope in which they are meaningful.

Alternatively, here is a state machine that generates the sequences we want as the successive
values of the variable i. We specify the transitions of the machine by starting with primitive
assignment commands and putting them together with a few kinds of compound commands.
Each command specifies a set of possible transitions.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 4

 VAR i, j |
<< i := 1; j := 1 >> ;
DO << j < 18 => BEGIN i := 1 [] i := i + 1 END; j := j + 1 >> OD

Here there is a good deal of new notation, in addition to the familiar semicolons, assignments,
and plus signs.

VAR i, j | introduces the local variables i and j with arbitrary values. Because ; binds
more tightly than |, the scope of the variables is the rest of the example.

The << ... >> brackets delimit the atomic actions or transitions of the state machine. All
the changes inside these brackets happen as one transition of the state machine.

j < 18 => ... is a transition that can only happen when j < 18. Read it as “if j < 18
then ...”. The j < 18 is called a guard. If the guard is false, we say that the entire
command fails.

i := 1 [] i := i + 1 is a non-deterministic transition which can either set i to 1 or
increment it. Read [] as ‘or’.

The BEGIN ... END brackets are just brackets for commands, like { ... } in C. They are there
because => binds more tightly than the [] operator inside the brackets; without them the
meaning would be “either set i to 1 if j < 18 or increment i and j unconditionally”.

Finally, the DO ... OD brackets mean: repeat the ... transition as long as possible.
Eventually j becomes 18 and the guard becomes false, so the command inside the DO ...
OD fails and can no longer happen.

The expression approach is better when it works naturally, as this example suggests, so Spec has
lots of facilities for describing values: sequences, sets, and functions as well as integers and
booleans. Usually, however, the sequences we want are too complicated to be conveniently
described by an expression; a state machine can describe them much more easily.

State machines can be written in many different ways. When each transition involves only
simple expressions and changes only a single integer or boolean state variable, we think of the
state machine as a program, since we can easily make a computer exhibit this behavior. When
there are transitions that change many variables, non-deterministic transitions, big values like
sequences or functions, or expressions with quantifiers, we think of the state machine as a spec,
since it may be much easier to understand and reason about it, but difficult to make a computer
exhibit this behavior. In other words, large atomic actions, non-determinism, and expressions
that compute sequences or functions are hard to code. It may take a good deal of ingenuity to
find code that has the same behavior but uses only the small, deterministic atomic actions and
simple expressions that are easy for the computer.

Essential

The hardest thing for most people to learn about writing specs is that a spec is not a program. A
spec defines the behavior of a system, but unlike a program it need not, and usually should not,
give any practical method for producing this behavior. Furthermore, it should pin down the

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 5

behavior of the system only enough to meet the client’s needs. Details in the spec that the client
doesn’t need can only make trouble for the implementer.

The example we just saw is too artificial to illustrate this point. To learn more about the
difference between a spec and code consider the following:

CONST eps := 10**-8

APROC SquareRoot0(x: Real) -> Real =
<< VAR y : Real | Abs(x - y*y) < eps => RET y >>

(Spec as described in the reference manual doesn’t have a Real data type, but we’ll add it for the
purpose of this example.)

The combination of VAR and => is a very common Spec idiom; read it as “choose a y such that
Abs(x - y*y) < eps and do RET y”. Why is this the meaning? The VAR makes a choice of any
Real as the value of y, but the entire transition on the second line cannot occur unless the guard
is true. The result is that the choice is restricted to a value that satisfies the guard.

What can we learn from this example? First, the result of SquareRoot0(x) is not completely
determined by the value of x; any result whose square is within eps of x is possible. This is why
SquareRoot0 is written as a procedure rather than a function; the result of a function has to be
determined by the arguments and the current state, so that the value of an expression like
f(x) = f(x) will be true. In other words, SquareRoot0 is non-deterministic.

Why did we write it that way? First of all, there might not be any Real (that is, any floating-point
number of the kind used to represent Real) whose square exactly equals x.1 Second, we may not
want to pay for code that gives the closest possible answer. Instead, we may settle for a less
accurate answer in the hope of getting the answer faster.

You have to make sure you know what you are doing, though. This spec allows a negative result,
which is perhaps not what we really wanted. We could have written (highlighting changes with
boxes):

APROC SquareRoot1(x: Real) -> Real =
<< VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y >>

to rule that out. Also, the spec produces no result if x < 0, which means that SquareRoot1(-1)
will fail (see the section on commands for a discussion of failure). We might prefer a total
function that raises an exception:

APROC SquareRoot2(x: Real) -> Real RAISES {undefined} =
<< x >= 0 => VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y
 [*] RAISE undefined >>

The [*] is ‘else’; it does its second operand iff the first one fails. Exceptions in Spec are much
like exceptions in CLU. An exception is contagious: once started by a RAISE it causes any

1 We could accommodate this fact of life by specifying the closest floating-point number. This would still be non-
deterministic in the case that two such numbers are equally close, so if we wanted a deterministic spec we would
have to give a rule for choosing one of them, for instance, the smaller.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 6

containing expression or command to yield the same exception, until it runs into an exception
handler (not shown here). The RAISES clause of a routine declaration must list all the exceptions
that the procedure body can generate, either by RAISES or by invoking another routine.

Code for this spec would look quite different from the spec itself. Instead of the existential
quantifier implied by the VAR y, it would have an algorithm for finding y, for instance, Newton’s
method. In the algorithm you would only see operations that have obvious codes in terms of the
load, store, arithmetic, and test instructions of a computer. Probably the code would be
deterministic.

Another way to write these specs is as functions that return the set of possible answers. Thus

FUNC SquareRoots1(x: Real) -> SET Real =
RET {y : Real | y >= 0 /\ Abs(x - y*y) < eps}

Note that the form inside the {...} set constructor is the same as the guard on the RET. To get a
single result you can use the set’s choose method: SquareRoots1(2).choose.2

In the next section we give an outline of the Spec language. Following that are three extended
examples of specs and code for fairly realistic systems. At the end is a one-page summary of the
language.

An outline of the Spec language

The Spec language has two main parts:

• An expression describes how to compute a result (a value or an exception) as a function of
other values: either literal constants or the current values of state variables.

• A command describes possible transitions of the state variables. Another way of saying this
is that a command is a relation on states: it allows a transition from s1 to s2 iff it relates s1 to
s2.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the sequence example above they are i and j.
Actually a command relates states to outcomes; an outcome is either a state (a normal outcome)
or a state together with an exception (an exceptional outcome).

There are two kinds of commands:

• An atomic command describes a set of possible transitions, or equivalently, a set of pairs of
states, or a relation between states. For instance, the command << i := i + 1 >> describes
the transitions i=1→i=2, i=2→i=3, etc. (Actually, many transitions are summarized by
i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and (i=1, j=15)→(i=2, j=15)). If a
command allows more than one transition from a given state we say it is non-deterministic.

2 r := SquareRoots1(x).choose (using the function) is almost the same as r := SquareRoot1(x) (using the
procedure). The difference is that because choose is a function it always returns the same element (even though we
don’t know in advance which one) when given the same set, and hence when SquareRoots1 is given the same
argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 7

For instance, on page 3 the command BEGIN i := 1 [] i := i + 1 END allows the
transitions i=2→i=1 and i=2→i=3.

• A non-atomic command describes a set of sequences of states (by contrast with the set of
pairs for an atomic command). More on this below.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

The meaning of an expression, which is a function from states to values (or exceptions), is much
simpler than the meaning of an atomic command, which is a relation between states, for two
reasons:

• The expression yields a single value rather than an entire state.

• The expression yields at most one value, whereas a non-deterministic command can yield
many final states.

A atomic command is still simple, much simpler than a non-atomic command, because:

• Taken in isolation, the meaning of a non-atomic command is a relation between an initial
state and a history. Again, many histories can stem from a single initial state.

• The meaning of the composition of two non-atomic commands is not any simple
combination of their relations, such as the union, because the commands can interact if they
share any variables that change.

These considerations lead us to describe the meaning of a non-atomic command by breaking it
down into its atomic subcommands and connecting these up with a new state variable called a
program counter. The details are somewhat complicated; they are sketched in the discussion of
atomicity below, and described in handout 17 on formal concurrency.

The moral of all this is that you should use the simpler parts of the language as much as possible:
expressions rather than atomic commands, and atomic commands rather than non-atomic ones.
To encourage this style, Spec has a lot of syntax and built-in types and functions that make it
easy to write expressions clearly and concisely. You can write many things in a single Spec
expression that would require a number of C statements, or even a loop. Of course, code with a
lot of concurrency will necessarily have more non-atomic commands, but this complication
should be put off as long as possible.

Organizing the program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

• A routine is a named computation with parameters, in other words, an abstraction of the
computation. Parameters are passed by value. There are four kinds of routine:

A function (defined with FUNC) is an abstraction of an expression.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 8

An atomic procedure (defined with APROC) is an abstraction of an atomic command.

A general procedure (defined with PROC) is an abstraction of a non-atomic command.

A thread (defined with THREAD) is the way to introduce concurrency.

• A type is a highly stylized assertion about the set of values that a name or expression can
assume. A type is also a convenient way to group and name a collection of routines, called its
methods, that operate on values in that set.

• An exception is a way to report an unusual outcome.

• A module is a way to structure the name space into a two-level hierarchy. An identifier i
declared in a module m has the name m.i throughout the program. A class is a module that
can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

The next two sections describe things about Spec’s expressions and commands that may be new
to you. It doesn’t answer every question about Spec; for those answers, read the reference
manual and the handouts on Spec semantics. There is a one-page summary at the end of this
handout.

Expressions, types, and functions

Expressions are for computing functions of the state. A Spec expression is a constant, a variable,
or an invocation of a function on an argument that is some sub-expression. The values of these
expressions are the constant, the current value of the variable, or the value of the function at the
value of the argument. There are no side-effects; those are the province of commands. There is
quite a bit of syntactic sugar for function invocations. An expression may be undefined in a state;
if a simple command evaluates an undefined expression, the command fails (see below).

A Spec type defines two things:

A set of values; we say that a value has the type if it’s in the set. The sets are not disjoint.

A set of functions called the methods of the type. There is convenient syntax v.m for
invoking method m on a value v of the type. A method m of type T is lifted to functions U->T,
sets of T’s, and relations from U to T in the obvious way, unless overridden by a different m in
the definition of the higher type.

Spec is strongly typed. This means that you are supposed to declare the types of your variables,
just as you do in Pascal or CLU. In return the language defines a type for every expression3 and
ensures that the value of the expression always has that type. In particular, the value of a variable
always has the declared type. You should think of a type declaration as a stylized comment that
has a precise meaning and could be checked mechanically.

3 Note that a value may have many types, but a variable or an expression has exactly one type: for a variable, it’s the
declared type, and for a complex expression it’s the result type of the top-level function in the expression.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 9

If Foo is a type, you can omit it in a declaration of the identifiers foo, foo1, foo' etc. Thus
VAR int1, bool2, char'' | ...

is short for
VAR int1: Int, bool2: Bool, char'': Char | ...

Spec has the usual types: Int, Nat (non-negative Int), Bool, functions, sets, records, tuples, and
variable-length arrays called sequences. A sequence is a function whose domain is {0, 1, ...,
n-1} for some n. In addition to the usual functions like "+" and "\/", Spec also has some less
usual operations on these types, which are valuable when you want to suppress code detail:
constructors and combinations.

You can make a type with fewer values using SUCHTHAT. For example,
TYPE T = Int SUCHTHAT (\ i: Int | 0 <= i /\ i <= 4)

has the value set {0, 1, 2, 3, 4}. Here the (\ ...) is a lambda expression (with \ for λ) that
defines a function from Int to Bool, and a value has type T if it’s an Int and the function maps it
to true.

Section 5 of the reference manual describes expressions and lists all the built-in operators. You
should read the list, which also gives their precedence and has pointers to explanations of their
meaning. Section 4 describes the types. Section 9 defines the built-in methods for sequences,
sets, and functions; you should read it over so that you know the vocabulary.

Constructors

Constructors for functions, sets, and sequences make it easy to toss large values around. For
instance, you can describe a database as a function db from names to data records with two
fields:

TYPE DB = (String -> Entry)
TYPE Entry = [salary: Int, birthdate: Int]
VAR db := DB{}

Here db is initialized using a function constructor whose value is a function undefined
everywhere. The type can be omitted in a variable declaration when the variable is initialized; it
is taken to be the type of the initializing expression. The type can also be omitted when it is the
upper case version of the variable name, DB in this example.

Now you can make an entry with
db := db{ "Smith" -> Entry{salary := 23000, birthdate := 1955} }

using another function constructor. The value of the constructor is a function that is the same as
db except at the argument "Smith", where it has the value Entry{...}, which is a record
constructor. The assignment could also be written

db("Smith") := Entry{salary := 23000, birthdate := 1955}

which changes the value of the db function at "Smith" without changing it anywhere else. This
is actually a shorthand for the previous assignment. You can omit the field names if you like, so
that

db("Smith") := Entry{23000, 1955}

has the same meaning as the previous assignment. Obviously this shorthand is less readable and
more error-prone, so use it with discretion. Another way to write this assignment is

db("Smith").salary := 23000; db("Smith").birthdate := 1955

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 10

The set of names in the database can be expressed by a set constructor. It is just
{n: String | db!n},

in other words, the set of all the strings for which the db function is defined (‘!’ is the ‘is-
defined’ operator; that is, f!x is true iff f is defined at x). Read this “the set of strings n such that
db!n”. You can also write it as db.dom, the domain of db; section 9 of the reference manual
defines lots of useful built in methods for functions, sets, and sequences. It’s important to realize
that you can freely use large (possibly infinite) values such as the db function. You are writing a
spec, and you don’t need to worry about whether the compiler is clever enough to turn an
expensive-looking manipulation of a large object into a cheap incremental update. That’s the
implementer’s problem (so you may have to worry about whether she is clever enough).

If we wanted the set of lengths of the names, we would write
{n: String | db!n | n.size}

This three part set constructor contains i if and only if there exists an n such that db!n and
i = n.size. So {n: String | db!n} is short for {n: String | db!n | n}. You can
introduce more than one name, in which case the third part defaults to the last name. For
example, if we represent a directed graph by a function on pairs of nodes that returns true when
there’s an edge from the first to the second, then

{n1: Node, n2: Node | graph(n1, n2) | n2}

is the set of nodes that are the target of an edge, and the “| n2” could be omitted. This is just the
range graph.rng of the relation graph on nodes.

Following standard mathematical notation, you can also write
{f :IN openFiles | f.modified}

to get the set of all open, modified files. This is equivalent to
{f: File | f IN openFiles /\ f.modified}

because if s is a SET T, then IN s is a type whose values are the T’s in s; in fact, it’s the type
T SUCHTHAT (\ t | t IN s). This form also works for sequences, where the second operand
of :IN provides the ordering. So if s is a sequence of integers, {x :IN s | x > 0} is the
positive ones, {x :IN s | x > 0 | x * x} is the squares of the positive ones, and {x :IN s
| | x * x} is the squares of all the integers, because an omitted predicate defaults to true.4

To get sequences that are more complicated you can use sequence generators with BY and WHILE.
{i := 1 BY i + 1 WHILE i <= 5 | true | i}

is {1, 2, 3, 4, 5}; the second and third parts could be omitted. This is just like the “for”
construction in C. An omitted WHILE defaults to true, and an omitted := defaults to an arbitrary
choice for the initial value. If you write several generators, each variable gets a new value for
each value produced, but the second and later variables are initialized first. So to get the sums of
successive pairs of elements of s, write

{x := s BY x.tail WHILE x.size > 1 | | x(0) + x(1)}

To get the sequence of partial sums of s, write (eliding | | sum at the end)
{x :IN s, sum := 0 BY sum + x}

Taking last of this would give the sum of the elements of s. To get a sequence whose elements
are reversed from those of s, write

4 In the sequence form, IN s is not a set type but a special construct; treating it as a set type would throw away the
essential ordering information.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 11

{x :IN s, rev := {} BY {x} + rev}.last

To get the sequence {e, f(e), f2(e), ..., fn(e)}, write
{i :IN 1 .. n, iter := e BY f(iter)}

This uses the .. operator; i .. j is the sequence {i, i+1, ..., j-1, j}. It’s the empty
sequence if i > j.

Combinations

A combination is a way to combine the elements of a sequence or set into a single value using an
infix operator, which must be associative, must have an identity, and must be commutative if it is
applied to a set. You write “operator : sequence or set”. Thus

+ : (SEQ String){"He", "l", "lo"} = "He" + "l" + "lo" = "Hello"

because + on sequences is concatenation, and
+ : {i :IN 1 .. 4 | | i**2} = 1 + 4 + 9 + 16 = 30

Existential and universal quantifiers make it easy to describe properties without explaining how
to test for them in a practical way. For instance, a predicate that is true iff the sequence s is
sorted is

(ALL i :IN 1 .. s.size-1 | s(i-1) <= s(i))

This is a common idiom; read it as
“for all i in 1 .. s.size-1, s(i-1) <= s(i)”.

This could also be written
(ALL i :IN (s.dom - {0}) | s(i-1) <= s(i))

since s.dom is the domain of the function s, which is the non-negative integers < s.size. Or it
could be written

(ALL i :IN s.dom | i > 0 ==> s(i-1) <= s(i))

Because a universal quantification is just the conjunction of its predicate for all the values of the
bound variables, it is simply a combination using /\ as the operator:

(ALL i | Predicate(i)) = /\ : {i | Predicate(i)}

Similarly, an existential quantification is just a similar disjunction, hence a combination using \/
as the operator:

(EXISTS i | Predicate(i)) = \/ : {i | Predicate(i)}

Spec has the redundant ALL and EXISTS notations because they are familiar.

If you want to get your hands on a value that satisfies an existential quantifier, you can construct
the set of such values and use the choose method to pick out one of them:

{i | Predicate(i)}.choose

This is deterministic: choose always returns the same value given the same set (a necessary
property for it to be a function). It is undefined if the set is empty, which is the case in the
example if no i satisfies Predicate.

The VAR command described in the next section on commands is another form of existential
quantification that lets you get your hands on the value, but it is non-deterministic.

Methods

Methods are a convenient way of packaging up some functions with a type so that the functions
can be applied to values of that type concisely and without mentioning the type itself. Look at the

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 12

definitions in section 9 of the Spec Reference Manual, which give methods for the built-in types
SEQ T, SET T, and T->U. If s is a SEQ T, s.head is Sequence[T].Head(s), which is just s(0)
(which is undefined if s is empty). You can see that it’s shorter to write s.head.5

You can define your own methods by using WITH. For instance, consider
TYPE Complex = [re: Real, im: Real] WITH {"+":=Add, mag:=Mag}

Add and Mag are ordinary Spec functions that you must define, but you can now invoke them on a
c which is Complex by writing c + c' and c.mag, which mean Add(c, c') and Mag(c). You
can use existing operator symbols or make up your own; see section 3 of the reference manual
for lexical rules. You can also write Complex."+" and Complex.mag to denote the functions Add
and Mag; this may be convenient if Complex was declared in a different module. Using Add as a
method does not make it private, hidden, static, local, or anything funny like that.

When you nest WITH the methods pile up in the obvious way. Thus
TYPE MoreComplex = Complex WITH {"-":=Sub, mag:=Mag2}

has an additional method "-", the same "+" as Complex, and a different mag. Many people call
this ‘inheritance’ and ‘overriding’.

Functions

A function is a set of ordered pairs; the first element of each pair comes from the functions
domain, and the second from its range. A function produces at most one value for an argument;
that is, two pairs can’t have the same first element. A function may be partial, that is, undefined
at some elements of its domain. The expression f!x is true if f is defined at x, false otherwise.
Like everything (except types), functions are ordinary values in Spec.

Given a function, you can use a function constructor to make another one that is the same except
at a particular argument, as in the DB example above. Another example is f{x -> 0}, which is
the same as f except that it is 0 at x. If you have never seen a construction like this one, think
about it for a minute. Suppose you had to implement it. If f is represented as a table of
(argument, result) pairs, the code will be easy. If f is represented by code that computes the
result, the code for the constructor is less obvious, but you can make a new piece of code that
says

(\ y: Int | ((y = x) => 0 [*] f(y)))

Here ‘\’ is ‘lambda’, and the subexpression ((y = x) => 0 [*] f(y)) is a conditional,
modeled on the conditional commands we saw in the first section; its value is 0 if y = x and
f(y) otherwise, so we have changed f just at 0, as desired. If the else clause [*] f(y) is
omitted, the condition is undefined if y # x. Of course in a running program you probably
wouldn’t want to construct new functions very often, so a piece of Spec that is intended to be
close to practical code must use function constructors carefully.

Functions can return functions as results. Thus T->U->V is the type of a function that takes a T
and returns a function of type U->V, which in turn takes a U and returns a V. If f has this type,
then f(t) has type U->V, and f(t)(u) has type V. Compare this with (T, U)->V, the type of a
function which takes a T and a U and returns a V. If g has this type, g(t) doesn’t type-check, and
g(t, u) has type V. Obviously f and g are closely related, but they are not the same.

5 Of course, s(0) is shorter still, but that’s an accident; there is no similar alternative for s.tail.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 13

You can define your own functions either by lambda expressions like the one above, or more
generally by function declarations like this one

FUNC NewF(y: Int) -> Int = RET ((y = x) => 0 [*] f(y))

The value of this NewF is the same as the value of the lambda expression. To avoid some
redundancy in the language, the meaning of the function is defined by a command in which RET
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might contain VAR or []), but it must specify at most one result
value for any argument value; if it specifies no result values for an argument or more than one
value, the function is undefined there. If you need a full-blown command in a function
constructor, you can write it with LAMBDA instead of \:

(LAMBDA (y: Int) -> Int = RET ((y = x) => 0 [*] f(y)))

You can compose two functions with the * operator, writing f * g. This means to apply f first
and then g, so you read it “f then g”. It is often useful when f is a sequence (remember that a SEQ
T is a function from {0, 1, ..., size-1} to T), since the result is a sequence with every
element of f mapped by g. This is Lisp’s or Scheme’s “map”. So:

(0 .. 4) * {\ i: Int | i*i} = (SEQ Int){0, 1, 4, 9, 16}

since 0 .. 4 = {0, 1, 2, 3, 4} because Int has a method .. with the obvious meaning:
i .. j = {i, i+1, ..., j-1, j}. In the section on constructors we saw another way to
write

(0 .. 4) * {\ i: Int | i*i},

as
{i :IN 0 .. 4 | | i*i}.

This is more convenient when the mapping function is defined by an expression, as it is here, but
it’s less convenient if the mapping function already has a name. Then it’s shorter and clearer to
write

(0 .. 4) * factorial

rather than
{i :IN 0 .. 4 | | factorial(i)}.

A function f has methods f.dom and f.rng that yield its domain and range sets, f.inv that
yields its inverse (which is undefined at y if f maps zero or more than one argument to y), and
f.rel that turns it into a relation (see below). f.restrict(s) is the same as f on elements of s
and undefined elsewhere. The overlay operator combines two functions, giving preference to the
second: (f1 + f2)(x) is f2(x) if that is defined and f1(x) otherwise. So f{3 -> 24} = f +
{3 -> 24}.

If type U has method m, then the function type V = T->U has a “lifted” method m that composes
U.m with v, unless V already has a m method. V. m is defined by

(\ v | (\ t | v(t).m))

so that v.m = v * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a
second argument of type W, then V.m takes a second argument of type VV = T->W and is defined
pairwise on the intersection of the domains, so if Q = SEQ Int, Q{1, 2, 3} + Q{10, 20} =
Q{11, 22}.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 14

Relations

A relation r is a generalization of a function: an arbitrary set of ordered pairs, defined by a total
function from pairs to Bool. Thus r can relate an element of its domain to any number of
elements of its range (including none). Like a function, r has dom, rng, and inv methods (the
inverse is obtained just by flipping the ordered pairs), and you can compose relations with *. The
advantage of relations is simplicity and generality; for example, there’s no notion of “undefined”
for relations. The drawback is that you can’t write r(x) (although you can write {x} ** r for
the set of values related to x by r; see below).

A relation r has methods

r.func to turn it into a function: r.func(x) is undefined unless r relates x to exactly one
value.

r.setF to turn it into a set function: r.setF(x) is the set of elements that r relates to x. This
is total. The inverse of setF is the setRel method for a function whose values are sets:
r.setF.setRel = r, and f.setRel.setF = f if f yields sets.

If s is a set, s.rel is a relation that relates nil to each member of the set. The relation’s rng
method inverts this. You can extend composition to sets in two ways:

s * f is the set that results from applying f to every member of s, just like q * f for a
sequence; it’s undefined if f is undefined on any member of s.

s ** r takes the view of s as a relation more seriously; it is the set of all values that are
related to a member of s by r: (s.rel * r).rng, which is also \/ : (s * r.setF). This is
never undefined.

A method m of U is lifted to SET U and to relations to U just as it is to functions to U. If m takes a
second argument, R.m works on all pairs of related values, so that r.m(rr) relates t to u.m(w)
whenever r relates t to u and rr relates t to w. Thus if S = SET Int, S{1, 2} + S{10, 20} =
S{11, 12, 21, 22}.

 If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, r1 – r2
the difference, and ~r the complement.

Commands

Commands are for changing the state. Spec has a few simple commands, and seven operators for
combining commands into bigger ones. The main simple commands are assignment and routine
invocation. There are also simple commands to raise an exception, to return a function result, and
to SKIP, that is, do nothing. If a simple command evaluates an undefined expression, it fails (see
below).

You can write i + := 3 instead of i := i + 3, and similarly with any other binary operator.

The operators on commands are:

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 15

• A conditional operator: predicate => command, read “if predicate then command”. The
predicate is called a guard.

• Choice operators: c1 [] c2 and c1 [*] c2, read ‘or’ and ‘else’.

• Sequencing operators: c1 ; c2 and c1 EXCEPT handler. The handler is a special form of
conditional command: exception => command.

• Variable introduction: VAR id: T | command, read “choose id of type T such that command
doesn’t fail”.

• Loops: DO command OD.

Section 6 of the reference manual describes commands. Atomic Semantics of Spec gives a precise
account of their semantics. It explains that the meaning of a command is a relation between a
state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions.

Conditionals and choice

The figure below (copied from Nelson’s paper) illustrates conditionals and choice with some
very simple examples. Here is how they work:

The command
p => c

means to do c if p is true. If p is false this command fails; in other words, it has no outcome.
More precisely, if s is a state in which p is false or undefined, this command does not relate s to
any outcome.

What good is such a command? One possibility is that p will be true some time in the future, and
then the command will have an outcome and allow a transition. Of course this can only happen
in a concurrent program, where there is something else going on that can make p true. Even if
there’s no concurrency, there might be an alternative to this command. For instance, it might
appear in the larger command

 p => c
[] p' => c'

in which you read [] as ‘or’. This fails only if each of p and p' is false or undefined. If both are
true (as in the 00 state in the south-west corner of the figure), it means to do either c or c'; the
choice is non-deterministic. If p' is ~p then they are never both false, and if p is defined this
command is equivalent to

 p => c
[*] c'

in which you read [*] as ‘else’. On the other hand, if p is undefined the two commands differ,
because the first one fails (since neither guard can be evaluated), while the second does c'.

Both c1 [] c2 and c1 [*] c2 fail only if both c1 and c2 fail. If you think of a Spec program
operationally (that is, as executing one command after another), this means that if the execution
makes some choice that leads to failure later on, it must ‘back-track’ and try the other
alternatives until it finds a set of choices that succeed. For instance, no matter what x is, after

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 16

 y = 0 => x := x - 1; x < y => x := 1
[] y > 0 => x := 3 ; x < y => x := 2
[*] SKIP

if y = 0 initially, x = 1 afterwards, if y > 3 initially, x = 2 afterwards, and otherwise x is
unchanged. If you think of it relationally, c1 [] c2 has all the transitions of c1 (there are none if
c1 fails, several if it is non-deterministic) as well as all the transitions of c2. Both failure and
non-determinism can arise from deep inside a complex command, not just from a top-level [] or
VAR.

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

xy

00

01

10

11

x = 0 => SKIP

(partial)

y = 0 => y := 1

(partial)

 SKIP

[] y = 0 => y := 1

(non-deterministic)

 x = 0 => SKIP

[] y = 0 => y := 1

(partial, non-deterministic)

SKIP

y := 1

Combining commands

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 17

The precedence rules for commands are
EXCEPT binds tightest
; next
=> | next (for the right operand; the left side is an expression or delimited by VAR)
[] [*] bind least tightly.

These rules minimize the need for parentheses, which are written around commands in the ugly
form BEGIN ... END or the slightly prettier form IF ... FI; the two forms have the same
meaning, but as a matter of style, the latter should only be used around guarded commands. So,
for example,

p => c1; c2

is the same as
p => BEGIN c1; c2 END

and means to do c1 followed by c2 if p is true. To guard only c1 with p you must write
IF p => c1 [*] SKIP FI; c2

which means to do c1 if p is true, and then to do c2. The [*] SKIP ensures that the command
before the ";" does not fail, which would prevent c2 from getting done. Without the [*] SKIP,
that is in

IF p => c1 FI; c2

if p is false the IF ... FI fails, so there is no possible outcome from which c2 can be done and
the whole thing fails. Thus IF p => c1 FI; c2 has the same meaning as p => BEGIN c1; c2
END, which is a bit surprising.

Sequencing

A c1 ; c2 command means just what you think it does: first c1, then c2. The command
c1 ; c2 gets you from state s1 to state s2 if there is an intermediate state s such that c1 gets you
from s1 to s and c2 gets you from s to s2. In other words, its relation is the composition of the
relations for c1 and c2; sometimes ‘;’ is called ‘sequential composition’. If c1 produces an
exception, the composite command ignores c2 and produces that exception.

A c1 EXCEPT ex => c2 command is just like c1 ; c2 except that it treats the exception ex the
other way around: if c1 produces the exception ex then it goes on to c2, but if c1 produces a
normal outcome (or any other exception), the composite command ignores c2 and produces that
outcome.

Variable introduction

VAR gives you more dramatic non-determinism than []. The most common use is in the idiom
VAR x: T | P(x) => c

which is read “choose some x of type T such that P(x), and do c”. It fails if there is no x for
which P(x) is true and c succeeds. If you just write

VAR x: T | c

then VAR acts like ordinary variable declaration, giving an arbitrary initial value to x.

Variable introduction is an alternative to existential quantification that lets you get your hands on
the bound variable. For instance, you can write

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 18

IF VAR n: Int, x: Int, y: Int, z: Int |
 (n > 2 /\ x**n + y**n = z**n) => out := n
[*] out := 0
FI

which is read: choose integers n, x, y, z such that n > 2 and xn + yn = zn, and assign n to
out; if there are no such integers, assign 0 to out.6 The command before the [*] succeeds iff

(EXISTS n: Int, x: Int, y: Int, z: Int | n > 2 /\ x**n + y**n = z**n),

but if we wrote that in a guard there would be no way to set out to one of the n’s that exist. We
could also write

VAR s := { n: Int, x: Int, y: Int, z: Int
 | n > 2 /\ x**n + y**n = z**n
 | (n, x, y, z)}

to construct the set of all solutions to the equation. Then if s # {}, s.choose yields a tuple
(n, x, y, z) with the desired property.

You can use VAR to describe all the transitions to a state that has an arbitrary relation R to the
current state: VAR s' | R(s, s') => s := s' if there is only one state variable s.

The precedence of | is higher than [], which means that you can string together different VAR
commands with [] or [*], but if you want several alternatives within a VAR you have to use
BEGIN ... END or IF ... FI. Thus

 VAR x: T | P(x) => c1
[] q => c2

is parsed the way it is indented and is the same as
 BEGIN VAR x: T | P(x) => c1 END
[] BEGIN q => c2 END

but you must write the brackets in
VAR x: T |

IF P(x) => c1
[] Q(x) => c2
FI

which might be formatted more concisely as
VAR x: T |

IF P(x) => c1
[] R(x) => c2 FI

or even
VAR x: T | IF P(x) => c1 [] R(x) => c2 FI

You are supposed to indent your programs to make it clear how they are parsed.

Loops

You can always write a recursive routine, but often a loop is clearer . In Spec you use DO ... OD
for this. These are brackets, and the command inside is repeated as long as it succeeds. When it
fails, the repetition is over and the DO ... OD is complete. The most common form is

DO P => c OD

6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat’s
time and 1993.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 19

which is read “while P is true do c”. After this command, P must be false. If the command inside
the DO ... OD succeeds forever, the outcome is a looping exception that cannot be handled.
Note that this is not the same as a failure, which simply means no outcome at all.

For example, you can zero all the elements of a sequence s with
VAR i := 0 | DO i < s.size => s(i) := 0; i - := 1 OD

or the simpler form (which also avoids fixing the order of the assignments)
DO VAR i | s(i) # 0 => s(i) := 0 OD

This is another common idiom: keep choosing an i as long as you can find one that satisfies
some predicate. Since s is only defined for i between 0 and s.size-1, the guarded command
fails for any other choice of i. The loop terminates, since the s(i) := 0 definitely reduces the
number of i’s for which the guard is true. But although this is a good example of a loop, it is bad
style; you should have used a sequence method or function composition:

s := S.fill(0, s.size)

or
s := {x :IN s | | 0}

(a sequence just like s except that every element is mapped to 0), remembering that Spec makes
it easy to throw around big things. Don’t write a loop when a constructor will do, because the
loop is more complicated to think about. Even if you are writing code, you still shouldn’t use a
loop here, because it’s quite clear how to write C code for the constructor.

To zero all the elements of s that satisfy some predicate P you can write
DO VAR i: Int | (s(i) # 0 /\ P(s(i))) => s(i) := 0 OD

Again, you can avoid the loop by using a sequence constructor and a conditional expression
s := {x :IN s | | (P(x) => 0 [*] x) }

Atomicity

Each <<...>> command is atomic. It defines a single transition, which includes moving the
program counter (which is part of the state) from before to after the command. If a command is
not inside <<...>>, it is atomic only if there’s no reasonable way to split it up: SKIP, HAVOC, RET,
RAISE. Here are the reasonable ways to split up the other commands:

• An assignment has one internal program counter value, between evaluating the right hand
side expression and changing the left hand side variable.

• A guarded command likewise has one, between evaluating the predicate and the rest of the
command.

• An invocation has one after evaluating the arguments and before the body of the routine, and
another after the body of the routine and before the next transition of the invoking command.

Note that evaluating an expression is always atomic.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 20

Modules and names

Spec’s modules are very conventional. Mostly they are for organizing the name space of a large
program into a two-level hierarchy: module.id. It’s good practice to declare everything except a
few names of global significance inside a module. You can also declare CONST’s, just like VAR’s.

MODULE foo EXPORT i, j, Fact =

CONST c := 1

VAR i := 0
 j := 1

FUNC Fact(n: Int) -> Int =
IF n <= 1 => RET 1
[*] RET n * Fact(n - 1)
FI

END foo

You can declare an identifier id outside of a module, in which case you can refer to it as id
everywhere; this is short for Global.id, so Global behaves much like an extra module. If you
declare id at the top level in module m, id is short for m.id inside of m. If you include it in m’s
EXPORT clause, you can refer to it as m.id everywhere. All these names are in the global state
and are shared among all the atomic actions of the program. By contrast, names introduced by a
declaration inside a routine are in the local state and are accessible only within their scope.

The purpose of the EXPORT clause is to define the external interface of a module. This is
important because module T implements module S iff T’s behavior at its external interface is a
subset of S’s behavior at its external interface.

The other feature of modules is that they can be parameterized by types in the same style as CLU
clusters. The memory systems modules in handout 5 are examples of this.

You can also declare a class, which is a module that can be instantiated many times. The Obj
class produces a global Obj type that has as its methods the exported identifiers of the class plus
a new procedure that returns a new, initialized instance of the class. It also produces a ObjMod
module that contains the declaration of the Obj type, the code for the methods, and a state
variable indexed by Obj that holds the state records of the objects. For example:

CLASS Stat EXPORT add, mean, variance, reset =

VAR n : Int := 0
 sum : Int := 0
 sumsq : Int := 0

PROC add(i: Int) = n + := 1; sum + := i; sumsq + := i**2
FUNC mean() -> Int = RET sum/n
FUNC variance() -> Int = RET sumsq/n – self.mean**2
PROC reset() = n := 0; sum := 0; sumsq := 0

END Stat

Then you can write

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 21

VAR s: Stat | s := s.new(); s.add(x); s.add(y); print(s.variance)

In abstraction functions and invariants we also write obj.n for field n in obj’s state.

Section 7 of the reference manual deals with modules. Section 8 summarizes all the uses of
names and the scope rules. Section 9 gives several modules used to define the methods of the
built-in data types such as functions, sets, and sequences.

This completes the language summary; for more details and greater precision consult the
reference manual. The rest of this handout consists of three extended examples of specs and code
written in Spec: topological sort, editor buffers, and a simple window system.

Example: Topological sort

Suppose we have a directed graph whose n+1 vertexes are labeled by the integers 0 .. n,
represented in the standard way by a relation g; g(v1, v2) is true if v2 is a successor of v1, that
is, if there is an edge from v1 to v2. We want a topological sort of the vertexes, that is, a
sequence that is a permutation of 0 .. n in which v2 follows v1 whenever v2 is a successor of
v1. Of course this possible only if the graph is acyclic.

MODULE TopologicalSort EXPORT V, G, Q, TopSort =

TYPE V = IN 0 .. n % Vertex
G = (V, V) -> Bool % Graph
Q = SEQ V

PROC TopSort(g) -> Q RAISES {cyclic} =
IF VAR q | q IN (0 .. n).perms /\ IsTSorted(q, g) => RET q
[*] RAISE cyclic % g must be cyclic
FI

FUNC IsTSorted(q, g) -> Bool =
% Not tsorted if v2 precedes v1 in q but is also a child

RET ~ (EXISTS v1 :IN q.dom, v2 :IN q.dom | v2 < v1 /\ g(q(v1), q(v2))

END TopologicalSort

Note that this solution checks for a cyclic graph. It allows any topologically sorted result that is a
permutation of the vertexes, because the VAR q in TopSort allows any q that satisfies the two
conditions. The perms method on sets and sequences is defined in section 9 of the reference
manual; the dom method gives the domain of a function. TopSort is a procedure, not a function,
because its result is non-deterministic; we discussed this point earlier when studying
SquareRoot. Like that one, this spec has no internal state, since the module has no VAR. It
doesn’t need one, because it does all its work on the input argument.

The following code is from Cormen, Leiserson, and Rivest. It adds vertexes to the front of the
output sequence as depth-first search returns from visiting them. Thus, a child is added before its
parents and therefore appears after them in the result. Unvisited vertexes are white, nodes being
visited are grey, and fully visited nodes are black. Note that all the descendants of a black node
must be black. The grey state is used to detect cycles: visiting a grey node means that there is a
cycle containing that node.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 22

This module has state, but you can see that it’s just for convenience in programming, since it is
reset each time TopSort is called.

MODULE TopSortImpl EXPORT V, G, Q, TopSort = % implements TopSort

TYPE Color = ENUM[white, grey, black] % plus the spec’s types

VAR out : Q
color: V -> Color % every vertex starts white

PROC TopSort(g) -> Q RAISES {cyclic} = VAR i := 0 |
out := {}; color := {* -> white}
DO VAR v | color(v) = white => Visit(v, g) OD; % visit every unvisited vertex
RET out

PROC Visit(v, g) RAISES {cyclic} =
color(v) := grey;
DO VAR v' | g(v, v') /\ color(v') # black => % pick an successor not done

IF color(v') = white => Visit(v', g)
[*] RAISE cyclic % grey — partly visited
FI

OD;
color(v) := black; out := {v} + out % add v to front of out

The code is as non-deterministic as the spec: depending on the order in which TopSort chooses v
and Visit chooses v', any topologically sorted sequence can result. We could get deterministic
code in many ways, for example by taking the smallest node in each case (the min method on
sets is defined in section 9 of the reference manual):

VAR v := {v0 | color(v0) = white}.min in TopSort
VAR v' := {v0 | g(v, v0) /\ color(v') # black }.min in Visit

Code in C would do something like this; the details would depend on the representation of G.

Example: Editor buffers

A text editor usually has a buffer abstraction. A buffer is a mutable sequence of C’s. To get
started, suppose that C = Char and a buffer has two operations,

Get(i) to get character i

Replace to replace a subsequence of the buffer by a subsequence of an argument of type SEQ
C, where the subsequences are defined by starting position and size.

We can make this spec precise as a Spec class.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 23

CLASS Buffer EXPORT B, C, X, Get, Replace =

TYPE X = Nat % indeX in buffer
C = Char
B = SEQ C % Buffer contents

VAR b : B := {} % Note: initially empty

FUNC Get(x) -> C = RET b(x) % Note: defined iff 0<=x<b.size

PROC Replace(from: X, size: X, b': B, from': X, size': X) =
% Note: fails if it touches C’s that aren’t there.

VAR b1, b2, b3 | b = b1 + b2 + b3 /\ b1.size = from /\ b2.size = size =>
 b := b1 + b'.seg(from', size') + b3

END Buffer

We can implement a buffer as a sorted array of pieces called a ‘piece table’. Each piece contains
a SEQ C, and the whole buffer is the concatenation of all the pieces. We use binary search to find
a piece, so the cost of Get is at most logarithmic in the number of pieces. Replace may require
inserting a piece in the piece table, so its cost is at most linear in the number of pieces.7 In
particular, neither depends on the number of C’s. Also, each Replace increases the size of the
array of pieces by at most two.

A piece is a B (in C it would be a pointer to a B) together with the sum of the length of all the
previous pieces, that is, the index in Buffer.b of the first C that it represents; the index is there
so that the binary search can work. There are internal routines Locate(x), which uses binary
search to find the piece containing x, and Split(x), which returns the index of a piece that
starts at x, if necessary creating it by splitting an existing piece. Replace calls Split twice to
isolate the substring being removed, and then replaces it with a single piece. The time for
Replace is linear in pt.size because on the average half of pt is moved when Split or
Replace inserts a piece, and in half of pt, p.x is adjusted if size' # size.

7 By using a tree of pieces rather than an array, we could make the cost of Replace logarithmic as well, but to
keep things simple we won’t do that. See FSImpl in handout 7 for more on this point.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 24

CLASS BufImpl EXPORT B,C,X, Get, Replace = % implements Buffer

TYPE % Types as in Buffer, plus
N = X % iNdex in piece table
P = [b, x] % Piece: x is pos in Buffer.b
PT = SEQ P % Piece Table

VAR pt := PT{}

ABSTRACTION FUNCTION buffer.b = + : {p :IN pt | | p.b}
% buffer.b is the concatenation of the contents of the pieces in pt

INVARIANT (ALL n :IN pt.dom | pt(n).b # {}
 /\ pt(n).x = + :{i :IN 0 .. n-1 | | pt(i).b.size})
% no pieces are empty, and x is the position of the piece in Buffer.b, as promised.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.x)

PROC Replace(from: X, size: X, b': B, from': X, size': X) =
VAR n1 := Split(from); n2 := Split(from + size),
 new := P{b := b'.seg(from', size'), x := from} |

pt := pt.sub(0, n1 - 1)
 + NonNull(new)
 + pt.sub(n2, pt.size - 1) * AdjustX(size' - size)

PROC Split(x) -> N =
% Make pt(n) start at x, so pt(Split(x)).x = x. Fails if x > b.size.
% If pt=abcd|efg|hi, then Split(4) is RET 1 and Split(5) is pt:=abcd|e|fg|hi; RET 2

IF pt = {} /\ x = 0 => RET 0
[*] VAR n := Locate(x), p := pt(n), b1, b2 |

p.b = b1 + b2 /\ p.x + b1.size = x =>
VAR frag1 := p{b := b1}, frag2 := p{b := b2, x := x} |

pt := pt.sub(0, n - 1)
 + NonNull(frag1) + NonNull(frag2)
 + pt.sub(n + 1, pt.size - 1);
RET (b1 = {} => n [*] n + 1)

FI

FUNC Locate(x) -> N = VAR n1 := 0, n2 := pt.size - 1 |
% Use binary search to find the piece containing x. Yields 0 if pt={},
% pt.size-1 if pt#{} /\ x>=b.size; never fails. The loop invariant is
% pt={} \/ n2 >= n1 /\ pt(n1).x <= x /\ (x < pt(n2).x \/ x >= pt.last.x)
% The loop terminates because n2 - n1 > 1 ==> n1 < n < n2, so n2 – n1 decreases.

DO n2 - n1 > 1 =>
VAR n := (n1 + n2)/2 | IF pt(n).x <= x => n1 := n [*] n2 := n FI

OD; RET (x < pt(n2).x => n1 [*] n2)

FUNC NonNull(p) -> PT = RET (p.b # {} => PT{p} [*] {})

FUNC AdjustX(dx: Int) -> (P -> P) = RET (\ p | p{x + := dx})

END BufImpl

If subsequences were represented by their starting and ending positions, there would be lots of
extreme cases to worry about.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 25

Suppose we now want each C in the buffer to have not only a character code but also some
additional properties, for instance the font, size, underlining, etc. Get and Replace remain the
same. In addition, we need a third exported method Apply that applies to each character in a
subsequence of the buffer a map function C -> C. Such a function might make all the C’s italic,
for example, or increase the font size by 10%.

PROC Apply(map: C->C, from: X, size: X) =
b := b.sub(0, from-1)
 + b.seg(from, size) * map
 + b.sub(from + size, b.size-1)

Here is code for Apply that takes time linear in the number of pieces. It works by changing the
representation to add a map function to each piece, and in Apply composing the map argument
with the map of each affected piece. We need a new version of Get that applies the proper map
function, to go with the new representation.

TYPE P = [b, x, map: C->C] % x is pos in Buffer.b

ABSTRACTION FUNCTION buffer.b = + :{p :IN pt | | p.b * p.map}
% buffer.b is the concatenation of the pieces in p with their map's applied.
% This is the same AF we had before, except for the addition of * p.map.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x))

PROC Apply(map: C->C, from: X, size: X) =
 VAR n1 := Split(from), n2 := Split(from + size) |

pt := pt.sub(0 , n1 - 1)
 + pt.sub(n1, n2 - 1) * (\ p | p{map := p.map * map})
 + pt.sub(n2, pt.size - 1)

Note that we wrote Split so that it keeps the same map in both parts of a split piece. We also
need to add map := (\ c | c) to the constructor for new in Replace.

This code was used in the Bravo editor for the Alto, the first what-you-see-is-what-you-get
editor. It is still used in Microsoft Word.

Example: Windows

A window (the kind on your computer screen, not the kind in your house) is a map from points to
colors. There can be lots of windows on the screen; they are ordered, and closer ones block the
view of more distant ones. Each window has its own coordinate system; when they are arranged
on the screen, an offset says where each window’s origin falls in screen coordinates.

MODULE Window EXPORT Get, Paint =

TYPE I = Int
Coord = Nat
Intensity = IN (0 .. 255).rng
P = [x: Coord, y: Coord] WITH {"-":=PSub} % Point
C = [r: Intensity, g: Intensity, b: Intensity] % Color
W = P -> C % Window

FUNC PSub(p1, p2) -> P = RET P{x := p1.x - p2.x, y := p1.y - p2.y}

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 26

The shape of the window is determined by the points where it is defined; obviously it need not be
rectangular in this very general system. We have given a point a “-” method that computes the
vector distance between two points; we somewhat confusingly represent the vector as a point.

A ‘window system’ consists of a sequence of [w, offset: P] pairs; we call a pair a V. The
sequence defines the ordering of the windows (closer windows come first in the sequence); it is
indexed by ‘window number’ WN. The offset gives the screen coordinate of the window’s
(0, 0) point, which we think of as its upper left corner. There are two main operations:
Paint(wn, p, c) to set the value of P in window wn, and Get(p) to read the value of p in the
topmost window where it is defined (that is, the first one in the sequence). The idea is that what
you see (the result of Get) is the result of painting the windows from last to first, offsetting each
one by its offset component and using the color that is painted later to completely overwrite
one painted earlier. Of course real window systems have other operations to change the shape of
windows, add, delete, and move them, change their order, and so forth, as well as ways for the
window system to suggest that newly exposed parts of windows be repainted, but we won’t
consider any of these complications.

First we give the spec for a window system initialized with n empty windows. It is customary to
call the coordinate system used by Get the screen coordinates. The v.offset field gives the
screen coordinate that corresponds to {0, 0} in v.w. The v.c(p) method below gives the value
of v’s window at the point corresponding to p after adjusting by v’s offset. The state ws is just the
sequence of V’s. For simplicity we initialize them all with the same offset {10, 5}, which is not
too realistic.

Get finds the smallest WN that is defined at p and uses that window’s color at p. This corresponds
to painting the windows from last (biggest WN) to first with opaque paint, which is what we
wanted. Paint uses window rather than screen coordinates.

The state (the VAR) is a single sequence of windows.

TYPE WN = IN 0 .. n-1 % Window Number
V = [w, offset: P] % window on the screen
 WITH {c:=(\ v, p | v.w(p - v.offset))} % C of a screen point p

VAR ws := {i :IN 0..n-1 | | V{{}, P{10,5}}} % the Window System

FUNC Get(p) -> C = VAR wn := {wn' | V.c!(ws(wn'), p)}.min | RET ws(wn).c(p)

PROC Paint(wn, p, c) = ws(wn).w(p) := c

END Window

Now we give code that only keeps track of the visible color of each point (that is, it just keeps
the pixels on the screen, not all the pixels in windows that are covered up by other windows). We
only keep enough state to handle Get and Paint.

The state is one W that represents the screen, plus an exposed variable that keeps track of which
window is exposed at each point, and the offsets of the windows. This is sufficient to implement
Get and Paint; to deal with erasing points from windows we would need to keep more
information about what other windows are defined at each point, so that exposed would have a
type P -> SET WN. Alternatively, we could keep track for each window of where it is defined.

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 27

Real window systems usually do this, and represent exposed as a set of visible regions of the
various windows. They also usually have a ‘background’ window that covers the whole screen,
so that every point on the screen has some color defined; we have omitted this detail from the
spec and the code.

We need a history variable wH that contains the w part of all the windows. The abstraction
function just combines wH and offset to make ws. The important properties of the code are
contained in the invariant, from which it’s clear that Get returns the answer specified by
Window.Get. Another way to do it is to have a history variable wsH that is equal to ws. This
makes the abstraction function very simple, but then we need an invariant that says offset(wn)
= wsH(n).offset. This is perfectly correct, but it’s usually better to put as little stuff in history
variables as possible.

MODULE WinImpl EXPORT Get, Paint =

VAR w := W{} % no points defined
 exposed : P -> WN := {} % which wn shows at p
 offset := {i :IN 0..n-1 | | P(5, 10)} %
 wH := {i :IN 0..n-1 | | W{}} % history variable

ABSTRACTION FUNCTION ws = (\ wn | V{w := wH(wn), offset := offset(wn)})

INVARIANT
(ALL p | w!p = exposed!p
 /\ (w!p ==> {wn | V.c!(ws(wn), p)}.min = exposed(p)
 /\ w(p) = ws(exposed(p)).c(p)))

The invariant says that each visible point comes from some window, exposed tells the topmost
window that defines it, and its color is the color of the point in that window. Note that for
convenience the invariant uses the abstraction function; of course we could have avoided this by
expanding it in line, but there is no reason to do so, since the abstraction function is a perfectly
good function.

FUNC Get(p) -> C = RET w(p)

PROC Paint(wn, p, c) =
VAR p0 | p = p0 - offset(wn) => % the screen coordinate
 IF wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI;
 wH(wn)(p) := c % update the history var

END WinImpl

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 28

Index

!, 9
(...), 8
.., 11
;, 14
[*], 13
[], 4, 13
{* -> }, 8
<< ... >>, 3
==>, 3, 10
=>, 3, 12
->, 4, 10
algorithm, 5
ALL, 3, 10
APROC, 4, 7
arbitrary relation, 15
array, 8
assignment, 3, 8, 12
atomic, 16
atomic actions, 3
atomic command, 6
atomic procedure, 7
BEGIN, 14
behavior, 2
Bool, 8
choice, 12
choose, 4, 10, 15
class, 19
client, 2
code, 2
combination, 10
command, 3, 6, 12
communicate, 2
compose, 11
composition, 16
conditional, 11, 12
constant, 7
constructor, 8
contract, 2
declare, 7
defined, 9
Dijkstra, 1
DO, 4, 16
else, 14
END, 14
essential, 2
EXCEPT, 14
exception, 5
exceptional outcome, 6
existential quantifier, 5, 10
expression, 4, 6

fail, 12, 15
FI, 14
FUNC, 7
function, 7, 8, 10
function constructor, 8, 10
function declaration, 11
functional behavior, 2
global, 17
guard, 3, 12
handler, 5
hierarchy, 17
history, 2, 6
if, 3, 12
IF, 14
implementer, 2
implication, 3
infinite, 3
Int, 8
invocation, 12
lambda expression, 8
local, 3, 17
loop, 16
meaning

of an atomic command, 6
of an expression, 6

method, 7, 11, 16
module, 7, 17
name, 6
name space, 17
Nelson, 1
non-atomic command, 6
non-atomic semantics, 6
non-deterministic, 4, 5, 6, 13, 15
normal outcome, 6, 14
OD, 4, 16
operator, 12
or, 4, 13
organizing your program, 7
outcome, 6
parameterized, 17
precedence, 14, 15
precisely, 2
predicate, 3, 10, 12
PROC, 7
procedure, 7
program, 2, 4, 7
program counter, 6
quantifier, 3, 4, 10
RAISE, 5
RAISES, 5

record constructor, 8
relation, 6
repetition, 16
RET, 4
routine, 7
seq, 11
SEQ, 3
sequence, 8, 16
sequential program, 6
set, 3, 8
set constructor, 9
set of sequences of states, 6
side-effect, 7
spec, 2
specification, 2, 4
state, 2, 6
state transition, 2
state variable, 6
strongly typed, 8
such that, 3
SUCHTHAT, 8
terminates, 16
then, 3, 12
thread, 7
THREAD, 7
transition, 2, 6
two-level hierarchy, 7
type, 7
undefined, 8, 12
universal quantifier, 3, 10
value, 6
VAR, 3, 4, 15
variable, 6, 7
variable introduction, 15
WITH, 11

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 29

Expression forms (§ 5)
f(e) e func function invocation
op : sqe set/seq sq(0) op sq(1) …
(ALL x | pred) e Boole pred(x1) ∧ … ∧ pred(xn)

(EXISTS x | pred) e Boole pred(x1) ∨ … ∨ pred(xn)

(pred => e1 [*] e2) e Anye e1 if pred else e2

Modules (§ 7)
MODULE/CLASS Me
 [T1 WITH {m1: T11->T12,…},…]
 EXPORT n1, … =

TYPE T1 = SET T2e
 T3 = ENUM[n1,…]
CONST n: T := e
VAR n: T := ee
EXCEPTION ex = {ex11,…} + ex2 + …e
FUNC f(n1: T1,…) -> T = ce
APROC, PROC, THREAD similarlye

END M

Commands (§ 6) Pr

SKIP, HAVOC, simple
 RET e, RAISE exe
p(e) e invocation
x := e, x := p(e), assignment
 (x1, ...) := ee
c1 EXCEPT ex=>c2e 3 handle ex
c1 ; c2e 2 sequential
VAR n: T | ce 1 new var n
pred => ce 1 if (guarded cmd)
c1 [] c2e 0 or (ND choice)
c1 [*] c2e 0 else
<< c >>e atomic c
BEGIN c ENDe brackets
IF c FIe
DO c ODe loop until fail

Command operators associate to the left,
but EXCEPT associates to the right.

Spec Summary

Operators (§ 5, § 9)
Op Pr Type x op y is

. e 9 Anye x’s y field/method
ISe 8 Anye does x have type y?
ASe 8 Anye x with type y
**e 8 Inte xye

 set compose with relation
*e 7 Inte x × y
 func composition
 relation composition
 set, seq compose with function
/e 7 Inte x/y rounded to 0
//e 7 Inte mod: x – (x/y)*y
+e 6 Inte x + ye
 func overlay
 seq concatenation
-e 6 Inte x – ye
 set set difference
 seq multiset diff
! e 6 func x defined at y
!! e 6 func x!y ∧ x(y) not ex
.. e 5 Inte seq {x, x+1,..., y}
=e 4 Anye x = ye
#e 4 Anye x ≠ y
== e 4 seq x = y as multisets
<=e 4 Inte x ≤ y
 set x ⊆ y (subset)
 seq x a prefix of y
<<=e 4 seq x a sub-seq of y
INE 4 set/seq x ∈ y (member)
~e 3 Boole not x (unary)
/\e 2 Boole x ∧ y (and)
 set x ∩ y (intersection)
\/e 1 Boole x ∨ y (or)
 set x ∪ y (union)
==>e 0 Boole x implies y
Operators associate to the left.

Methods (§ 9)
set Ops: * /\ \/ - <= IN, op: e
 sizee number of members
 choosee some member of s
 seqe s as some sequence
 rel s as relation from nil
 prede s.pred(x) = (x ∈ s)
 (f)max/min a max/min by f1/<=
set/seq permse set of all perms of sq
 fsorte sq sorted (q stably) by f1
 sorte sq sorted (q stably) by <=
func Ops: * + ! !! e
 dom, rnge domain, range
 inve inverse
 restricte domain to set s1
 rele r(x,y) = (f(x)=y)
 predicateesete s = {x | pred(x)}
 relation Ops: * and func +
 dom, rnge domain, range
 inve inverse

 setFe f(x) = {y | r(x,y)}
 func f(x) = setF(x).choosee
 graph isPathe is q1 a path in g?
 closuree transitive closure of g
seq Ops: + - .. <= <<= IN, op:, func * !e

sizee number of elements
heade q(0) e

also see
set/seq and
func above

taile {q(1),…,q(q.size-1)}
 remhe remove head = tail
 laste q(q.size-1) e
 remle {q(0),…,q(q.size-2)}

 sube {q(i1),…,q(i2)}
 sege {q(i1),…}, i2 elements
 fille i2 copies of x1
 lexLEe q lexically <= q1 by f2?
 fsortere perm sorts q stably by f1
 counte number of x1’s in q
 tuplee tuple with q’s values
tuple seqe seq with tu’s values

Types (§ 4)
Any, Null, Bool, Int,
Nat, Char, String

basic

SET T, IN se set
T1 -> T2e function
APROC T1 -> T2 e
PROC T1 -> T2

procedures

SEQ Te sequence
(T1,...,Tn) e tuple
[f1: T1,…,fn: Tn] e record
(T1 + … + Tn) e union
T WITH {m1:=f1,…} e add methods
T SUCHTHAT prede limit values

Constructors (§ 5)
{e1,…,en}e set with these members
{i:Nat | i<3 |ei**2} of i2’s where i<3
f{e1 -> e2}e func f except = e2 at arg e1
 {* -> e}e = e at every arg
(\i:Int | i<3) e lambda (also LAMBDA)
{e1,…,en}e seq of e’s in this order
{i :IN 0 .. 5 ||ei**2} {0,1,4,9,16,25} e
{i:=0 BY i+1eWHILE i<6||i**2} same
(e1,…,en) e tuple of e’s in this order
r{f1:=e1,…,fn:=en} e record r except f1 = e1 ...

Naming conventions (except in ‘Operators’)
ce command ope operator
ee expression pe proccedure
exe exception Pr precedence
fe function, field qe sequence
ge graph re record, relation
ie Inte se set
me method Te type
ne name xe Anye

zie
v

ith extra argument of a method, or
one of several like non-terminals in a rule

§ a section of the Spec reference manual

6.826—Principles of Computer Systems 2002

Handout 3. Introduction to Spec 30

How to Write a Spec
Figure out what the state is.

Choose the state to make the spec simple and clear, not to match the code.

Describe the actions.

What they do to the state.

What they return.

Helpful hints

Notation is important, because it helps you to think about what’s going on.

Invent a suitable vocabulary.

Less is more. Less state is better. Fewer actions are better.

More non-determinism is better, because it allows more implementations.

In distributed systems, replace the separate nodes with non-determinism in the spec.

Pass the coffee-stain test: people should want to read the spec.

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. — Pascal

How to Design an Implementation

Write the spec first.

Dream up the idea of the implementation.

Embody the key idea in the abstraction function.

Check that each implementation action simulates some spec actions.

Add invariants to make this easier. Each action must maintain them.

Change the implementation (or the spec, or the abstraction function) until this works.

Make the implementation correct first, then efficient.

More efficiency means more complicated invariants.

You might need to change the spec to get an efficient implementation.

Measure first before making anything faster.

An efficient program is an exercise in logical brinkmanship. — Dijkstra

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 1

4. Spec Reference Manual

Spec is a language for writing specifications and the first few stages of successive refinement
towards practical code. As a specification language it includes constructs (quantifiers,
backtracking or non-determinism, some uses of atomic brackets) which are impractical in final
code; they are there because they make it easier to write clear, unambiguous and suitably general
specs. If you want to write a practical program, avoid them.

This document defines the syntax of the language precisely and the semantics informally. You
should read the Introduction to Spec (handout 3) before trying to read this manual. In fact,
this manual is intended mainly for reference; rather than reading it carefully, skim through it, and
then use the index to find what you need. For a precise definition of the atomic semantics read
Atomic Semantics of Spec. (handout 9). Handout 17 on Formal Concurrency gives the non-
atomic semantics semi-formally.

1. Overview

Spec is a notation for writing specs for a discrete system. What do we mean by a spec? It is the
allowed sequences of transitions of a state machine. So Spec is a notation for describing
sequences of transitions of a state machine.

Expressions and commands

The Spec language has two essential parts:

An expression describes how to compute a value as a function of other values, either
constants or the current values of state variables.

A command describes possible transitions, or changes in the values of the state variables.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the examples below they are i and j.

There are two kinds of commands:

An atomic command describes a set of possible transitions. For instance, the command
<< i := i + 1 >> describes the transitions i=1→i=2, i=2→i=3, etc. (Actually, many
transitions are summarized by i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and (i=1,
j=15)→(i=2, j=15)). If a command allows more than one transition from a given state we
say it is non-deterministic. For instance, the command, << i := 1 [] i := i + 1 >>
allows the transitions i=2→i=1 and i=2→i=3. More on this in Atomic Semantics of Spec.

A non-atomic command describes a set of sequences of states. More on this in Formal
Concurrency.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 2

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressions is derived from mathematics.

Organizing a program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

A routine is a named computation with parameters (passed by value). There are four kinds:

A function is an abstraction of an expression.

An atomic procedure is an abstraction of an atomic command.

A general procedure is an abstraction of a non-atomic command.

A thread is the way to introduce concurrency.

A type is a stylized assertion about the set of values that a name can assume. A type is also an
easy way to group and name a collection of routines, called its methods, that operate on
values in that set.

An exception is a way to report an unusual outcome.

A module is a way to structure the name space into a two-level hierarchy. An identifier i
declared in a module m is known as i in m and as m.i throughout the program. A class is a
module that can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up:
Lexical rules
Types
Expressions
Commands
Modules

At the end there are two sections with additional information:
Scope rules
Built-in methods for set, sequence, and routine types.

There is also an index. The Introduction to Spec has a one-page language summary.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 3

2. Grammar rules

Nonterminal symbols are in lower case; terminal symbols are punctuation other than ::=, or are
quoted, or are in upper case.

Alternative choices for a nonterminal are on separate lines.

symbol* denotes zero of more occurrences of symbol.

The symbol empty denotes the empty string.

If x is a nonterminal, the nonterminal xList is defined by

xList ::= x
x , xList

A comment in the grammar runs from % to the end of the line; this is just like Spec itself.

A [n] in a comment means that there is an explanation in a note labeled [n] that follows this chunk
of grammar.

3. Lexical rules

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation
() [] { } , ; : . | << >> := => -> [] [*]. Symbols must not have embedded white
space. They are always taken to be as long as possible.

A literal is a decimal number such as 3765, a quoted character such as 'x', or a double-quoted
string such as "Hello\n".

An identifier (id) is a letter followed by any number of letters, underscores, and digits followed
by any number of ' characters. Case is significant in identifiers. By convention type and
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword.
The predefined identifiers Any, Bool, Char, Int, Nat, Null, String, true, false, and
nil are declared in every program. The meaning of an identifier is established by a declaration;
see section 8 on scope for details. Identifiers cannot be redeclared.

By convention keywords are written in upper case, but you can write them in lower case if you
like; the same strings with mixed case are not keywords, however. The keywords are

ALL APROC AS BEGIN BY CLASS

CONST DO END ENUM EXCEPT EXCEPTION

EXISTS EXPORT FI FUNC HAVOC IF

IN IS LAMBDA MODULE OD PROC

RAISE RAISES RET SEQ SET SKIP

SUCHTHAT THREAD TYPE VAR WHILE WITH

An operator is any sequence of the characters !@#$^&*-+=:.<>?/\|~ except the sequences
: . | << >> := => -> (these are punctuation), or one of the keyword operators AS, IN, and IS.

A comment in a Spec program runs from a % outside of quotes to the end of the line. It does not
change the meaning of the program.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 4

4. Types

A type defines a set of values; we say that a value v has type T if v is in T’s set. The sets are not
disjoint, so a value can belong to more than one set and therefore can have more than one type.
In addition to its value set, a type also defines a set of routines (functions or procedures) called
its methods; a method normally takes a value of the type as its first argument.

An expression has exactly one type, determined by the rules in section 5; the result of the
expression has this type unless it is an exception.

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You
can skip them on first reading, or if you don’t care about type-checking.

About unions: If the expression e has type T we say that e has a routine type W if T is a routine
type W or if T is a union type and exactly one type W in the union is a routine type. Under
corresponding conditions we say that e has a sequence or set type, or a record type with a field f.

Two types are equal if their definitions are the same (that is, have the same parse trees) after all
type names have been replaced by their definitions and all WITH clauses have been discarded.
Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by
a type checker, whereas the set equality is intractable.

A type T fits a type U if the type-checker thinks they may have some values in common. This can
only happen if they have the same structure, and each part of T fits the corresponding part of U.
‘Fits’ is an equivalence relation. Precisely, T fits U if:

T = U.

T is T' SUCHTHAT F or (... + T' + ...) and T' fits U, or vice versa. There may be no
values in common, but the type-checker can’t analyze the SUCHTHAT clauses to find out.

T and U are tuples of the same length and each component of T fits the corresponding
component of U.

T and U are record types, and for every decl id: T' in T there is a corresponding decl id:
U' in U such that T' fits U', or vice versa.

T=T1->T2 RAISES EXt and U=U1->U2 RAISES EXu, or one or both RAISES are missing, and
T1 fits U1 and T2 fits U2. Similar rules apply for PROC and APROC types.

T=SET T' and U=SET U' and T' fits U'.

T = Int->T' or SEQ T' and U = SEQ U' and T' fits U'.

T includes U if the same conditions apply with “fits” replaced by “includes”, all the “vice versa”
clauses dropped, and in the -> rule “T1 fits U1” replaced by “U1 includes T1 and EXt is a superset
of EXu”. If T includes U then T’s value set includes U’s value set; again, the reverse is intractable.

An expression e fits a type U in state s if e’s type fits U and the result of e in state s has type U or
is an exception; in general this can only be checked at runtime unless U includes e’s type. The
check that e fits T is required for assignment and routine invocation; together with a few other
checks it is called type-checking. The rules for type-checking are given in sections 5 and 6.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 5

type ::= name % name of a type
"Any" % every value has this type
"Null" % with value set {nil}
"Bool" % with value set {true, false}
"Char" % like an enumeration
"String" % = SEQ Char
"Int" % integers
"Nat" % naturals: non-negative integers
SEQ type % sequence [1]
SET type % set
(typeList) % tuple; (T) is the same as T
[declList] % record with declared fields
(union) % union of the types
aType -> type raises % function [2]
APROC aType returns raises % atomic procedure
PROC aType returns raises % non-atomic procedure
type WITH { methodDefList } % attach methods to a type [3]
type SUCHTHAT primary % restrict the value set [4]
IN exp % = T SUCHTHAT (\ t: T | t IN exp)
 % where exp’s type has an IN method
id [typeList] . id % type from a module [5]

name ::= id . id % the first id denotes a module
id % short for m.id if id is declared
 % in the current module m, and for
 % Global.id if id is declared globally
type . id % the id method of type

decl ::= id : type % id has this type
id % short for id: Id [6]

union ::= type + type
union + type

aType ::= ()
type

returns ::= empty % only for procedures
-> type

raises ::= empty
RAISES exceptionSet % the exceptions it can return

exceptionSet ::= { exceptionList } % a set of exceptions
name % declared as an exception set
exceptionSet \/ exceptionSet % set union
exceptionSet - exceptionSet % set difference

exception ::= id % means "id"

method ::= id
stringLiteral % the string must be an operator
 % other than "=" or "#" (see section 3)

methodDef ::= method := name % name is a routine

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 6

The ambiguity of the type grammar is resolved by taking -> to be right associative and giving
WITH and RAISES higher precedence than ->.

[1] A SEQ T is just a function from {0, 1, ..., size-1} to T. That is, it is short for
(Int->T) SUCHTHAT (\ f: Int->T | (EXISTS size: Int |
 (ALL i: Int | f!i = (i IN 0 .. size-1)))

 WITH { see section 9 }.
This means that invocation, !, and * work for a sequence just as they do for any function. In
addition, there are many other useful operators on sequences; see section 9. The String type is
just SEQ Char; there are String literals, defined in section 5.

[2] A T->U value is a partial function from a state and a value of type T to a value of type U. A
T->U RAISES xs value is the same except that the function may raise the exceptions in xs.

[3] We say m is a method of T defined by f, and denote f by T.m, if

T = T' WITH {..., m := f, ...} and m is an identifier or is "op" where op is an operator
(the construct in braces is a methodDefList), or

T = T' WITH { methodDefList }, m is not defined in methodDefList, and m is a method
of T' defined by f, or

T = (... + T' + ...), m is a method of T' defined by f, and there is no other type in the
union with a method m.

There are two special forms for invoking methods: e1 infixOp e2 or prefixOp e, and
e1.id(e2) or e.id or e.id(). They are explained in notes [1] and [3] to the expression grammar
in the next section. This notation may be familiar from object-oriented languages. Unlike many
such languages, Spec makes no provision for varying the method in each object, though it does
allow inheritance and overriding.

A method doesn’t have to be a routine, though the special forms won’t type-check unless the
method is a routine. Any method m of T can be referred to by T.m.

If type U has method m, then the function type V = T->U has a lifted method m that composes U.m
with v, unless V already has a m method. V. m is defined by

(\ v | (\ t | v(t).m))

so that v.m = v * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a
second argument of type W, then V.m takes a second argument of type VV = T->W and is defined
on the intersection of the domains by applying m to the two results. Thus in this case V.m is

(\ v, vv | (\ t :IN v.dom /\ vv.dom | v(t).m(vv(t))))

Lifting also works for relations to U, and therefore also for SET U. Thus if R = (T,U)->Bool and
m returns type X, R.m is defined by

(\ r | (\ t, x | x IN {u | r(t, u) | u.m}))

so that r.m = r * U.m.rel. If m takes a second argument, then R.m takes a second argument of
type RR = T->W, and r.m(rr) relates t to u.m(w) whenever r relates t to u and rr relates t to w.
In other words, R.m is defined by

(\ r, rr | (\ t, x | x IN {u, w | r(t, u) /\ rr(t, w) | u.m(w)}))

If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, r1 – r2
the difference, and ~r the complement.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 7

 [4] In T SUCHTHAT f, f is a predicate on T's, that is, a function (T -> Bool). The type
T SUCHTHAT f has the same methods as T, and its value set is the values of T for which f is true.
See section 5 for primary.

[5] If a type is defined by m[typeList].id and m is a parameterized module, the meaning is
m'.id where m' is defined by MODULE m' = m[typeList] END m'. See section 7 for a full
discussion of this kind of type.

[6] Id is the id of a type, obtained from id by dropping trailing ' characters and digits, and
capitalizing the first letter or all the letters (it’s an error if these capitalizations yield different
identifiers that are both known at this point).

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 8

5. Expressions

An expression is a partial function from states to results; results are values or exceptions. That is,
an expression computes a result for a given state. The state is a function from names to values.
This state is supplied by the command containing the expression in a way explained later. The
meaning of an expression (that is, the function it denotes) is defined informally in this section.
The meanings of invocations and lambda function constructors are somewhat tricky, and the
informal explanation here is supplemented by a formal account in Atomic Semantics of Spec.
Because expressions don’t have side effects, the order of evaluation of operands is irrelevant (but
see [5] and [13]).

Every expression has a type. The result of the expression is a member of this type if it is not an
exception. This property is guaranteed by the type-checking rules, which require an expression
used as an argument, the right hand side of an assignment, or a routine result to fit the type of the
formal, left hand side, or routine range (see section 4 for the definition of ‘fit’). In addition,
expressions appearing in certain contexts must have suitable types: in e1(e2), e1 must have a
routine type; in e1+e2, e1 must have a type with a "+" method, etc. These rules are given in
detail in the rest of this section. A union type is suitable if exactly one of the members is suitable.
Also, if T is suitable in some context, so are T WITH {... } and T SUCHTHAT f.

An expression can be a literal, a variable known in the scope that contains the expression, or a
function invocation. The form of an expression determines both its type and its result in a state:

literal has the type and value of the literal.

name has the declared type of name and its value in the current state, state("name"). The
form T.m (where T denotes a type) is also a name; it denotes the m method of T. Note that if
name is id and id is declared in the current module m, then it is short for m.id.

invocation f(e): f must have a function (not procedure) type U->T RAISES EX or U->T (note
that a sequence is a function), and e must fit U; then f(e) has type T. In more detail, if f has
result rf and e has type U' and result re, then U' must fit U (checked statically) and re must
have type U (checked dynamically if U' involves a union or SUCHTHAT; if the dynamic check
fails the result is a fatal error). Then f(e) has type T.

If either rf or re is undefined, so is f(e). Otherwise, if either is an exception, that exception
is the result of f(e); if both are, rf is the result.

If both rf and re are normal, the result of rf at re can be:

A normal value, which becomes the result of f(e).

An exception, which becomes the result of f(e). If rf is defined by a function body that
loops, the result is a special looping exception that you cannot handle.

Undefined, in which case f(e) is undefined and the command containing it fails (has no
outcome) — failure is explained in section 6.

A function invocation in an expression never affects the state. If the result is an exception,
the containing command has an exceptional outcome; for details see section 6.

The other forms of expressions (e.id, constructors, prefix and infix operators, combinations,
and quantifications) are all syntactic sugar for function invocations, and their results are obtained
by the rule used for invocations. There is a small exception for conditionals [5] and for the
conditional logical operators /\,\/, and ==> that are defined in terms of conditionals [13].

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 9

exp ::= primary
prefixOp exp % [1]
exp infixOp exp % [1]
infixOp : exp % exp’s elements combined by op [2]
exp IS type % (EXISTS x: type | exp = x)
exp AS type % error unless (exp IS type) [14]

primary ::= literal
name
primary . id % method invocation [3] or record field
primary arguments % function invocation
constructor
(exp)
(quantif declList | pred) % /\:{d | p} for ALL, \/ for EXISTS [4]
(pred => exp1 [*] exp2) % if pred then exp1 else exp2 [5]
(pred => exp1) % undefined if pred is false

literal ::= intLiteral % sequence of decimal digits
charLiteral % 'x', x a printing character
stringLiteral % "xxx", with \ escapes as in C

arguments ::= (expList) % the arg is the tuple (expList)
()

constructor ::= { } % empty function/sequence/set [6]
{ expList } % sequence/set constructor [6]
(expList) % tuple constructor
name { } % name denotes a func/seq/set type [6]
name { expList } % name denotes a seq/set/record type [6]
primary { fieldDefList } % record constructor [7]
primary { exp -> result } % function or sequence constructor [8]
primary { * -> result } % function constructor [8]
(LAMBDA signature = cmd) % function with the local state [9]
(\ declList | exp) % short for (LAMBDA(d)->T=RET exp) [9]
{ declList | pred | exp } % set constructor [10]
{ seqGenList | pred | exp } % sequence constructor [11]

fieldDef ::= id := exp

result ::= empty % the function is undefined
exp % the function yields exp
RAISE exception % the function yields exception

seqGen ::= id := exp BY exp WHILE exp % sequence generator [11]
id :IN exp

pred ::= exp % predicate, of type Bool
quantif ::= ALL

EXISTS

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 10

 (precedence) argument/result types operation

infixOp ::= ** % (8) (Int, Int)->Int exponentiate
* % (7) (Int, Int)->Int multiply
 % (T->U, U->V)->(T->V) [12] function composition
/ % (7) (Int, Int)->Int divide
// % (7) (Int, Int)->Int remainder
+ % (6) (Int, Int)->Int add
 % (SEQ T, SEQ T)->SEQ T [12] concatenation
 % (T->U, T->U)->(T->U) [12] function overlay
- % (6) (Int, Int)->Int subtract
 % (SET T, SET T)->SET T [12] set difference;
 % (SEQ T, SEQ T)->SEQ T [12] multiset difference
! % (6) (T->U, T)->Bool [12] function is defined
!! % (6) (T->U, T)->Bool [12] func has normal value
.. % (5) (Int, Int)->SEQ Int [12] subrange
<= % (4) (Int, Int)->Bool less than or equal
 % (SET T, SET T)->Bool [12] subset
 % (SEQ T, SEQ T)->Bool [12] prefix
< % (4) (T, T)->Bool, T with <= less than
 % e1<e2 = (e1<=e2 /\ e1#e2)
> % (4) (T, T)->Bool, T with <= greater than
 % e1>e2 = e2<e1
>= % (4) (T, T)->Bool, T with <= greater or equal
 % e1>=e2 = e2<=e1
= % (4) (Any, Any)->Bool [1] equal
% (4) (Any, Any)->Bool not equal
 % e1#e2 = ~ (e1=e2)
<<= % (4) (SEQ T, SEQ T)->Bool [12] non-contiguous sub-seq
IN % (4) (T, SET T)->Bool [12] membership
/\ % (2) (Bool, Bool)->Bool [13] conditional and
 % (SET T, SET T)->SET T [12] intersection
\/ % (1) (Bool, Bool)->Bool [13] conditional or
 % (SET T, SET T)->SET T [12] union
==> % (0) (Bool, Bool)->Bool [13] conditional implies
op % (5) not one of the above [1]

prefixOp ::= - % (6) Int->Int negation
~ % (3) Bool->Bool complement
op % (5) not one of the above [1]

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 11

The ambiguity of the expression grammar is resolved by taking the infixOps to be left
associative and using the indicated precedences for the prefixOps and infixOps (with 8 for IS
and AS and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The
precedence is determined by the operator symbol and doesn’t depend on the operand types.

[1] The meaning of prefixOp e is T."prefixOp"(e), where T is e’s type, and of
e1 infixOp e2 is T1."infixOp"(e1, e2), where T1 is e1’s type. The built-in types Int (and
Nat with the same operations), Bool, sequences, sets, and functions have the operations given
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than
Int and Bool. Special case: e1 IN e2 means T2."IN"(e1, e2), where T2 is e2’s type.

Note that the = operator does not require that the types of its arguments agree, since both are Any.
Also, = and # cannot be overridden by WITH. To define your own abstract equality, use a different
operator such as "==".

[2] The exp must have type SEQ T or SET T. The value is the elements of exp combined into a
single value by infixOp, which must be associative and have an identity, and must also be
commutative if exp is a set. Thus
 + : {i: Int | 0<i /\ i<5 | i**2} = 1 + 4 + 9 + 16 = 30,
and if s is a sequence of strings, + : s is the concatenation of the strings. For another example,
see the definition of quantifications in [4]. Note that the entire set is evaluated; see [10].

[3] Methods can be invoked by dot notation.
 The meaning of e.id or e.id() is T.id(e), where T is e’s type.
 The meaning of e1.id(e2) is T.id(e1, e2), where T is e1’s type.
Section 9 on built-in methods gives the methods for built-in types other than Int and Bool.

[4] A quantification is a conjunction (if the quantifier is ALL) or disjunction (if it is EXISTS) of
the pred with the id’s in the declList bound to every possible value (that is, every value in
their types); see section 4 for decl. Precisely, (ALL d | p) = /\ : {d | p} and
(EXISTS d | p) = \/ : {d | p}. All the expressions in these expansions are evaluated,
unlike e2 in the expressions e1 /\ e2 and e1 \/ e2 (see [10] and [13]).

[5] A conditional (pred => e1 [*] e2) is not exactly an invocation. If pred is true, the result
is the result of e1 even if e2 is undefined or exceptional; if pred is false, the result is the result of
e2 even if e1 is undefined or exceptional. If pred is undefined, so is the result; if pred raises an
exception, that is the result. If [*] e2 is omitted and pred is false, the result is undefined.

[6] In a constructor {expList} each exp must have the same type T, the type of the
constructor is (SEQ T + SET T), and its value is the sequence containing the values of the
exps in the given order, which can also be viewed as the set containing these values.

If expList is empty the type is the union of all function, sequence and set types, and the value is
the empty sequence or set, or a function undefined everywhere. If desired, these constructors can
be prefixed by a name denoting a suitable set or sequence type.

A constructor T{e1, ..., en}, where T is a record type [f1: T1, ..., fn: Tn], is short for
a record constructor (see [7]) T{f1:=e1, ..., fn:=en}.

[7] The primary must have a record type, and the constructor has the same type as its primary
and denotes the same value except that the fields named in the fieldDefList have the given

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 12

values. Each value must fit the type declared for its id in the record type. The primary may also
denote a record type, in which case any fields missing from the fieldDefList are given
arbitrary (but deterministic) values. Thus if R=[a: Int, b: Int], R{a := 3, b := 4} is a
record of type R with a=3 and b=4, and R{a := 3, b := 4}{a := 5} is a record of type R with
a=5 and b=4. If the record type is qualified by a SUCHTHAT, the fields get values that satisfy it,
and the constructor is undefined if that’s not possible.

[8] The primary must have a function or sequence type, and the constructor has the same type as
its primary and denotes a value equal to the value denoted by the primary except that it maps
the argument value given by exp (which must fit the domain type of the function or sequence) to
result (which must fit the range type if it is an exp). For a function, if result is empty the
constructed function is undefined at exp, and if result is RAISE exception, then exception
must be in the RAISES set of primary’s type. For a sequence result must not be empty or
RAISE, and exp must be in primary.dom or the constructor expression is undefined.

In the * form the primary must be a function type or a function, and the value of the constructor
is a function whose result is result at every value of the function’s domain type (the type on the
left of the ->). Thus if F=(Int->Int) and f=F{*->0}, then f is zero everywhere and f{4->1} is
zero except at 4, where it is 1. If this value doesn’t have the function type, the constructor is
undefined; this can happen if the type has a SUCHTHAT clause. For example, the type can’t be a
sequence.

[9] A LAMBDA constructor is a statically scoped function definition. When it is invoked, the
meaning of the body is determined by the local state when the LAMBDA was evaluated and the
global state when it is invoked; this is ad-hoc but convenient. See section 7 for signature and
section 6 for cmd. The returns in the signature may not be empty. Note that a function can’t
have side effects.

The form (\ declList | exp) is short for (LAMBDA (declList) -> T = RET exp), where T
is the type of exp. See section 4 for decl.

[10] A set constructor { declList | pred | exp } has type SET T, where exp has type T
in the current state augmented by declList; see section 4 for decl. Its value is a set that
contains x iff (EXISTS declList | pred /\ x = exp). Thus

{i: Int | 0<i /\ i<5 | i**2} = {1, 4, 9, 16}

and both have type SET Int. If pred is omitted it defaults to true. If | exp is omitted it
defaults to the last id declared:

{i: Int | 0<i /\ i<5} = {1, 2, 3, 4 }

Note that if s is a set or sequence, IN s is a type (see section 4), so you can write a constructor
like {i :IN s | i > 4} for the elements of s greater than 4. This is shorter and clearer than

{i | i IN s /\ i > 4}

If there are any values of the declared id’s for which pred is undefined, or pred is true and exp
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions;
if more than one exception is raised, the result exception is an arbitrary choice among them.

[11] A sequence constructor { seqGenList | pred | exp } has type SEQ T, where exp has
type T in the current state augmented by seqGenList, as follows. The value of

{x1 := e01 BY e1 WHILE p1, ... , xn := e0n BY en WHILE pn | pred | exp}

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 13

is the sequence which is the value of result produced by the following program. Here exp has
type T and result is a fresh identifier (that is, one that doesn’t appear elsewhere in the program).
There’s an informal explanation after the program.

VAR x2 := e02, ..., xn := e0n, result := T{}, x1 := e01 |
DO p1 => x2 := e2; p2 => ... => xn := en; pn =>
 IF pred => result := result + {exp} [*] SKIP FI;
 x1 := e1
OD

However, e0i and ei are not allowed to refer to xj if j > i. Thus the n sequences are unrolled
in parallel until one of them ends, as follows. All but the first are initialized; then the first is
initialized and all the others computed, then all are computed repeatedly. In each iteration, once
all the xi have been set, if pred is true the value of exp is appended to the result sequence; thus
pred serves to filter the result. As with set constructors, an omitted pred defaults to true, and an
omitted | exp defaults to | xn. An omitted WHILE pi defaults to WHILE true. An omitted
:= e0i defaults to

:= {x: Ti | true}.choose

where Ti is the type of ei; that is, it defaults to an arbitrary value of the right type.

The generator xi :IN ei generates the elements of the sequence ei in order. It is short for
j := 0 BY j + 1 WHILE j < ei.size, xi BY ei(j)

where j is a fresh identifier. Note that if the :IN isn’t the first generator then the first element of
ei is skipped, which is probably not what you want. Note that :IN in a sequence constructor
overrides the normal use of IN s as a type (see [10]).

Undefined and exceptional results are handled the same way as in set constructors.

Examples
{i := 0 BY i+1 WHILE i <= n} = 0..n = {0, 1, ..., n}
(r := head BY r.next WHILE r # nil | | r.val} the val fields of a list starting at head
{x :IN s, sum := 0 BY sum + x} partial sums of s
{x :IN s, sum := 0 BY sum + x}.last + : s, the last partial sum
{x :IN s, rev := {} BY {x} + rev}.last reverse of s
{x :IN s | | f(x)} s * f
{i :IN 1..n | i // 2 # 0 | i * i} squares of odd numbers <= n
{i :IN 1..n, iter := e BY f(iter)} {f(e), f2(e), ..., fn(e)}

[12] These operations are defined in section 9.

[13] The conditional logical operators are defined in terms of conditionals:
e1 \/ e2 = (e1 => true [*] e2)
e1 /\ e2 = (~e1 => false [*] e2)
e1 ==> e2 = (~e1 => true [*] e2)

Thus the second operand is not evaluated if the value of the first one determines the result.

[14] AS changes only the type of the expression, not its value. Thus if (exp IS type) the value
of (exp AS type) is the value of exp, but its type is type rather than the type of exp.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 14

6. Commands

A command changes the state (or does nothing). Recall that the state is a mapping from names to
values; we denote it by state. Commands are non-deterministic. An atomic command is one
that is inside <<...>> brackets.

The meaning of an atomic command is a set of possible transitions (that is, a relation) between a
state and an outcome (a state plus an optional exception); there can be any number of outcomes
from a given state. One possibility is a looping exceptional outcome. Another is no outcomes. In
this case we say that the atomic command fails; this happens because all possible choices within
it encounter a false guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen
because it’s one operand of [] or [*] and the other operand succeeds. If can also happen because
a non-deterministic construct in the language that might make a different choice. Leaving
exceptions aside, the commands with this property are []and VAR (because it chooses arbitrary
values for the new variables). If we gave an operational semantics for atomic commands, this
situation would correspond to backtracking. In the relational semantics that we actually give (in
Atomic Semantics of Spec), it corresponds to the fact that the predicate defining the relation is the
“or” of predicates for the subcommands. Look there for more discussion of this point.

A non-atomic command defines a collection of possible transitions, roughly one for each
<<...>> command that is part of it. If it has simple commands not in atomic brackets, each one
also defines a possible transition, except for assignments and invocations. An assignment
defines two transitions, one to evaluate the right hand side, and the other to change the value of
the left hand side. An invocation defines a transition for evaluating the arguments and doing
the call and one for evaluating the result and doing the return, plus all the transitions of the body.
These rules are somewhat arbitrary and their details are not very important, since you can always
write separate commands to express more transitions, or atomic brackets to express fewer
transitions. The motivation for the rules is to have as many transitions as possible, consistent
with the idea that an expression is evaluated atomically.

A complete collection of possible transitions defines the possible sequences of states or histories;
there can be any number of histories from a given state. A non-atomic command still makes
choices, but it does not backtrack and therefore can have histories in which it gets stuck, even
though in other histories a different choice allows it to run to completion. For the details, see
handout 17 on formal concurrency.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 15

cmd ::= SKIP % [1]
HAVOC % [1]
RET % [2]
RET exp % [2]
RAISE exception % [9]
CRASH % [10]
invocation % [3]
assignment % [4]

 cmd [] cmd % or [5]
cmd [*] cmd % else [5]
pred => cmd % guarded cmd: if pred then cmd [5]
VAR declInitList | cmd % variable introduction [6]
cmd ; cmd % sequential composition
cmd EXCEPT handler % handle exception [9]

 << cmd >> % atomic brackets [7]
BEGIN cmd END % just brackets
IF cmd FI % just brackets [5]
DO cmd OD % repeat until cmd fails [8]

invocation ::= primary arguments % primary has a routine type [3]

assignment ::= lhs := exp % state := state{name -> exp} [4]
lhs infixOp := exp % short for lhs := lhs infixOp exp
lhs := invocation % of a PROC or APROC
(lhsList) := exp % exp a tuple that fits lhsList
(lhsList) := invocation

lhs ::= name % defined in section 4
lhs . id % record field [4]
lhs arguments % function [4]

declInit ::= decl % initially any value of the type [6]
id : type := exp % initially exp, which must fit type [6]
id := exp % short for id: T := exp, where
 % T is the type of exp

handler ::= exceptionSet => cmd % [9]. See section 4 for exceptionSet

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions ;, [], and [*] to be left-associative and EXCEPT to be right associative, and giving [] and
[*] lowest precedence, => and | next (to the right only, since their left operand is an exp), ;
next, and EXCEPT highest precedence.

[1] The empty command and SKIP make no change in the state. HAVOC produces an arbitrary
outcome from any state; if you want to specify undefined behavior when a precondition is not
satisfied, write ~precondition => HAVOC.

[2] A RET may only appear in a routine body, and the exp must fit the result type of the routine.
The exp is omitted iff the returns of the routine’s signature is empty.

[3] For arguments see section 5. The argument are passed by value, that is, assigned to the
formals of the procedure A function body cannot invoke a PROC or APROC; together with the rule
for assignments (see [7]) this ensures that it can’t affect the state. An atomic command can
invoke an APROC but not a PROC. A command is atomic iff it is << cmd >>, a subcommand of an

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 16

atomic command, or one of the simple commands SKIP, HAVOC, RET, or RAISE. The type-
checking rule for invocations is the same as for function invocations in expressions.

[4] You can only assign to a name declared with VAR or in a signature. In an assignment the
exp must fit the type of the lhs, or there is a fatal error. In a function body assignments must be
to names declared in the signature or the body, to ensure that the function can’t have side effects.

An assignment to a left hand side that is not a name is short for assigning a constructor to a
name. In particular,

lhs(arguments) := exp is short for lhs := lhs{arguments->exp}, and
lhs . id := exp is short for lhs := lhs{id := exp}.

These abbreviations are expanded repeatedly until lhs is a name.

In an assignment the right hand side may be an invocation (of a procedure) as well as an
ordinary expression (which can only invoke a function). The meaning of lhs := exp or
lhs := invocation is to first evaluate the exp or do the invocation and assign the result to a
temporary variable v, and then do lhs := v. Thus the assignment command is not atomic unless
it is inside <<...>>.

If the left hand side of an assignment is a (lhsList), the exp must be a tuple of the same
length, and each component must fit the type of the corresponding lhs. Note that you cannot
write a tuple constructor that contains procedure invocations.

[5] A guarded command fails if the result of pred is undefined or false. It is equivalent to cmd if
the result of pred is true. A pred is just a Boolean exp; see section 4.

S1 [] S2 chooses one of the Si to execute. It chooses one that doesn’t fail. Usually S1 and S2
will be guarded. For example,
x=1 => y:=0 [] x> 1 => y:=1 sets y to 0 if x=1, to 1 if x>1, and has no outcome if x<1. But
x=1 => y:=0 [] x>=1 => y:=1 might set y to 0 or 1 if x=1.

S1 [*] S2 is the same as S1 unless S1 fails, in which case it’s the same as S2.

IF ... FI are just command brackets, but it often makes the program clearer to put them
around a sequence of guarded commands, thus:

IF x < 0 => y := 3
[] x = 0 => y := 4
[*] y := 5
FI

[6] In a VAR the unadorned form of declInit initializes a new variable to an arbitrary value of
the declared type. The := form initializes a new variable to exp. Precisely,

VAR id: T := exp | c

is equivalent to
VAR id: T | id := exp; c

The exp could also be a procedure invocation, as in an assignment.

Several declInits after VAR is short for nested VARs. Precisely,
VAR declInit , declInitList | cmd

is short for
VAR declInit | VAR declInitList | cmd

This is unlike a module, where all the names are introduced in parallel.

[7] In an atomic command the atomic brackets can be used for grouping instead of BEGIN ...
END; since the command can’t be any more atomic, they have no other meaning in this context.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 17

[8] Execute cmd repeatedly until it fails. If cmd never fails, the result is a looping exception that
doesn’t have a name and therefore can’t be handled. Note that this is not the same as failure.

[9] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings
(which are written without the enclosing quotes). A module can also declare an identifier that
denotes a set of exceptions. A command can have an attached exception handler, which gets to
look at any exceptions produced in the command (by RAISE or by an invocation) and not handled
closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by
the routine’s invocation.

An exception ex must be in the RAISES set of a routine r if either RAISE ex or an invocation of a
routine with ex in its RAISES set occurs in the body of r outside the scope of a handler for ex.

[10] CRASH stops the execution of any current invocations in the module other than the one that
executes the CRASH, and discards their local state. The same thing happens to any invocations
outside the module from within it. After CRASH, no procedure in the module can be invoked from
outside until the routine that invokes it returns. CRASH is meant to be invoked from within a
special Crash procedure in the module that models the effects of a failure.

7. Modules

A program is some global declarations plus a set of modules. Each module contains variable,
routine, exception, and type declarations.

Module definitions can be parameterized with mformals after the module id, and a
parameterized module can be instantiated. Instantiation is like macro expansion: the formal
parameters are replaced by the arguments throughout the body to yield the expanded body. The
parameters must be types, and the body must type-check without any assumptions about the
argument that replaces a formal other than the presence of a WITH clause that contains all the
methods mentioned in the formal parameter list (that is, formals are treated as distinct from all
other types).

Each module is a separate scope, and there is also a Global scope for the identifiers declared at
the top level of the program. An identifier id declared at the top level of a non-parameterized
module m is short for m.id when it occurs in m. If it appears in the exports, it can be denoted by
m.id anywhere. When an identifier id that is declared globally occurs anywhere, it is short for
Global.id. Global cannot be used as a module id.

An exported id must be declared in the module. If an exported id has a WITH clause, it must be
declared in the module as a type with at least those methods, and only those methods are
accessible outside the module; if there is no WITH clause, all its methods and constructors are
accessible. This is Spec’s version of data abstraction.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 18

program ::= toplevel* module* END

module ::= modclass id mformals exports = body END id

modclass ::= MODULE
CLASS % [4]

exports ::= EXPORT exportList
export ::= id

id WITH {methodList} % see section 4 for method

mformals ::= empty
[mfpList]

mfp ::= id % module formal parameter
id WITH { declList } % see section 4 for decl

body ::= toplevel* % id must be the module id
id [typeList] % instance of parameterized module

toplevel ::= VAR declInit* % declares the decl ids [1]
CONST declInit* % declares the decl ids as constant
routineDecl % declares the routine id
EXCEPTION exSetDecl* % declares the exception set ids
TYPE typeDecl* % declares the type ids and any
 % ids in ENUMs

routineDecl ::= FUNC id signature = cmd % function
APROC id signature =<<cmd>> % atomic procedure
PROC id signature = cmd % non-atomic procedure
THREAD id signature = cmd % one thread for each possible
 % invocation of the routine [2]

signature ::= (declList) returns raises % see section 4 for returns
() returns raises % and raises

exSetDecl ::= id = exceptionSet % see section 4 for exceptionSet

typeDecl ::= id = type % see section 4 for type
id = ENUM [idList] % a value is one of the id’s [3]

[1] The “:= exp” in a declInit (defined in section 6) specifies an initial value for the variable.
The exp is evaluated in a state in which each variable used during the evaluation has been
initialized, and the result must be a normal value, not an exception. The exp sees all the names
known in the scope, not just the ones that textually precede it, but the relation “used during
evaluation of initial values” on the variables must be a partial order so that initialization makes
sense. As in an assignment, the exp may be a procedure invocation as well as an ordinary
expression. It’s a fatal error if the exp is undefined or the invocation fails.

[2] Instead of being invoked by the client of the module or by another procedure, a thread is
automatically invoked in parallel once for every possible value of its arguments. The thread is
named by the id in the declaration together with the argument values. So

VAR sum := 0, count := 0
THREAD P(i: Int) = i IN 0 .. 9 =>
 VAR t | t := F(i); <<sum := sum + t>>; <<count := count + 1>>

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 19

adds up the values of F(0) ... F(9) in parallel. It creates a thread P(i) for every integer i; the
threads P(0), ..., P(9) for which the guard is true invoke F(0), ..., F(9) in parallel and
total the results in sum. When count = 10 the total is complete.

A thread is the only way to get an entire program to do anything (except evaluate initializing
expressions, which could have side effects), since transitions only happen as part of some thread.

[3] The id’s in the list are declared in the module; their type is the ENUM type. There are no
operations on enumeration values except the ones that apply to all types: equality, assignment,
and routine argument and result communication.

[4] A class is shorthand for a module that declares a convenient object type. The next few
paragraphs specify the shorthand, and the last one explains the intended usage.

If the class id is Obj, the module id is ObjMod. Each variable declared in a top level VAR in the
class becomes a field of the ObjRec record type in the module. The module exports only a type
Obj that is also declared globally. Obj indexes a collection of state records of type ObjRec stored
in the module’s objs variable, which is a function Obj->ObjRec. Obj’s methods are all the
names declared at top level in the class except the variables, plus the new method described
below; the exported Obj’s methods are all the ones that the class exports plus new.

To make a class routine suitable as a method, it needs access to an ObjRec that holds the state of
the object. It gets this access through a self parameter of type Obj, which it uses to refer to the
object state objs(self). To carry out this scheme, each routine in the module, unless it appears
in a WITH clause in the class, is ‘objectified’ by giving it an extra self parameter of type Obj. In
addition, in a routine body every occurrence of a variable v declared at top level in the class is
replaced by objs(self).v in the module, and every invocation of an objectified class routine
gets self as an extra first parameter.

The module also gets a synthesized and objectified StdNew procedure that adds a state record to
objs, initializes it from the class’s variable initializations (rewritten like the routine bodies), and
returns its Obj index; this procedure becomes the new method of Obj unless the class already has
a new routine.

A class cannot declare a THREAD.

The effect of this transformation is that a variable obj of type Obj behaves like an object. The
state of the object is objs(obj). The invocation obj.m or obj.m(x) is short for ObjMod.m(obj)
or ObjMod.m(obj, x) by the usual rule for methods, and it thus invokes the method m; in m’s
body each occurrence of a class variable refers to the corresponding field in obj’s state.
obj.new() returns a new and initialized Obj object. The following example shows how a class is
transformed into a module.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 20

CLASS Obj EXPORT T1, f, p, … = MODULE ObjMod EXPORT Obj WITH {T1, f, p, new } =

TYPE T1 = … WITH {add:=AddT} TYPE T1 = … WITH {add:=AddT}
CONST c := … CONST c := …

VAR v1:T1:=ei, v2:T2:=pi(v1), … TYPE ObjRec = [v1: T1, v2: T2, …]
 Obj = Int WITH {T1, c, f:=f, p:=p,
 AddT:=AddT, …, new:=StdNew}
 VAR objs: Obj -> ObjRec := {}

FUNC f(p1: RT1, …) = … v1 … FUNC f(self: Obj, p1: RT1, …) = … objs(self).v1 …
PROC p(p2: RT2, …) = … v2 … PROC p(self: Obj, p2: RT2, …) = … objs(self).v2 …
FUNC AddT(t1, t2) = … FUNC AddT(t1, t2) = … % in T1’s WITH, so not objectifie
… …
 PROC StdNew(self: Obj) -> Obj =
 VAR obj: Obj | ~ obj IN objs.dom =>
 objs(obj) := ObjRec{};
 objs(obj).v1 := ei;
 objs(obj).v2 := pi(objs(obj).v1);
 …;
 RET obj

END Obj END ObjMod

 TYPE Obj = ObjMod.Obj

In abstraction functions and invariants we also write obj.n for field n in obj’s state, that is, for
ObjMod.objs(obj).n.

8. Scope
The declaration of an identifier is known throughout the smallest scope in which the declaration
appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms
defined before section 7 have pointers to their definitions. A scope is one of

the whole program, in which just the predefined (section 3), module, and globally declared
identifiers are declared;

a module;

the part of a routineDecl or LAMBDA expression (section 5) after the =;

the part of a VAR declInit | cmd command after the | (section 6);

the part of a constructor or quantification after the first | (section 5).

a record type or methodDefList (section 4);

An identifier is declared by

a module id, mfp, or toplevel (for types, exception sets, ENUM elements, and named
routines),

a decl in a record type (section 4), | constructor or quantification (section 5), declInit
(section 6), routine signature, or WITH clause of a mfp, or

a methodDef in the WITH clause of a type (section 4).

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 21

An identifier may not be declared in a scope where it is already known. An occurrence of an
identifier id always refers to the declaration of id which is known at that point, except when id
is being declared (precedes a :, the = of a toplevel, the := of a record constructor, or the := or
BY in a seqGen), or follows a dot. There are four cases for dot:

moduleId . id — the id must be exported from the basic module moduleId, and this
expression denotes the meaning of id in that module.

record . id — the id must be declared as a field of the record type, and this expression
denotes that field of record. In an assignment’s lhs see [7] in section 6 for the meaning.

typeId . id — the typeId denotes a type, id must be a method of this type, and this
expression denotes that method.

primary . id — the id must be a method of primary’s type, and this expression, together
with any following arguments, denotes an invocation of that method; see [2] in section 5 on
expressions.

If id refers to an identifier declared by a toplevel in the current module m, it is short for m.id.
If it refers to an identifier declared by a toplevel in the program, it is short for Global.id.
Once these abbreviations have been expanded, every name in the state is either global (contains a
dot and is declared in a toplevel), or local (does not contain a dot and is declared in some other
way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing
quotes for convenience. Therefore they do not have scope.

9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the
expression grammar. The built-in methods for types other than Int and Bool are defined below.
Note that these are not complete definitions of the types; they do not include the constructors.

Sets

A set has methods for

computing union, intersection, and set difference (lifted from Bool; see note 3 in section 4),
and adding or removing an element, testing for membership and subset;

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum element, and turning a set into its characteristic
predicate (the inverse is the predicate’s set method);

composing a set with a function or relation, and converting a set into a relation from nil to
the members of the set (the inverse of this is just the range of the relation).

We define these operations with a module that represents a set by its characteristic predicate.
Precisely, SET T behaves as though it were Set[T].S, where

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 22

MODULE Set[T] EXPORT S =

TYPE S = Any->Bool SUCHTHAT (\ s | (ALL any | s(any) ==> (any IS T)))
% Defined everywhere so that type inclusion will work; see section 4.
 WITH {"\/":=Union, "/\":=Intersection, "-":=Difference,
 "IN":=In, "<=":=Subset, choose:=Choose, seq:=Seq,
 pred:=Pred, perms:=Perms, fsort:=FSort, sort:=Sort,
 fmax:=FMax, fmin:=FMin, max:=Max, min:=Min
 "*":=ComposeF, rel:=Rel, "**":=ComposeR }

FUNC Union(s1, s2)->S = RET (\ t | s1(t) \/ s2(t)) % s1 \/ s2
FUNC Intersection(s1, s2)->S = RET (\ t | s1(t) /\ s2(t)) % s1 /\ s2
FUNC Difference(s1, s2)->S = RET (\ t | s1(t) /\ ~s2(t)) % s1 - s2
FUNC In(s, t)->Bool = RET s(t) % t IN s
FUNC Subset(s1, s2)->Bool = RET (ALL t| s1(t) ==> s2(t)) % s1 <= s2
FUNC Size(s)->Int = % s.size

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET 0
FUNC Choose(s)->T = VAR t | s(t) => RET t % s.choose
% Not really, since VAR makes a non-deterministic choice,
% but choose makes a deterministic one. It is undefined if s is empty.
FUNC Seq(s)->SEQ T = % s.seq
% Defined only for finite sets. Note that Seq chooses a sequence deterministically.

RET {q: SEQ T | q.rng = s /\ q.size = s.size}.choose
FUNC Pred(s)->(T->Bool) = RET s % s.pred
% s.pred is just s. We define pred for symmetry with seq, set, etc.

FUNC Perms(s)->SET SEQ T = RET s.seq.perms % s.perms
FUNC FSort(s, f: (T,T)->Bool)->S = RET s.seq.fsort(f) % s.fsort(f); f is compare
FUNC Sort(s)->S = RET s.seq.sort % s.sort; only if T has <=
FUNC FMax(s, f: (T,T)->Bool)->T = RET s.fsort(f).last % s.fmax(f); a max under f
FUNC FMin(s, f: (T,T)->Bool)->T = RET s.fsort(f).head % s.fmin(f); a min under f
FUNC Max(s)->T = RET s.fmax(T."<=") % s.max; only if T has <=
FUNC Min(s)->T = RET s.fmin(T."<=") % s.min; only if T has <=
% Note that these functions are undefined if s is empty. If there are extremal
% elements not distinguished by f or "<=", they make an arbitrary deterministic choice.
FUNC ComposeF(s, f: T->U)->SET U = RET {t :IN s | | f(t)} % s * f; image of s under f
% ComposeF by analogy with sequences, where ordinary function composition applies pointwise to the elements.
FUNC Rel(s) -> ((Null, T)->Bool) = RET (\ null, t | t IN s)
% s.rel relates nil to every element of s
FUNC ComposeR(s, r: (T, U)->Bool)->SET U = RET(s.rel*r).rng % s ** r; image of s under r
% ComposeR is relational composition: anything you can get to by r, starting with a member of s. We could have written
explicitly: {t :IN s, u | r(t, u) | u}, or as \/ : (s * r.setF), or as (s.rel * r).rng

END Set

There are constructors {} for the empty set, {e1, e2, ...} for a set with specific elements, and
{declList | pred | exp} for a set whose elements satisfy a predicate. These constructors are
described in [6] and [10] of section 5. Note that {t | p}.pred = (\ t | p), and similarly (\ t
| p).set = {t | p}. A method on T is lifted to a method on S, unless the name conflicts with
one of S’s methods, exactly like lifting on S.rel; see note 3 in section 4.

Functions

The function types T->U and T->U RAISES XS have methods for

composition, overlay, inverse, and restriction;

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 23

testing whether a function is defined at an argument and whether it produces a normal (non-
exceptional) result at an argument, and for the domain and range;

converting a function to a relation (the inverse is the relation’s func method) or a function
that produces a set to a relation with each element of the set (setRel; the inverse is the
relation’s setF method).

In other words, they behave as though they were Function[T, U].F, where (making allowances
for the fact that XS and V are pulled out of thin air):

MODULE Function[T, U] EXPORT F =

TYPE F = T->U RAISES XS WITH {"*":=Compose, "+":=Overlay,
 inv:=Inverse, restrict:=Restrict,
 "!":=Defined, "!!":=Normal,
 dom:=Domain, rng:=Range, rel:=Rel, setRel:=SetRel}
 R = (T, U) -> Bool

FUNC Compose(f, g: U -> V) -> (T -> V) = RET (\ t | g(f(t)))
% Note that the order of the arguments is reversed from the usual mathematical convention.

FUNC Overlay(f1, f2) -> F = RET (\ t | (f2!t => f2(t) [*] f1(t)))
% (f1 + f2) is f2(x) if that is defined, otherwise f1(x)

FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func
FUNC Restrict(f, s: SET T) -> F = RET (\ t | (t IN s => f(t)))

FUNC Defined(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true

FUNC Normal(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET false

FUNC Domain(f) -> SET T = RET {t | f!t}
FUNC Range (f) -> SET U = RET {t | f!!t | f(t)}

FUNC Rel(f) -> R = RET (\ t, u | f(t) = u)
FUNC SetRel(f) -> ((T, V)->Bool) = RET (\ t, v | (f!t ==> v IN f(t) [*] false))
% if U = SET V, f.setRel relates each t in f.dom to each element of f(t).

END Function

Note that there are constructors {} for the function undefined everywhere, T{* -> result} for
a function of type T whose value is result everywhere, and f{exp -> result} for a function
which is the same as f except at exp, where its value is result. These constructors are described
in [6] and [8] of section 5. There are also lambda constructors for defining a function by a
computation, described in [9] of section 5. A method on U is lifted to a method on F, unless the
name conflicts with a method of F; see note 3 in section 4.

A total function T->Bool is a predicate and has an additional method to compute the set of T’s
that satisfy the predicate (the inverse is the set’s pred method). In other words, a predicate
behaves as though it were Predicate[T].P, where

MODULE Predicate[T] EXPORT P =

TYPE P = T -> Bool WITH {set:=Set}
FUNC Set(p) -> SET T = RET {t | p(t)}
END Predicate

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 24

A predicate with T = (U, V) is a relation and has additional methods to turn it into a function U
-> V or a function U -> SET V, and to get its domain and range, invert it or compose it
(overriding the methods for a function). In other words, it behaves as though it were
Relation[U, V].R, where (allowing for the fact that W is pulled out of thin air in Compose):

MODULE Relation[U, V] EXPORT R =

TYPE R = (U, V) -> Bool WITH {func:=Func, setF:=SetFunc, dom:=Domain, rng :=Range,
 inv:=Inverse, "*":=Compose}

FUNC Func(r) -> (U -> V) =
% Func(r) is defined at u iff r relates u to a single v.

RET (\ u | (r.setF(u).size = 1 => r.setF(u).choose))
FUNC SetFunc(r) -> (U -> SET V) = RET (\ u | {v | r(u, v)})
% SetFunc(r) is defined everywhere, returning the set of V’s related to u.

FUNC Domain(r) -> SET U = RET {u, v | r(u, v) | u}
FUNC Range (r) -> SET V = RET {u, v | r(u, v) | v}

FUNC Inverse(r) -> ((V, U) -> Bool) = RET (\ v, u | r(u, v))

FUNC Compose(r: R, s: (V, W)->Bool) -> (U, W)->Bool =
RET (\ u, w | (EXISTS v | r(u, v) /\ s(v, w)))

END Relation

A method on V is lifted to a method on R, unless there’s a name conflict; see note 3 in section 4.

A relation with U = V is a graph and has additional methods to yield the sequences of U’s that are
paths in the graph and to compute the transitive closure. In other words, it behaves as though it
were Graph[U].G, where

MODULE Graph[T] EXPORT G =

TYPE G = (T, T) -> Bool WITH {paths:=Paths, closure:=TransitiveClosure }
 P = SEQ T

FUNC Paths(g) -> SET P = RET {p | (ALL i :IN p.dom - {0} | g(p(i-1), p(i)))}
% Any p of size <= 1 is a path by this definition.
FUNC TransitiveClosure(g) -> G = RET (\ t1, t2 |

(EXISTS p | p.size > 1 /\ p.head = t1 /\ p.last = t2 /\ p IN g.paths))

END Graph

Sequences

A function is called a sequence if its domain is a finite set of consecutive Int’s starting at 0, that
is, if it has type

Q = Int -> T SUCHTHAT (\ q | (EXISTS size: Int | q.dom = (0 .. size-1).rng))

We denote this type (with the methods defined below) by SEQ T. A sequence inherits the
methods of the function (though it overrides +), and it also has methods for

detaching or attaching the first or last element,
extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same
making a sequence into a tuple (rng makes it into a set),
testing for prefix or sub-sequence (not necessarily contiguous),

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 25

composing with a relation (SEQ T inherits composing with a function),
lexical comparison, permuting, and sorting,
 treating a sequence as a multiset with operations to:

count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element ("+" or "\/" is union and addl adds an
element).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence
is always defined regardless of the subscripts, by taking the largest number of elements allowed
by the size of the sequence.

We define the sequence methods with a module. Precisely, SEQ T is Sequence[T].Q, where:

MODULE Sequence[T] EXPORTS Q =

TYPE I = Int
Q = (I -> T)
 SUCHTHAT (\ q | (ALL i | q!i = (0 <= i /\ i < q.size)))
 WITH { size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate,
 head:=Head, tail:=Tail, addh:=AddHead, remh:=Tail,
 last:=Last, reml:=RemoveLast, addl:=AddLast,
 fill:=Fill, tuple:=Tuple,
 "<=":=Prefix, "<<=":=SubSeq,
 "**":=ComposeR, lexLE:=LexLE, perms:=Perms,
 fsorter:=FSorter, fsort:=FSort, sort:=Sort,

 % These methods treat a sequence as a multiset (or bag).
 count:=Count, "IN":=In, "==":=EqElem,
 "\/":=Concatenate, "-":=Diff, set:=Q.rng }

FUNC Size(q)-> Int = RET q.dom.size

FUNC Sub(q, i1, i2) -> Q =
% q.sub(i1, i2); yields {q(i1),...,q(i2)}, or a shorter sequence if i1 < 0 or i2 >= q.size

RET ({0, i1}.max .. {i2, q.size-1}.min) * q

FUNC Seg(q, i, n: I) -> Q = RET q.sub(i, i+n-1) % q.seg(i,n); n T’s from q(i)

FUNC Concatenate(q1, q2) -> Q = VAR q | % q1 + q2
q.sub(0, q1.size-1) = q1 /\ q.sub(q1.size, q.size-1) = q2 => RET q

FUNC Head(q) -> T = RET q(0) % q.head; first element
FUNC Tail(q) -> Q = % q.tail; all but first

q.size > 0 => RET q.sub(1, q.size-1)
FUNC AddHead(q, t) -> Q = RET {t} + q % q.addh(t)

FUNC Last(q) -> T = RET q(q.size-1) % q.last; last element
FUNC RemoveLast(q) -> Q = % q.reml; all but last

q # {} => RET q.sub(0, q.size-2)
FUNC AddLast(q, t) -> Q = RET q + {t} % q.addl(t)

FUNC Fill(t, n: I) -> Q = RET {i :IN 0 .. n-1 | | t} % yields i copies of t

FUNC Prefix(q1, q2) -> Bool = % q1 <= q2
RET (EXISTS q | q1 + q = q2)

FUNC SubSeq(q1, q2) -> Bool = % q1 <<= q2
% Are q1’s elements in q2 in the same order, not necessarily contiguously.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 26

RET (EXISTS p: SET Int | p <= q2.dom /\ q1 = p.seq.sort * q2)

FUNC ComposeR(q, r: (T, U)->Bool) -> SEQ U = % q ** r
% Elements related to nothing are dropped. If an element is related to several things, they appear in arbitrary order.

RET + : (q * r.setF * (\s: SET U | s.seq))

FUNC LexLE(q1, q2, f: (T,T)->Bool) -> Bool = % q1.lexLE(q2, f); f is <=
% Is q1 lexically less than or equal to q2. True if q1 is a prefix of q2,
% or the first element in which q1 differs from q2 is less.

RET q1 <= q2
 \/ (EXISTS i :IN q1.dom /\ q2.dom | q1.sub(0, i-1) = q2.sub(0, i-1)
 /\ q1(i) # q2(i)) /\ f(q1(i), q2(i))

FUNC Perms(q)->SET Q = % q.perms
RET {q' | (ALL t | q.count(t) = q'.count(t))}

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = % q.fsorter(f); f is <=
% The permutation that sorts q stably. Note: can’t use min to define this, since min is defined using sort.

VAR ps := {p :IN q.dom.perms % all perms that sort q
 | (ALL i :IN (q.dom - {0}) | f((p*q)(i-1), (p*q)(i))) } |
 VAR p0 :IN ps | % the one that reorders the least

(ALL p :IN ps | p0.lexLE(p, Int."<=")) => RET p0

FUNC FSort(q, f: (T,T)->Bool) -> Q = % q.fsort(f); f is <= for the sort
RET q.fsorter(f) * q

FUNC Sort(q)->Q = RET q.fsort(T.”<=”) % q.sort; only if T has <=

FUNC Count(q, t)->Int = RET {t' :IN q | t' = t}.size % q.count(t)

FUNC In(t, q)->Bool = RET (q.count(t) # 0) % t IN q
FUNC EqElem(q1, q2) -> Bool = RET q1 IN q2.perms % q1 == q2; equal as multisets

FUNC Diff(q1, q2) -> Q = % q1 - q2
RET {q | (ALL t | q.count(t) = {q1.count(t) - q2.count(t), 0}.max)}.choose

END Sequence

We can’t program Tuple in Spec, but it is defined as follows. If q: SEQ T, then q.tuple is a
tuple of q.size T’s, the first equal to q(0), the second equal to q(1), and so forth. For the
inverse, if u is a tuple of T’s, then u.seq is a SEQ T such that u.seq.tuple = u. If u is a tuple in
which not all the elements have the same declared type, then u.seq is a SEQ Any such that
u.seq.tuple = u.

Int has a method .. for making sequences: i .. j = {i, i+1, ..., j-1, j}. If j < i,
i .. j = {}. You can also write i .. j as {k := i BY k + 1 WHILE k <= j}; see [11] in
section 5. Int also has a seq method: i.seq = 0 .. i-1.

There is a constructor {e1, e2, ...} for a sequence with specific elements and a constructor
{} for the empty sequence. There is also a constructor q{e1 -> e2}, which is equal to q except
at e1 (and undefined if e1 is out of range). For the constructors see [6] and [8] of section 5. To
generate a sequence there are constructors {x :IN q | pred | exp} and {x := e1 BY e2
WHILE pred1 | pred2 | exp}. For these see [11] of section 5.

To map each element t of q to f(t) use function composition q * f. Thus if q: SEQ Int,
q * (\ i: Int | i*i) yields a sequence of squares. You can also write this
{i :IN q | | i*i}.

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 27

Index
-, 9, 19, 21
!, 9, 22
!!, 9, 22
#, 9, 10
%, 3
(), 3, 8, 16
(expList), 8
(typeList), 5
*, 3, 9, 21, 22
**, 9
., 3, 5
/, 9
//, 9
/\, 9,20
:, 8, 14
:, 3, 5
:=, 3, 8, 14, 18
;, 14
[], 3, 14
[declList], 5
[*], 3, 8, 14
[n], 3
\, 8
\/, 9,20
{* -> result}, 8
{ }, 3, 8
{declList | pred | exp}, 8
{exceptionList}, 5
{exp -> result}, 8
{expList}, 8
{methodDefList}, 5, 6
{}, 21
{e1, e2, ...}, 21
|, 3, 14
~, 9
+, 5, 9, 19, 21, 22
>, 9
</<<, 14, 16
<< >>, 3
<<=, 9, 22
<=, 19, 21
=, 9, 10
==>, 9
=>, 3, 8, 14
->, 3, 5, 8
>, 9
<=/>, 9
>>, 14
abstract equality, 10
add, 9
add an element, 9

adding an element, 19, 22
addl, 22
ALL, 8
ambiguity, 10, 14
Any, 5, 10
append an element, 9
APROC, 5, 16
arguments, 8
AS, 8
assignment, 14
associative, 6, 10, 14
atomic command, 1, 13, 14
atomic procedure, 2
Atomic Semantics of Spec, 1, 7, 13
backtracking, 13
bag, 22
BEGIN, 14
body, 16
Bool, 5
built-in methods, 19
capital letter, 3
Char, 5
characteristic predicate, 19
choice, 14
choose, 19
choosing an element, 19
CLASS, 16
class, 17
closure, 21
Clu, 15
cmd, 14
command, 1, 13
comment, 3
composition, 20
concatenation, 9
conditional, 10
conditional and, 9
conditional or, 9
CONST, 17
constructor, 8
count, 22
data abstraction, 6
decl, 5
declaration, 18
defined, 9, 20
difference, 22
divide, 9
DO, 14
dot, 18
e.id, 10
e.id(), 10
e1 infixOp e2, 10

e1.id(e2), 10
else, 14
empty, 3, 10
empty sequence, 22
empty set, 19
END, 14, 16
ENUM, 16
equal, 9
equal types, 4
EXCEPT, 14
exception, 5, 6, 7, 15, 16
exceptionSet, 5, 16
EXISTS, 8
exp, 8
expanded definitions, 4
expression, 1, 7
expression has a type, 7
fail, 7, 13
FI, 14
fill, 22
fit, 4, 7, 11, 14, 15
formal parameters, 16
FUNC, 16, 23
function, 2, 6, 14, 19, 20
function undefined everywhere, 20
general procedure, 2
Global.id, 16, 18
grammar, 3
graph, 21
greater or equal, 9
greater than, 9
grouping, 15
guard, 13, 14
handler, 14
has a routine type, 4
has type T, 4
HAVOC, 14
head, 22
id, 3, 6
id := exp, 8
id [typeList], 5
identifier, 3
if, 14
implies, 9
IN, 9, 19, 22
includes, 4
infixOp, 9
initial value, 17
initialize, 15
instantiate, 16
intersection, 9, 19
Introduction to Spec, 1

6.826—Principles of Computer Systems 2002

Handout 4. Spec Reference Manual 28

invocation, 7, 8, 10, 14
IS, 8
isEmpty, 22
isPath, 21
keyword, 3
known, 20
LAMBDA, 8, 11
last, 19
less than, 9
lexical comparison, 22
List, 3
literal, 3, 7, 8
local, 18
logical operators, 12
looping exception, 7, 13
m[typeList].id, 6
max, 19
meaning

of an atomic command, 13
of an expression, 7

membership, 9, 19
method, 4, 5, 6, 19
mfp, 16
min, 19
module, 2, 16
multiply, 9
multiset, 22
multiset difference, 9
name, 1, 5, 18
new variable, 15
non-atomic command, 2, 13
Non-Atomic Semantics of Spec, 1
non-deterministic, 1
nonterminal symbol, 3
normal result, 20
not equal, 9
Null, 5
OD, 14
operator, 3, 6
OrderedSet, 19
organizing your program, 2
outcome, 13
parameterized module, 16
path in the graph, 21
precedence, 6, 9, 14
precondition, 14
pred, 8, 19
predefined identifiers, 3
predicate, 20
prefix, 9, 22
prefixOp, 9
prefixOp e, 10
primary, 8

PROC, 5, 16
program, 2, 16
punctuation, 3
quantif, 8
quantification, 10
quoted character, 3
RAISE, 8, 14
RAISE exception, 11
RAISES, 5, 11
RAISES set, 15
record, 5, 10
redeclaration, 18
relation, 21
remove an element, 9, 19, 22
result, 7
result type, 14
RET, 14
routine, 2, 14, 16
scope, 18
seg, 22
SEQ, 5, 6, 22
SEQ Char, 6
sequence, 22
sequential composition, 14
sequential program, 2
SET, 5, 10, 11, 19, 20
set difference, 9, 19
set of sequences of states, 2
set of values, 4
set with specific elements, 19
setF, 21
side effects, 15
signature, 15, 16
SKIP, 14
specifications, 1
state, 1, 7, 13, 18
state machine, 1
state variable, 1
String, 5, 6
stringLiteral, 5
sub-sequence, 9, 22
subset, 9, 19
subtract, 9
symbol, 3
syntactic sugar, 7
T.m, 6, 7
T->U, 6
tail, 22
terminal symbol, 3
test membership, 19, 22
thread, 17
toplevel, 16, 18
totalF, 21

transition, 1
transitive closure, 21
tuple, 5, 14, 15
tuple constructor, 8
type, 2, 4, 5, 16
type equality, 4
type inclusion, 4
type-checking, 4, 7, 14
undefined, 7, 10, 13
UNION, 5, 6, 7, 9, 19, 22
upper case, 3
value, 1
variable, 1, 14, 15
white space, 3
WITH, 5, 6, 10, 16

.

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 1

5. Examples of Specs and Code

This handout is a supplement for the first two lectures. It contains several example specs and
code, all written using Spec.

Section 1 contains a spec for sorting a sequence. Section 2 contains two specs and one code for
searching for an element in a sequence. Section 3 contains specs for a read/write memory.
Sections 4 and 5 contain code for a read/write memory based on caching and hashing,
respectively. Finally, Section 6 contains code based on replicated copies.

1. Sorting

The following spec describes the behavior required of a program that sorts sets of some type T
with a "<=" comparison method. We do not assume that "<=" is antisymmetric; in other words,
we can have t1 <= t2 and t2 <= t1 without having t1 = t2, so that "<=" is not enough to
distinguish values of T. For instance, T might be the record type [name:String, salary: Int]
with "<=" comparison of the salary field. Several T’s can have different names but the same
salary.

APROC Sort(s: SET T) -> SEQ T = <<
VAR q: SEQ T | (ALL i: T | s.count(i) = q.count(i)) /\ Sorted(b) => RET b >>

This spec uses the auxiliary function Sorted, defined as follows.

FUNC Sorted(q: SEQ T) -> Bool = RET (ALL i :IN q.dom – {0} | q(i-1) <= q(i))

If we made Sort a FUNC rather than a PROC, what would be wrong?1 What could we change to
make it a FUNC?

We could have written this more concisely as

APROC Sort(s: SET T) -> SEQ T =
<< VAR q :IN a.perms | Sorted(q) => RET q >>

using the perms method for sets that returns a set of sequences that contains all the possible
permutations of the set.

2. Searching

Search spec

We begin with a spec for a procedure to search an array for a given element. Again, this is an
APROC rather than a FUNC because there can be several allowable results for the same inputs.

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} =
<< IF VAR i: Int | (0 <= i /\ i < q.size /\ q(i) = x) => RET i

1 Hint: a FUNC can’t have side effects and must be deterministic (return the same value for the same arguments).

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 2

 [*] RAISE NotFound
 FI >>

Or, equivalently but slightly more concisely:

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} =
<< IF VAR i :IN q.dom | q(i) = x => RET i [*] RAISE NotFound FI >>

Sequential search code

Here is code for the Search spec given above. It uses sequential search, starting at the first
element of the input sequence.

APROC SeqSearch(q: SEQ T, x: T) -> Int RAISES {NotFound} = << VAR i := 0 |
DO i < q.size => IF q(i) = x => RET i [*] i + := 1 FI OD; RAISE NotFound >>

Alternative search spec

Some searching algorithms, for example, binary search, assume that the input argument sequence
is sorted. Such algorithms require a different spec, one that expresses this requirement.

APROC Search1(q: SEQ T, x: T) -> Int RAISES {NotFound} = <<
IF ~Sorted(q) => HAVOC
[*] VAR i :IN q.dom | q(i) = x => RET i
[*] RAISE NotFound
FI >>

You might consider writing the spec to raise an exception when the array is not sorted:

APROC Search2(q: SEQ T, x: T) -> Int RAISES {NotFound, NotSorted} = <<
IF ~Sorted(q) => RAISE NotSorted
...

This is not a good idea. The whole point of binary search is to obtain O(log n) time performance
(for a sorted input sequence). But any code for the Search2 spec requires an O(n) check, even
for a sorted input sequence, in order to verify that the input sequence is in fact sorted.

This is a simple but instructive example of the difference between defensive programming and
efficiency. If Search were part of an operating system interface, it would be intolerable to have
HAVOC as a possible transition, because the operating system is not supposed to go off the deep
end no matter how it is called (though it might be OK to return the wrong answer if the input
isn’t sorted; what would that spec be?). On the other hand, the efficiency of a program often
depends on assumptions that one part of it makes about another, and it’s appropriate to express
such an assumption in a spec by saying that you get HAVOC if it is violated. We don’t care to be
more specific about what happens because we intend to ensure that it doesn’t happen. Obviously
a program written in this style will be more prone to undetected or obscure errors than one that
checks the assumptions, as well as more efficient.

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 3

3. Read/write memory

The simplest form of read/write memory is a single read/write register, say of type V (for value),
with arbitrary initial value. The following Spec module describes this:

MODULE Register [V] EXPORT Read, Write =

VAR x: V % arbitrary initial value

APROC Read() -> V = << RET x >>
APROC Write(v) = << x := v >>

END Register

Now we give a spec for a simple addressable memory with elements of type V. This is like a
collection of read/write registers, one for each address in a set A. In other words, it’s a function
from addresses to data values. For variety, we include new Reset and Swap operations in
addition to Read and Write.

MODULE Memory [A, V] EXPORT Read, Write, Reset, Swap =

TYPE M = A -> V
VAR m := Init()

APROC Init() -> M = << VAR m' | (ALL a | m'!a) => RET m' >>
% Choose an arbitrary function that is defined everywhere.

FUNC Read(a) -> V = << RET m(a) >>
APROC Write(a, v) = << m(a) := v >>

APROC Reset(v) = << m := M{* -> v} >>
% Set all memory locations to v.

APROC Swap(a, v) -> V = << VAR v' := m(a) | m(a) := v; RET v' >>
% Set location a to the input value and return the previous value.

END Memory

The next three sections describe code for Memory.

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 4

4. Write-back cache code

Our first code is based on two memory mappings, a main memory m and a write-back cache c.
The code maintains the invariant that the number of addresses at which c is defined is constant.
A real cache would probably maintain a weaker invariant, perhaps bounding the number of
addresses at which c is defined.

MODULE WBCache [A, V] EXPORT Read, Write, Reset, Swap =
% implements Memory

TYPE M = A -> V
C = A -> V

CONST Csize : Int := ... % cache size

VAR m := InitM()
c := InitC()

APROC InitM() -> M = << VAR m' | (ALL a | m'!a) => RET m' >>
% Returns a M with arbitrary values.

APROC InitC() -> C = << VAR c' | c'.dom.size = CSize => RET c' >>
% Returns a C that has exactly CSize entries defined, with arbitrary values.

APROC Read(a) -> V = << Load(a); RET c(a) >>
APROC Write(a, v) = << IF ~c!a => FlushOne() [*] SKIP FI; c(a) := v >>
% Makes room in the cache if necessary, then writes to the cache.

APROC Reset(v) = <<...>> % exercise for the reader

APROC Swap(a, v) -> V = << VAR v' | Load(a); v' := c(a); c(a) := v; RET v' >>

% Internal procedures.

APROC Load(a) = << IF ~c!a => FlushOne(); c(a) := m(a) [*] SKIP FI >>
% Ensures that address a appears in the cache.

APROC FlushOne() =
% Removes one (arbitrary) address from the cache, writing the data value back to main memory if necessary.

<< VAR a | c!a => IF Dirty(a) => m(a) := c(a) [*] SKIP FI; c := c{a -> } >>

FUNC Dirty(a) -> Bool = RET c!a /\ c(a) # m(a)
% Returns true if the cache is more up-to-date than the main memory.

END WBCache

The following Spec function is an abstraction function mapping a state of the WBCache module to
a state of the Memory module. It’s written to live inside the module. It says that the contents of
location a is c(a) if a is in the cache, and m(a) otherwise.

FUNC AF() -> M = RET (\ a | c!a => c(a) [*] m(a))

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 5

5. Hash table code

Our second code for Memory uses a hash table for the representation.

MODULE HashMemory [A WITH {hf: A->Int}, V] EXPORT Read, Write, Reset, Swap =
% Implements Memory.
% The module expects that the hash function A.hf is total and that its range is 0 .. n for some n.

TYPE Pair = [a, v]
B = SEQ Pair % Bucket in hash table
HashT = SEQ B

VAR nb := NumB() % Number of Buckets
m := HashT.fill(B{}, nb) % Memory hash table; initially empty
default : V % arbitrary default value

APROC Read(a) -> V = << VAR b := m(a.hf), i: Int |
i := FindEntry(a, b) EXCEPT NotFound => RET default ; RET b(i).v >>

APROC Write(a, v) = << VAR b := DeleteEntry(a, m(a.hf)) |
m(a.hf) := b + {Pair{a, v}} >>

APROC Reset(v) = << m := HashT.fill(B{}, nb); default := v >>

APROC Swap(a, v) -> V = << VAR v' | v' := Read(a); Write(a, v); RET v' >>

% Internal procedures.

FUNC NumBs() -> Int =
% Returns the number of buckets needed by the hash function; havoc if the hash function is not as expected.

IF VAR n: Nat | A.hf.rng = (0 .. n).rng => RET n + 1 [*] HAVOC FI

APROC FindEntry(a, b) -> Int RAISES (NotFound) =
% If a appears in a pair in b, returns the index of some pair containing a; otherwise raises NotFound.

<< VAR i :IN b.dom | b(i).a = a => RET i [*] RAISE NotFound >>

APROC DeleteEntry(a, b) -> B << VAR i: Int |
% Removes some pair with address a from b, if any exists.

i := FindEntry(a, b) EXCEPT NotFound => RET b ;
RET b.sub(0, i-1) + b.sub(i+1, b.size-1) >>

END HashMemory

Note that FindEntry and DeleteEntry are APROCs because they are not deterministic when
given arbitrary b arguments.

The following is a key invariant that holds between invocations of the operations of HashMemory:

FUNC Inv() -> Bool = RET
(nb > 0
/\ m.size = nb
/\ (ALL a | a.hf IN m.dom)
/\ (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i)
/\ (ALL a | { j :IN m(a.hf).dom | m(a.hf)(j).a = a }.size <= 1))

This says that the number of buckets is positive, that the hash function maps all addresses to
actual buckets, that a pair containing address a appears only in the bucket at index a.hf in m, and

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 6

that at most one pair for an address appears in the bucket for that address. Note that these
conditions imply that in any reachable state of HashMemory, each address appears in at most one
pair in the entire memory.

The following Spec function is an abstraction function between states of the HashMemory module
and states of the Memory module:

FUNC AF() -> M = RET
(LAMBDA(a) -> V =

IF VAR i :IN m.dom, p :IN m(i).rng | p.a = a => RET p.v
[*] RET default
FI)

That is, the data value for address a is any value associated with address a in the hash table; if
there is none, the data value is the default value. Spec says that a function is undefined at an
argument if its body can yield more than one result value. The invariants given above ensure that
the LAMBDA is actually single-valued for all the reachable states of HashMemory.

Of course HashMemory is not fully detailed code. Its main deficiency is that it doesn’t explain
how to maintain the variable-length bucket sequences, which is usually done with a linked list.
However, the code does capture all the essential details.

6. Replicated copies

Our final code is based on some number k ≥ 1 of copies of each memory location. Initially, all
copies have the same default value. A Write operation only modifies an arbitrary majority of the
copies. A Read reads an arbitrary majority, and selects and returns the most recent of the values
it sees. In order to allow the Read to determine which value is the most recent, each Write
records not only its value, but also a sequence number.

For simplicity, we just show the module for a single read/write register. The constant k
determines the number of copies.

MODULE MajorityRegister [V] = % implements Register

CONST k = 5

TYPE N = Nat
Kint = IN 1 .. k % ints between 1 and k
Maj = SET KInt % all majority subsets of Kint
 SUCHTHAT (\m: Maj | m.size>k/2)

TYPE P = [D, seqno: N] % Pair
M = KInt -> P % Memory
S = SET P

VAR default : D
m := M{* -> P{d := default, seqno := 0}}

APROC Read() -> D = << RET ReadPair().d >>

APROC Write(d) = << VAR i: Int, maj |
% Determines the highest sequence number i, then writes d paired with i+1 to some majority maj of the copies.

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 7

i := ReadPair().seqno;
DO VAR j :IN maj | m(j).seqno # i+1 => m(j) := P{d := d, seqno := i+1} OD >>

% Internal procedures.

APROC ReadPair() -> P = << VAR s := ReadMaj () |
% Returns a pair with the largest sequence number from some majority of the copies.

VAR p :IN s | p.seqno = {p' :IN s | | p'.seqno}.max => RET p >>

APROC ReadMaj () -> S = << VAR maj | RET { i :IN maj | | m(i) } >>
% Returns the set of pairs belonging to some majority of the copies.

END MajorityRegister

We could have written the body of ReadPair as
<< VAR s := ReadMaj() | RET s.fmax((\ p1, p2 | p1.seqno <= p2.seqno)) >>

except that fmax always returns the same maximal p from the same s, whereas the VAR in
ReadPair chooses one non-deterministically.

The following is a key invariant for MajorityRegister.

FUNC Inv(m: M) -> Bool = RET
 (ALL p :IN m.rng, p' :IN m.rng | p.seqno = p'.seqno ==> p.v = p'.v)
/\ (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).seqno >= p.seqno)))

The first conjunct says that any two pairs having the same sequence number also have the same
data. The second conjunct says that the highest sequence number appears in some majority of the
copies.

The following Spec function is an abstraction function between states of the MajorityRegister
module and states of the Register module.

FUNC AF() -> V = RET m.rng.fmax((\ p1, p2 | p1.seqno <= p2.seqno)).v

That is, the abstract register data value is the data component of a copy with the highest sequence
number. Again, because of the invariants, there is only one p.v that will be returned.

6.826—Principles of Computer Systems 2002

Handout 5. Examples of Specs and Code 8

.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 1

6. Abstraction Functions and Invariants

This handout describes the main techniques used to prove correctness of state machines:
abstraction functions and invariant assertions. We demonstrate the use of these techniques for
some of the Memory examples from handout 5.

Throughout this handout, we consider modules all of whose externally invocable procedures are
APROCs. We assume that the body of each such procedure is executed all at once. Also, we do not
consider procedures that modify global variables declared outside the module under
consideration.

Modules as state machines

Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a
Spec module to define a state machine. Each state of the automaton designates values for all the
variables declared in the module. The initial states of the automaton consist of initial values
assigned to all the module’s variables by the Spec code. The transitions of the automaton
correspond to the invocations of APROCs together with their result values.

An execution fragment of a state machine is a sequence of the form s0, π1, s1, π2, …, where each
s is a state, each π is a label for a transition (an invocation of a procedure), and each consecutive
(si, πi+1, si+1) triple follows the rules specified by the Spec code. (We do not define these rules
here—wait for the lecture on atomic semantics.) An execution is an execution fragment that
begins in an initial state.

The πi are labels for the transitions; we often call them actions. When the state machine is
written in Spec, each transition is generated by some atomic command, and we can use some
unambiguous identification of the command for the action. At the moment we are studying
sequential Spec, in which every transition is the invocation of an exported atomic procedure. We
use the name of the procedure, the arguments, and the results as the label.

Figure 1 shows some of the states and transitions of the state machine for the Memory module
with A = IN 1 .. 4, and Figure 2 does likewise for the WBCache module with Csize = 2. The
arrow for each transition is labeled by its πi, that is, by the procedure name, arguments, and
result.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 2

b
c
a
b

b
a
a
b

a
a
a
a

b
a
a
c

a

c

Write(2,a)

Init
(Read(2),a)

Init

(Read(3),a)
 (Read(1),b)(Read(1),b)

Reset(a)

 Reset(a)
Write(4,c)

Reset(a)

 Figure 1: Part of the Memory state machine

a
b

a

b

a

a

b
c
a
c

a

Write(2,a)

Init
(Read(2),a)

Init

(R
ead

(1),b
)

Rese
t(a

)

Reset(a) Write(4,c)

b
c
c
a

b

b

b
c
a
a

b
a
a
b

a
b
a
c

Reset(a)

a

c

b
c
a
b

b

c

a
a

b
a

b
c
a
c

b
a
a
c

b

a

(R
ea

d(
3)

,a)

(Read(1),b)

Figure 2: Part of the WBCache state machine

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 3

External behavior

Usually, a client of a module is not interested in all aspects of its execution, but only in some
kind of external behavior. Here, we formalize the external behavior as a set of traces. That is,
from an execution (or execution fragment) of a module, we discard both the states and the
internal actions, and extract the trace. This is the sequence of labels πi for external actions (that
is, invocations of exported routines) that occur in the execution (or fragment). Then the external
behavior of the module is the set of traces that are obtained from all of its executions.

It’s important to realize that in going from the execution to the trace we are discarding a great
deal of information. First, we discard all the states, keeping only the actions or labels. Second,
we discard all the internal actions, keeping only the external ones. Thus the only information we
keep in the trace is the behavior of the state machine at its external interface. This is appropriate,
since we want to study state machines that have the same behavior at the external interface; we
shall see shortly exactly what we main by ‘the same’ here. Two machines can have the same
traces even though they have very different state spaces.

In the sequential Spec that we are studying now, a module only makes a transition when an
exported routine is invoked, so all the transitions appear in the trace. Later, however, we will
introduce modules with internal transitions, and then the distinction between the executions and
the external behavior will be important.

For example, the set of traces generated by the Memory module includes the following trace:
(Reset(v),)
(Read(a1),v)
(Write(a2,v'))
(Read(a2),v')

However, the following trace is not included if v # v':
(Reset(v))
(Read(a1),v') should have returned v
(Write(a2,v'))
(Read(a2),v) should have returned v'

In general, a trace is included in the external behavior of Memory if every Read(a) or Swap(a,
v) operation returns the last value written to a by a Write, Reset or Swap operation, or returned
by a Read operation; if there is no such previous operation, then Read(a) or Swap(a, v) returns
an arbitrary value.

Implements relation

In order to understand what it means for one state machine to implement another one, it is
helpful to begin by considering what it means for one atomic procedure to implement another.
The meaning of an atomic procedure is a relation between an initial state just before the
procedure starts (sometimes called a ‘pre-state’) and a final state just after the procedure has
finished (sometimes called a ‘post-state’). This is often called an ‘input-output relation’. For
example, the relation defined by a square-root procedure is that the post-state is the same as the
pre-state, except that the square of the procedure result is close enough to the argument. This
meaning makes sense for an arbitrary atomic procedure, not just for one in a trace.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 4

We say that procedure P implements spec S if the relation defined by P (considered as a set of
ordered pairs of states) is a subset of the relation defined by S. This means that P never does
anything that S couldn’t do. However, P doesn’t have to do everything that S can do. Code for
square root is probably deterministic and always returns the same result for a given argument.
Even though the spec allows several results (all the ones that are within the specified tolerance),
we don’t require code for to be able to produce all of them; instead we are satisfied with one.

Actually this is not enough. The definition we have given allows P’s relation to be empty, that is,
it allows P not to terminate. This is usually called ‘partial correctness’. In addition, we usually
want to require that P’s relation be total on the domain of S; that is, P must produce some result
whenever S does. The combination of partial correctness and termination is usually called ‘total
correctness’.

If we are only interested in external behavior of a procedure that is part of a stateless module, the
only state we care about is the arguments and results of the procedure. In this case, a transition is
completely described by a single entry in a trace, such as (Read(a1),v).

Now we are ready to consider modules with state. Our idea is to generalize what we did with
pairs of states described by single trace entries to sequences of states described by longer traces.
Suppose that T and S are any modules that have the same external interface (set of procedures
that are exported and hence may be invoked externally). In this discussion, we will often refer to
S as the spec module and T as the code. Then we say that T implements S if every trace of T is
also a trace of S. That is, the set of traces generated by T is a subset of the set of traces generated
by S.

This says that any external behavior of the code T must also be an external behavior of the spec
S. Another way of looking at this is that we shouldn’t be able to tell by looking at the code that
we aren’t looking at the spec, so we have to be able to explain every behavior of T as a possible
behavior of S.

The reverse, however, is not true. We do not insist that the code must exhibit every behavior
allowed by the spec. In the case of the simple memory the spec is completely deterministic, so
the code cannot take advantage of this freedom. In general, however, the spec may allow lots of
behaviors and the code choose just one. The spec for sorting, for instance, allows any sorted
sequence as the result of Sort; there may be many such sequences if the ordering relation is not
total. The code will usually be deterministic and return exactly one of them, so it doesn’t exhibit
all the behavior allowed by the spec.

Safety and liveness

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive
notion of code. In particular, it allows the set of traces generated by T to be empty; in other word,
the code might do nothing at all, or it might do some things and then stop. As we saw, the analog
of this for a simple sequential procedure is non-termination. Usually we want to say that the code
of a procedure should terminate, and similarly we want to say that the code of a module should
keep doing things. More generally, when we have concurrency we usually want the code to be
fair, that is, to eventually service all its clients, and more generally to eventually make any
transition that continues to be enabled.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 5

It turns out that any external behavior (that is, any set of traces) can be described as the
intersection of two sets of traces, one defined by a safety property and the other defined by a
liveness property.1 A safety property says that in the trace nothing bad ever happens, or more
precisely, that no bad transition occurs in the trace. It is analogous to partial correctness for a
stateless procedure; a state machine that never makes a bad transition can define any safety
property. If a trace doesn’t satisfy a safety property, you can always find this out by looking at a
finite prefix of the trace, in particular, at a prefix that includes the first bad transition.

A liveness property says that in the trace something good eventually happens. It is analogous to
termination for a stateless procedure. You can never tell that a trace doesn’t have a liveness
property by looking at a finite prefix, since the good thing might happen later. A liveness
property cannot be defined by a state machine. It is usual to express liveness properties in terms
of fairness, that is, in terms of a requirement that if some transition stays enabled continuously it
eventually occurs (weak fairness), or that if some transition stays enabled intermittently it
eventually occurs (strong fairness).

With a few exceptions, we don’t deal with liveness in this course. There are two reasons for this.
First, it is usually not what you want. Instead, you want a result within some time bound, which
is a safety property, or you want a result with some probability, which is altogether outside the
framework we have set up. Second, liveness proofs are usually hard.

Abstraction functions and simulation

The definition of ‘implements’ as inclusion of external behavior is a sound formalization of our
intuition. It is difficult to work with directly, however, since it requires reasoning about infinite
sets of infinite sequences of actions. We would like to have a way of proving that T implements
S that allows us to deal with one of T’s actions at a time. Our method is based on abstraction
functions.

An abstraction function maps each state of the code T to a state of the spec S. For example, each
state of the WBCache module gets mapped to a state of the Memory module. The abstraction
function explains how to interpret each state of the code as a state of the spec. For example,
Figure 3 depicts part of the abstraction function from WBCache to Memory. Here is its definition in
Spec, copied from handout 5.

FUNC AF() -> M = RET (\ a | c!a => c(a) [*] m(a))

1 B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Computing 2, 3 (1987), pp 117-126.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 6

a
b

b
a
a
b

a

a

b
c
a
c

a

Write(2,a)

Init
(Read(2),a)

Init

(R
ea

d(1),b
)

Rese
t(a

)

Reset(a) Write(4,c)

b
c
c
a

b

b

b
c
a
a

b
a
a
b

a
b
a
c

Reset(a)

a

c

b
c
a
b

b

c

a
a

b
a

b
c
a
c

b
a
a
c

b

a
 (R

ea
d(

3)
,a)

(Read(1),b)

b
c
a
b

b
a
a
b

a
a
a
a

b
a
a
c

a

c

Write(2,a)

Init
(Read(2),a)

Init

(Read(3),a)
 (Read(1),b)(Read(1),b)

Reset(a)

 Reset(a)
Write(4,c)

Figure 3: Abstraction function for WBCache

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 7

You might think that an abstraction function should map the other way, from states of the spec to
states of the code, explaining how to represent each state of the spec. This doesn’t work,
however, because there is usually more than one way of representing each state of the spec. For
example, in the WBCache code for Memory, if an address is in the cache, then the value stored for
that address in memory does not matter. There are also choices about which addresses appear in
the cache. Thus, many states of the code can represent the same state of the spec. In other words,
the abstraction function is many-to-one.

An abstraction function F is required to satisfy the following two conditions.

1. If t is any initial state of T, then F(t) is an initial state of S.

2. If t is a reachable state of T and (t, π, t') is a step of T, then there is a step of S from F(t) to
F(t'), having the same trace.

Condition 2 says that T simulates S; every step of T faithfully copies a step of S. It is stated in a
particularly simple way, forcing the given step of T to simulate a single step of S. That is enough
for the special case we are considering right now. Later, when we consider concurrent
invocations for modules, we will generalize condition 2 to allow any number of steps of S rather
than just a single step.

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction
function F, and the solid arrows represent the transitions; if the lower (double) solid arrow exists
in the code, the upper (single) solid arrow must exist in the spec. The diagram is sometimes
called a “commutative diagram” because if you start at the lower left and follow arrows, you will
end up in the same state regardless of which way you go.

π

π
F(t) F(t')

t t'

F F

Figure 4: Commutative diagram for correctness

An abstraction function is important because it can be used to show that one module implements
another:

Theorem 1: If there is an abstraction function from T to S, then T implements S, i.e., every trace
of T is a trace of S.

Note that this theorem applies to both finite and infinite traces.

Proof: (Sketch) Let β be any trace of T, and let α be any execution of T that generates trace β.
Use Conditions 1 and 2 above to construct an execution α' of S with the same trace. That is, if t is

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 8

the initial state of α, then let F(t) be the initial state of α'. For each step of α in turn, use
Condition 2 to add a corresponding step to α'.

More formally, this proof is an induction on the length of the execution. Condition 1 gives the
basis: any initial state of T maps to an initial state of S. Condition 2 gives the inductive step: if
we have an execution of T of length n that simulates an execution of S, any next step by T
simulates a next step by S, so any execution of T of length n+1 simulates an execution of S.

We would like to have an inverse of Theorem 1: if every trace of T is a trace of S, then there is an
abstraction function that shows it. This is not true for the simple abstraction functions and
simulations we have defined here. Later on, in handout 8, we will generalize them to a
simulation method that is strong enough to prove that T implements S whenever that is true.

Invariants

An invariant of a module is any property that is true of all reachable states of the module, i.e., all
states that can be reached in executions of the module (starting from initial states). Invariants are
important because condition 2 for an abstraction function requires us to show that the code
simulates the spec from every reachable state, and the invariants characterize the reachable
states. It usually isn’t true that the code simulates the spec from every state.

Here are examples of invariants for the HashMemory and MajorityRegister modules, written in
Spec and copied from handout 5.

FUNC HashMemory.Inv(nb: Int, m: HashT, default: V) -> Bool = RET
(nb > 0
/\ m.size = nb
/\ (ALL a | a.hf IN m.dom)
/\ (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i)
/\ (ALL a | { j :IN m(a.hf) | m(a.hf)(j).a = a }.size <= 1))

FUNC MajorityRegister.Inv(m: M) -> Bool = RET
 (ALL p :IN m.rng, p' :IN m.rng | p.seqno = p'.seqno ==> p.v = p'.v)
/\ (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).seqno >= p.seqno)))

For example, for the HashMemory module, the invariant says (among other things) that a pair
containing address a appears only in the appropriate bucket a.hf, and that at most one pair for an
address appears in the bucket for that address.

The usual way to prove that a property P is an invariant is by induction on the length of finite
executions leading to the states in question. That is, we must show the following:

(Basis, length = 0) P is true in every initial state.

(Inductive step) If (t, π, t') is a transition and P is true in t, then P is also true in t'.

Not all invariants are proved directly by induction, however. It is often better to prove invariants
in groups, starting with the simplest invariants. Then the proofs of the invariants in the later
groups can assume the invariants in the earlier groups.

Example: We sketch a proof that the property MajorityRegister.Inv is in fact an invariant.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 9

Basis: In any initial state, a single (arbitrarily chosen) default value d appears in all the copies,
along with the seqno 0. This immediately implies both parts of the invariant.

Inductive step: Suppose that (t, π, t') is a transition and Inv is true in t. We consider cases based
on π. If π is an invocation or response, or the body of a Read procedure, then the step does not
affect the truth of Inv. So it remains to consider the case where π is a Write, say Write(v).

In this case, the second part of the invariant for t (i.e., the fact that the highest seqno appears in
more than half the copies), together with the fact that the Write reads a majority of the copies,
imply that the Write obtains the highest seqno, say i. Then the new seqno that the Write
chooses must be the new highest seqno. Since the Write writes i+1 to a majority of the copies, it
ensures the second part of the invariant. Also, since it associates the same v with the seqno i+1
everywhere it writes, it preserves the first part of the invariant.

Proofs using abstraction functions

Example: We sketch a proof that the function WBCache.AF given above is an abstraction
function from WBCache to Memory. In this proof, we get by without any invariants.

For Condition 1, suppose that t is any initial state of WBCache. Then AF(t) is some (memory) state
of Memory. But all memory states are allowable in initial states of Memory. Thus, AF(t) is an initial
state of Memory, as needed. For Condition 2, suppose that t and AF(t) are states of WBCache and
Memory, respectively, and suppose that (t, π, t') is a step of WBCache. We consider cases, based on
π.

For example, suppose π is Read(a). Then the step of WBCache may change the cache and
memory by writing a value back to memory. However, these changes don’t change the
corresponding abstract memory. Therefore, the memory correspondence given by AF holds after
the step. It remains to show that both Reads give the same result. This follows because:

The Read(a) in WBCache returns the value t.c(a) if it is defined, otherwise t.m(a).

The Read(a) in Memory returns the value of AF(t).m(a).

The value of AF(t).m(a) is equal to t.c(a) if it is defined, otherwise t.m(a). This is by the
definition of AF.

For another example, suppose π is Write(a,v). Then the step of WBCache writes value v to
location a in the cache. It may also write some other value back to memory. Since writing a
value back does not change the corresponding abstract state, the only change to the abstract state
is that the value in location a is changed to v. On the other hand, the effect of Write(a,v) in
Memory is to change the value in location a to v. It follows that the memory correspondence,
given by AF, holds after the step.

We leave the other cases, for the other types of operations, to the reader. It follows that AF is an
abstraction function from WBCache to Memory. Then Theorem 1 implies that WBCache implements
Memory, in the sense of trace set inclusion.

Example: Here is a similar analysis for MajorityRegister, using MajorityRegister.AF as
the abstraction function.

6.826—Principles of Computer Systems 2002

Handout 6. Abstraction Functions and Invariants 10

FUNC AF() -> V = RET m.rng.fmax((\ p1, p2 | p1.seqno <= p2.seqno)).v

This time we depend on the invariant MajorityRegister.Inv. Suppose π is Read(a). No state
changes occur in either module, so the only thing to show is that the return values are the same in
both modules. In MajorityRegister, the Read collects a majority of values and returns a value
associated with the highest seqno from among that majority. By the invariant that says that the
highest seqno appears in a majority of the copies, it must be that the Read in fact obtains the
highest seqno that is present in the system. That is, the Read in MajorityRegister returns a
value associated with the highest seqno that appears in state t.

On the other hand, the Read in Register just returns the value of the single variable x in state s.
Since AF(t) = s, it must be that s.x is a value associated with the highest seqno in t. But the
uniqueness invariant says that there is only one such value, so this is the same as the value
returned by the Read in MajorityRegister.

Now suppose π is Write(v). Then the key thing to show is that AF(t') = s'. The majority invariant
implies that the Write in MajorityRegister sees the highest seqno i and thus i+1 is the new
highest seqno. It writes (i+1, v) to a majority of the copies. On the other hand, the Write in
Register just sets x to v. But clearly v is a value associated with the largest seqno after the
step, so AF(t') = s' as required.

It follows that AF is an abstraction function from MajorityRegister to Register. Then
Theorem 1 implies that MajorityRegister implements Register.

