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1. Courselnformation

Staff

Faculty
Butler Lampson

Martin Rinard

Office Hours

Messrs. Lampson and Rinard will arrange individual appointments. The TA will hold
scheduled office hours at atime to be announced. In addition to
holding regularly scheduled office hours, the TA will also be available by appointment.

L ectures and handouts

Lectures are held on Tuesdays and Thursdays from 1:00 to 2:30PM.
Messrs. Lampson and Rinard will split the lectures. The tentative scheduleis
at the end of this handout.

The source material for this course is an extensive set of handouts. There are about 400 pages of
topic handouts that take the place of atextbook; you will need to study them to do well in the
course. Since we don’t want to simply repeat the written handouts in class, we will hand out the
material for each |lecture one week in advance. We expect you to read the day’ s handouts before
the class and come prepared to ask questions, discuss the material, or follow extensions of it or
different ways of approaching the topic.

Seven research papers supplement the topic handouts. In addition there are 5 problem sets, and
the project described bel ow. Solutions for each problem set will be available shortly after the due
date.

Current handouts will generally be available in lecture. If you missany in lecture, you can obtain
them afterwards from the course secretary. She keepsthem in afile cabinet outside her office.
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Problem sets

Thereis aproblem set approximately once aweek for the first half of the course. Problem sets
are handed out on Wednesdays and are duein class the following Wednesday. They normally
cover the material discussed in class during the week they are handed out. Delayed submission of
the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM.

Students in the class will be asked to help grade the problem sets. Each week ateam of students
will work with the TA to grade the week’ s problems. This takes about 3-4 hours. Each student
will probably only have to do it once during the term.

We will try to return the graded problem sets, with solutions, within aweek after their due date.

Policy on collaboration

We encourage discussion of the issues in the lectures, readings, and problem sets. Howevey, if
you collaborate on problem sets, you must tell us who your collaborators are. And in any case,
you must write up all solutions on your own.

Project

During thelast half of the course thereis a project in which students will work in groups of three
or so to apply the methods of the course to their own research projects. Each group will pick a
real system, preferably one that some member of the group is actually working on but possibly
one from a published paper or from someone else’' s research, and write:

A specification for it.
High-level code that captures the novel or tricky aspects of the actual implementation.

The abstraction function and key invariants for the correctness of the code. Thisis not
optiond; if you can’t write these things down, you don’t understand what you are doing.

Depending on the difficulty of the specification and code, the group may also write a correctness
proof for the code.

Projects may range in style from fairly formal, like handout 18 on consensus, in which the ‘real
system’ isasimple one, to fairly informal (at least by the standards of this course), like the
section on copying file systems in handout 7. These two handouts, along with the ones on
naming, sequential transactions, concurrent transactions, and caching, are examples of the
appropriate size and possible styles of a project.

The result of the project should be awrite-up, in the style of one of these handouts. During the
last two weeks of the course, each group will give a 25-minute presentation of its results. We
have allocated four class periods for these presentations, which means that there will be twelve
or fewer groups.

The projects will have five milestones. The purpose of these milestonesis not to assign grades,
but to make it possible for the instructors to keep track of how the projects are going and give
everyone the best possible chance of a successful project
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1. Wewill form the groups around March 5, to give most of the people that will drop the course
achanceto do so.

2. Each group will write up a 2-3 page project proposal, present it to one of the instructors
around spring break, and get feedback about how appropriate the project is and suggestions
on how to carry it out. Any project that seems to be seriously off therails will have a second
proposal meeting aweek later.

3. Each group will submit a’5-10 page interim report in the middle of the project period.
4. Each group will give a presentation to the class during the last two weeks of classes.

5. Each group will submit afinal report, which is due on Friday, May 17, the last day alowed
by MIT regulations. Of course you are free to submit it early.

Half the groups will be ‘early’ ones; the other half will be ‘late’ ones that give their presentations
oneweek later. The due dates of proposals and interim reports will be spread out over two weeks
in the same way. See the schedule later in this handout for precise dates.

Grades

There are no exams. Grades are based 30% on the problem sets, 50% on the project, and 20% on
class participation and quality and promptness of grading.
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Date No By HO

Course Schedule
Topic

2002

PS PS
out due

Tues, Feb. 5 1 L

Thurs., Feb. 7 2 L

Tues,, Feb. 12 3 L

Thurs, Feb.14 4 L
Tues,, Feb. 19
Thurs., Feb. 21 5 R

Tues., Feb. 26 6 R

Thurs., Feb. 28 7 L

Tues.,, Mar. 5 8 L

Thurs., Mar. 7 9 R
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10
11

12
13

Overview. The Spec language. State machine
semantics. Examples of specifications and code.
Course information

Background

Introduction to Spec

Spec reference manual

Examples of specs and code

Spec and code for sequential programs. Correctness
notions and proofs. Proof methods: abstraction
functions and invariants.

Abstraction functions

File systems 1: Disks, simple sequential file system,
caching, logs for crash recovery.
Disks and file systems

File systems 2: Copying file system.
No class, Monday schedule from Presidents’ Day

Proof methods: History and prophecy variables;
abstraction relations.
History variables

Semantics and proofs: Formal sequential semantics
of Spec.
Atomic semantics of Spec

Performance: How to get it, how to anayzeit.
Performance

Paper: Michael Schroeder and Michagl Burrows,
Performance of Firefly RPC, ACM Transactions on
Computer Systems 8, 1, February 1990, pp 1-17.

Naming: Specs, variations, and examples of
hierarchical naming.

Naming

Paper: David Gifford et al, Semantic file systems,
Proc.13th ACM Symposium on Operating System
Principles, October 1991, pp 16-25.

Concurrency 1: Practical concurrency, easy and hard.
Easy concurrency using locks and condition variables.

Problems with it: scheduling, deadlock.

Form
groups
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Date No By HO Topic PS PS Date No By HO Topic PS PS
out due out due
14 Practical concurrency . , .
15 Concurrent disks Thurs., Apr.18 18 L Net.works 2: L_|nks cont d: Ether_net. Token_ Rings.
16 Paper: Andrew Birrell, An Introduction to S‘N'tChPTS' Coding SW'.tChES' et [LE g
Programming with Threads, Digjtal Systems Research topologies and establishing routes.
Center Report 35, January 1989. Tues,Apr.23 19 L Networks 3: Network objects and remote procedure Early
Tues,Mar.12 10 R Concurrency 2: Concurrency in Spec: threads and call (RPC). Interim
non-atomic semantics. Big atomic actions. Safety and . reports
liveness. Examples of concurrency. 24 Network objects . .
17 Formal concurrency 25 Paper: Andrew Birrell et al., Network objects,
Proc.14th ACM Symposium on Operating Systems
Thurs, Mar.14 11 R Concurrency 3: Proving correctness of concurrent 5 Principles, Asheville, NC, December 1993.
rograms: assertional proofs, model checkin
_— s < Thurs, Apr.25 20 L Networ ks 4: Reliable messages. 3-way handshake Late
Tues,Mar.19 12 R Distributed consensus 1. Paxos algorithm for and clock code. TCP as aform of reliable messages. interim
asynchronous consensus in the presence of faults. reports
- 26 Paper: Butler Lampson, Reliable messages and
Thurs, Mar.21 13 L Distributed consensus 2. Early connection establishment. In Distributed Systems, ed.
proposals S. Mullender, Addison-Wesley, 1993, pp 251-281.
18 Consensus
. Tues., Apr. 30 21 L Replication and availability: Coding replicated state
Mar. 25-29 Spring Break machines using consensus. Applications to replicated
Tues., Apr. 2 14 R Sequential transactions with caching. storage.
19 Sequential transactions 28 Replication
29 Paper: Jm Gray and Andreas Reuter, Fault tolerance,
Thurs., Apr. 4 15 R Concurrent transactions: Specs for serializability. Late in Transaction Processing: Concepts and Techniques,
Ways to code the specs. proposals Morgan Kaufmann, 1993, pp 93-156.
20 Concurrent transactions . o
Thurs., May 2 22 R Caching: Maintaining coherent memory. Broadcast
Tues., Apr. 9 16 R Distributed transactions: Commit as a consensus Late (snoopy) and directory protocols. Examples:
problem. Two-phase commit. Optimizations. interim multiprocessors, distributed shared memory,
reports distributed file systems.
27 Distributed transactions 30 Concurrent caching
Thurs, Apr.11 17 R Introduction to distributed systems: Characteristics Tues.,, May 7 23 Early project presentations
of distributed systems. Physical, datalink, and ) )
network layers. Design principles. Thurs.,, May 9 24 Early project presentations
E:ngcr’[(';s 1: Links. Point-to-point and broadcast Tues,May14 25 L ate project presentations
21 Distributed systems Thurs,, May 16 26 L ate project presentations
22 Paper: Michad Schroeder et al, Autonet: A high- . .
speed, self-configuring local areanetwork, |EEE Fri., May 17 Final reports due
Journal on Selected Areasin Communications 9, 8, May 20-24 Finals week. Thereis no final for 6.826.
October 1991, pp 1318-1335.
23 Networks: Links and switches
Tues., Apr. 16 Patriot’s Day, no class.
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2. Overview and Background

Thisisacoursefor computer system designers and builders, and for people who want to really
understand how systems work, especially concurrent, distributed, and fault-tolerant systems.

The course teaches you

how to write precise specifications for any kind of computer system,

what it means for code to satisfy a specification, and

how to prove that it does.
It also shows you how to use the same methods less formally, and gives you some suggestions
for deciding how much formality is appropriate (less formality means less work, and often a
more understandabl e spec, but also more chance to overlook an important detail).

The course also teaches you alot about the topicsin computer systems that we think are the most
important: persistent storage, concurrency, naming, networks, distributed systems, transactions,
fault tolerance, and caching. The emphasisison

careful specifications of subtle and sometimes complicated things,

the important ideas behind good code, and

how to understand what makes them actually work.
We spend most of our time on specific topics, but we use the general techniques throughout. We
emphasize the ideas that different kinds of computer system havein common, even when they
have different names.

The course uses aformal language called Spec for writing specs and code; you can think of it as
avery high level programming language. Thereisagood deal of written introductory material on
Spec (explanations and finger exercises) as well as areference manua and aformal semantics.
We introduce Spec ideas in class as we use them, but we do not devote class time to teaching
Spec per se; we expect you to learn it on your own from the handouts. The one to concentrate on
is handout 3, which has an informal introduction to the main features and |ots of examples.
Section 9 of handout 4, the reference manual, should also be useful. The rest of the reference
manual isfor reference, not for learning. Don’t overlook the one page summary at the end of
handout 3.

Because we write specs and do proofs, you need to know something about logic. Since many
people don't, there is a concise treatment of the logic you will need at the end of this handout.

Thisisnot acourse in computer architecture, networks, operating systems, or databases. We will
not talk in detail about how to code pipelines, memory interconnects, multiprocessors, routers,
datalink protocols, network management, virtual memory, scheduling, resource allocation, SQL,
relational integrity, or TP monitors, although we will deal with many of the ideas that underlie
these mechanisms.
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Topics

General

Specifications as state machines.

The Spec language for describing state machines (writing specs and code).
What it means to implement a spec.

Using abstraction functions and invariants to prove that a program implements a spec.
What it means to have a crash.

What every system builder needs to know about performance.

Fecific

Disks and file systems.

Practical concurrency using mutexes (locks) and condition variables; deadl ock.
Hard concurrency (without locking): models, specs, proofs, and examples.
Transactions: simple, cached, concurrent, distributed.

Naming: principles, specs, and examples.

Distributed systems: communication, fault-tolerance, and autonomy.
Networking: links, switches, reliable messages and connections.

Remote procedure call and network objects.

Fault-tolerance, availability, consensus and replication.
Caching and distributed shared memory.

Previous editions of the course have also covered security (authentication, authorization,
encryption, trust) and system management, but this year we are omitting these topicsin order to
spend more time on concurrency and semantics and to leave room for project presentations.

Prerequisites

There are no formal prerequisites for the course. However, we assume some knowledge both of
computer systems and of mathematics. If you have taken 6.033 and 6.042, you should be in good
shape. If you are missing some of this knowledge you can pick it up aswe go, but if you are
missing alot of it you can expect to have serious trouble. It's also important to have a certain
amount of maturity: enough experience with systems and mathematics to feel comfortable with
the basic notions and to have some reliable intuition.

If you know the meaning of the following words, you have the necessary background. If alot of
them are unfamiliar, this courseis probably not for you.

Systems

Cache, virtual memory, page table, pipeline

Process, scheduler, address space, priority

Thread, mutual exclusion (locking), semaphore, producer-consumer, deadlock
Transaction, commit, availability, relational data base, query, join

File system, directory, path name, striping, RAID

LAN, switch, routing, connection, flow control, congestion

Handout 2. Overview and Background 2



6.826—Principles of Computer Systems 2002

Capability, access control list, principal (subject)

If you have not already studied Lampson’s paper on hints for system design, you should do so as
background for this course. It is Butler Lampson, Hints for computer system design, Proceedings
of the Ninth ACM Symposium on Operating Systems Principles, October 1983, pp 33-48. There
isapointer to it on the course Web page.

Programming

Invariant, precondition, weakest precondition, fixed point
Procedure, recursion, stack

Data type, sub-type, type-checking, abstraction, representation
Object, method, inheritance

Data structures: list, hash table, binary search, B-tree, graph

Mathematics

Function, relation, set, transitive closure

Logic: proof, induction, de Morgan's laws, implication, predicate, quantifier
Probability: independent events, sampling, Poisson distribution

State machine, context-free grammar

Computational complexity, unsolvable problem

If you haven’t been exposed to formal logic, you should study the summary at the end of this
handouit.

References

These are places to ook when you want more information about some topic covered or alluded
to in the course, or when you want to follow current research. Y ou might also wish to consult
Prof. Saltzer’s bibliography for 6.033, which you can find on the course web page.

Books

Some of these are fat books better suited for reference than for reading cover to cover, especially
Cormen, Leiserson, and Rivest, Jain, Mullender, Hennessy and Patterson, and Gray and Reuter.
But the last two are pretty easy to read in spite of their encyclopedic character.

Systems programming: Greg Nelson, ed., Systems Programming with Modula-3, Prentice-Hall,
1991. Describes the language, which has all the useful features of C++ but is much simpler and
less error-prone, and also shows how to use it for concurrency (a version of chapter 4isa
handout in this course), an efficiently customizable 1/0 streams package, and awindow system.

Performance: Jon Bentley, Writing Efficient Programs, Prentice-Hall, 1982. Short, concrete,
and practical. Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991. Tdlls
you much more than you need to know about this subject, but does have alot of realistic
examples.
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Algorithms and data structures: Robert Sedgwick, Algorithms, Addison-Wesley, 1983. Short,
and usually tells you what you need to know. Tom Cormen, Charles Leiserson, and Ron Rivest,
Introduction to Algorithms, McGraw-Hill, 1989. Comprehensive, and sometimes valuable for
that reason, but usually tells you alot more than you need to know.

Distributed algorithms: Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996. The
bible for distributed algorithms. Comprehensive, but a much more formal treatment than in this
course. Thetopic is agorithms, not systems.

Computer architecture: John Hennessy and David Patterson, Computer Architecture: A
Quantitative Approach, 2nd edition, Morgan Kaufmann, 1995. The bible for computer
architecture. The second edition has lots of interesting new material, especially on
multiprocessor memory systems and interconnection networks. There’ s also a good appendix on
computer arithmetic; it's useful to know where to find this information, though it has nothing to
do with this course.

Transactions, data bases, and fault-tolerance: Jim Gray and Andreas Reuter, Transaction
Processing: Concepts and Techniques, Morgan Kaufmann, 1993. The bible for transaction
processing, with much good material on data bases aswell; it includes alot of practical
information that doesn’t appear elsewherein the literature.

Networ ks: Radia Perlman, I nterconnections: Bridges and Routers, Addison-Wesley, 1992. Not
exactly the bible for networking, but tells you nearly everything you might want to know about
how packets are actually switched in computer networks.

Distributed systems: Sape Mullender, ed., Distributed Systems, 2nd ed., Addison-Wesley, 1993.
A compendium by many authors that coversthe field fairly well. Some chapters are much more
theoretical than this course. Chapters 10 and 11 are handouts in this course. Chapters 1, 2, 8, and
12 are also recommended. Chapters 16 and 17 are the best you can do to learn about real-time
computing; unfortunately, that is not saying much.

User interfaces: Alan Cooper, About Face, IDG Books, 1995. Principles, lots of examples, and
opinionated advice, much of it good, from the original designer of Visual Basic.

Journals

You can find al of thesein the LCS reading room. The cryptic strings in brackets are call
numbers there. Y ou can aso find the last few years of the ACM publicationsin the ACM digital
library at www.acm.org.

For the current literature, the best sources are the proceedings of the following conferences. ‘' Sig’
is short for “ Special Interest Group”, a subdivision of the ACM that deals with onefield of
computing. The relevant ones for systems are SigArch for computer architecture, SigPlan for
programming languages, SigOps for operating systems, SigComm for communications, SigMod
for data bases, and SigMetrics for performance measurement and analysis.

Symposium on Operating Systems Principles (SOSP; published as special issues of ACM
SigOps Operating Systems Review; fall of odd-numbered years) [P4.35.06]
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Operating Systems Design and Implementation (OSDI; Usenix Association, now published
as special issues of ACM SigOps Review; fall of even-numbered years, except spring 1999
instead of fall 1998) [P4.35.U71]

Architectural Support for Programming Languages and Operating Systems (ASPLOS;
published as special issues of ACM SigOps Operating Systems Review, SigArch Computer
Architecture News, or SgPlan Notices; fall of even-numbered years) [P6.29.A7]

Applications, Technologies, Architecture, and Protocols for Computer Communication,
(SigComm conference; published as special issues of ACM SigComm Computer
Communication Review; annual) [P6.24.D31]

Principles of Distributed Computing (PODC; ACM; annual) [P4.32.D57]
Very Large Data Bases (VLDB; Morgan Kaufmann; annual) [P4.33.V4]

International Symposium on Computer Architecture (ISCA; published as special issues of
ACM SigArch Computer Architecture News; annual) [P6.20.C6]

Less up to date, but more selective, are the journals. Often papersin these journals are revised
versions of papers from the conferences listed above.

ACM Transactions on Computer Systems
ACM Transactions on Database Systems
ACM Transactions on Programming Languages and Systems
There are often good survey articlesin the less technical IEEE journals:
|EEE Computer, Networks, Communication, Software
The Internet Requests for Comments (RFC's) can be reached from

http://ww. ci s. ohi o-state. edu/ hypertext/information/rfc. htm
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Rudiments of logic

Propositional logic

The basic typeis Bool , which contains two elementst r ue and f al se. Expressionsin these
operators (and the other ones introduced later) are called ‘ propositions'.

Basic operators. These are [ (and), [ (or), and ~ (not).X The meaning of these operators can be
conveniently given by a‘truth table’ which liststhe value of a op b for each possible
combination of values of a and b (the operators on the right are discussed later) along with some
popular names for certain expressions and their operands.

negation conjunction  digunction equality implication
not and or implies
a b ~a alb alb a=hb a#zb a=>bhb
T T F T T T F T
T F F T F T F
F T T F T F T T
F F F F T F T
nameof a conjunct digunct antecedent
name of b conjunct digunct consequent

Note: In Spec wewrite ==> instead of the = that mathematicians use for implication. Logicians
write O for implication, which looks different but is shaped like the > part of =.

In case you have an expression that you can’'t simplify, you can always work out its truth value
by exhaustively enumerating the cases in truth table style. Since the table has only four rows,
there are only 16 Boolean operators, one for each possible arrangement of T and F in a column.
Most of the ones not listed don’t have common names, though ‘not and’ iscalled ‘nand’ and ‘ not
or' iscaled ‘nor’ by logic designers.

The Oand O operators are
commutative and
associative and
distribute over each other.
That is, they arejust like* (times) and + (plus) on integers, except that + doesn't distribute over *:
a+(b*c) #Z(a+hb) * (a+c)
but O does distribute over [
alO(bOc) =(alb) O(alc)
An operator that distributes over Ois called ‘conjunctive’; one that distributes over Ois called
‘digunctive’. So both O and O are both conjunctive and disiunctive. This takes some getting used
to.

11t spossible to write all three in terms of the single operator ‘nor’ or ‘nand’, but our goal is clarity, not minimality.
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The relation between these operators and ~ is given by DeMorgan’ s laws (sometimes called the
“bubblerule” by logic designers), which say that you can push ~ inside O or O by flipping from
oneto the other:

~(alOb) = ~aO-~b

~(alOb) = ~alO-~b

Because Bool istheresult type of relations like =, we can write expressions that mix up relations
with other operators in ways that are impossible for any other type. Notably

(a=b) = ((aOb) O(~a O~b))
Some peoplefed that the outer = in this expression is somehow different from the inner one, and
writeit =. Experience suggests, however, that thisis often a harmful distinction to make.

Implication. We can define an ordering on Bool withfal se > true, thatis, fal se isgreater
than t r ue. The non-strict version of this ordering is called ‘implication’” and written = (rather
than = or >= as we do with other types; logicians writeit (, which also looks like an ordering
symbol). So (true = false) = fal se (readthisas. “t r ue isgreater than or equal tof al se”
isfalse) but al other combinations aret r ue. The expressiona = b ispronounced “a implies
b”, or “if a thenb”.2

There arelots of rules for manipulating expressions containing =; the most useful ones are

given below. If you remember that = isan ordering you'll find it easy to remember most of the

rules, but if you forget the rules or get confused, you can turn the = into O by the rule
[a=b = ~aOy

and then just use the simpler rulesfor [, O, and ~. So remember this even if you forget

everything else.

The point of implication isthat it tells you when one proposition is stronger than another, in the
sense that if the first oneistrue, the second is aso true (because if botha anda = b aretrue,
then b must bet r ue sinceit can’t bef al se).3 So we use implication all the time when reasoning
from premises to conclusions. Two more waysto pronouncea = b are“a isstronger than b”
and “b follows from a”. The second pronunciation suggests that it's sometimes useful to write
the operands in the other order, asb [0 a, which can also be pronounced “b isweaker than a” or
“b only if a”; this should be no surprise, since we do it with other orderings.

Of course, implication has the properties we expect of an ordering:

Transitive Ifa = bandb = cthena = c.4

2|t sometimes seems odd that f al se impliesb regardless of what b is, but the “if ... then” form makes it clearer
what isgoing on: if f al se ist r ue you can conclude anything, but of courseitisn’'t. A proposition that implies
fal se iscalled ‘inconsistent’ because it implies anything. Obviously it’s bad to think that an inconsi stent
proposition istrue. The most likely way to get into this holeisto think that each of a collection of innocent looking
propositionsis true when their conjunction turns out to be inconsistent.

31t may also seem odd that f al se > t r ue rather than the other way around, sincet r ue seems better and so
should be bigger. But in fact if we want to conclude lots of things, being closeto f al se is better becauseif f al se
istrue we can conclude anything, but knowingthat t r ue istrue doesn’t help at al. Strong propositions are as
closetof al se aspossible; thisislogical brinkmanship. For example, a Ob iscloser tof al se than a (there are
more values of the variablesa and b that make it f al se), and clearly we can conclude more things from it than from
a aone.

4We can dsowritethis((a = b) O (b = ¢)) = (a = c).
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Reflexive: a = a.
Anti-symmetric: Ifa = bandb = athena = b5

Furthermore, ~ reverses the sense of implication (thisis called the ‘ contrapositive'):
(a=>b) = (~b = -~a)

More generally, you can move a digunct on theright to a conjunct on the left by negating it.

Thus

(a=>b0c) = (al~b =c)

As special casesin addition to the contrapositive we have
(a=Db) = (al-~b = false) = ~(alO~b) Ofalse =~a Ob
(a=Db) = (true = ~a 0O b) = false O~aOb=~aOb

sincefal se andt rue aretheidentities for Cand [

We say that an operator op is ‘monotonic’ in an operand if replacing that operand with a stronger
(or weaker) one makes the result stronger (or weaker). Precisdly, “op ismonotonic in itsfirst
operand” meansthatif a = bthen(a op ¢) = (b op c).Both Oand Oare monotonic; in
fact, any conjunctive operator is monotonic, becauseif a = bthena = (a O b),S0a op ¢ =
(alb) opc=aopc Obopc = bopec.

If you know what a lattice s, you will find it useful to know that the set of propositions forms a
lattice with = asits ordering and (remember, think of = as*“ greater than or equal”):

top =fal se
bottom =true
meet =0 least upper bound, so(a Ob) = aand (a Ob) = b
join =0 greatest lower bound, so a = (a O b) and b = (a O b)

This suggests two more expressions that are equivalent toa = b:

(a = b) =(a=(a b)) ‘andingawesker term makes no difference,

becausea = b iff a = least upper bound(a, b).

(a = b) (b = (a Ob)) ‘oringastronger term makes no difference,

becausea = biff b = greatest lower bound(a, b).

Predicate logic

Propositions that have free variables, likex < 3 orx < 3 = x < 5, demand alittle more
machinery. Y ou can turn such a proposition into one without a free variable by substituting some
valuefor thevariable. Thusif P(x) isx < 3thenP(5) is5 < 3 = fal se. Togetrid of thefree
variable without substituting a value for it, you can take the ‘and’ or ‘or’ of the proposition for
all the possible values of the free variable. These have special names and notation®:

Ox | P(x) = P(x1) OP(x2) O... for all x, P(x) . In Spec,

(ALL x | P(x)) ord: {x | P(x)}

SThus(a = b) = (a = b Ob = a),whichiswhya = b issometimes pronounced “a if and only if b” and
written “a iff b”.

6 There is no agreement on what symbol should separate the 0 x or Ox from the P(x) . Weuse ‘| here as Spec does,
but other peopleuse ‘.’ or ‘.’ or just aspace, or write (0 x) and ( Ox) . Logicianstraditionally write (x) and ( Ox) .
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Ox | P(x) = P(x1) Op(x2) O... there exists an x such that P(x) . In Spec,

(EXISTS x | P(x)) orO: {x | P(x)}

Herethexi range over al the possible values of the free variables.” The first is called ‘ universal
quantification’; as you can see, it corresponds to conjunction. The second is called ‘ existential
quantification’ and corresponds to disjunction. If you remember this you can easily figure out
what the quantifiers do with respect to the other operators.

In particular, DeMorgan’s laws generalize to quantifiers:
~(0Ox | P(x)) = (Ox | ~P(x))
~(Ox | P(x)) = (O0x | ~P(x))

Also, because [Jand [ are conjunctive and therefore monotonic, 0 and Oare conjunctive and
therefore monatonic.

It is not true that you can reverse the order of 0 and 0, but it's sometimes useful to know that
having Ofirst is stronger:
Oy | Ox | Px,y) = Ox| Oy P(x,y)

Intuitively thisisclear: ay that worksfor every x can surely do the job for each particular x.

If wethink of P asarelation, the consequent in thisformula saysthat P istotal (relates every x to
somey). It doesn’t tell us anything about how to find ay that isrelated to x. As computer
scientists, we like to be able to compute things, so we prefer to have afunction that computesyy,
ortheset of y’s, from x. Thisis called a‘ Skolem function’; in Spec you writeP. f unc (or P. set F
for the set). P. f unc istotal if Pistotal. Or, to turn thisaround, if we have atotal function f such
thatO x | P(x, f(x)),thencertainlyo x | Oy | P(x, y);infact,y = f(x) will do.
Amazing.

71n general this might not be a countable set, so the conjunction and disunction are written in a somewhat
misleading way, but this complication won’t make any difference to us.
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Summary of logic

2002

The Oand O operators are commutative and associative and distribute over each other.

DeMorgan'slaws. ~ (a O b)
~(a Ob)

Implication: (a = b)

Implication is the ordering in alattice (a partially ordered set in which every subset has aleast

upper and a greatest lower bound) with
top =fal se

bottom =true

meet =0
jon =0

For al x, P(x) :
O x | P(x)
There exists an x such that P(x) :
Ox | P(x)

Index for logic

antecedent, 6
Anti-symmetric, 8
associative, 6

bottom, 8
commutative, 6
conjunction, 6
conjunctive, 6
conseguent, 6
contrapositive, 8
DeMorgan'slaws, 7, 9
disunction, 6
disunctive, 6
distribute, 6
existential quantification, 9
EXI STS, 9
followsfrom, 7

free variables, 8
greatest lower bound, 8
ifathenb, 7
implication, 6, 7

join, 8

lattice, 8

least upper bound, 8
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Sofal se = true

least upper bound,
greatest lower bound,

P(x1) OpP(x2) O...

P(x1) OP(x2) O...

meet, 8

monotonic, 8
negation, 6

not, 6

onlyif, 7
operators, 6

or, 6

ordering on Bool, 7
predicate logic, 8
propositions, 6
quantifiers, 9
reflexive, 8
Skolem function, 9
stronger than, 7
top, 8

transitive, 8

truth table, 6
universal quantification, 9
weaker than, 7

so(a Ob) = a
S0 a = (a Ob)
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3. Introduction to Spec

This handout explains what the Spec language is for, how to useit effectively, and how it differs
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more
succinct and less burdened with trivial details. The handout also introduces the main constructs
that arelikely to be unfamiliar to a programmer. Y ou will probably find it worthwhile to read it
over more than once, until those constructs are familiar. Don’t miss the one-page summary of
spec at the end. The handout & so has an index.

Spec is alanguage for writing precise descriptions of digital systems, both sequential and
concurrent. In Spec you can write something that differs from practical code (for instance, code
written in C) only in minor details of syntax. This sort of thing is usually called a program. Or
you can write a very high level description of the behavior of a system, usualy called a
specification. A good specification is almost always quite different from a good program. Y ou
can use Spec to write either one, but not the same style of Spec. The flexibility of the language
means that you need to know the purpose of your Spec in order to writeit well.

Most people know alot more about writing programs than about writing specs, so this
introduction emphasizes how Spec differs from a programming language and how to useit to
write good specs. It does not attempt to be either complete or precise, but other handouts fill
these needs. The Spec Reference Manual (handout 4) describes the language completely; it gives
the syntax of Spec precisely and the semantics informally. Atomic Semantics of Spec (handout 9)
describes precisely the meaning of an atomic command; here ‘ precisely’ means that you should
be able to get an unambiguous answer to any question. The section “Non-Atomic Semantics of
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.

Spec’ s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra's
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS11, 4, Oct.
1989, pp 517-561). The notation for expressions is derived from mathematics.

This handout starts with a discussion of specifications and how to write them, with many small
examples of Spec. Then thereis an outline of the Spec language, followed by three extended
examples of specs and code. At the end are two handy tear-out one-page summaries, one of the
language and one of the official POCS strategy for writing specs and code.
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What is a specification for?

The purpose of a specification isto communicate precisely all the essential facts about the
behavior of a system. The important words in this sentence are:

communicate The spec should tell both the client and the implementer what each needs

to know.

precisely We should be able to prove theorems or compile machine instructions
based on the spec.

essential Unnecessary requirements in the spec may confuse the client or make it

more expensive to implement the system.

behavior We need to know exactly what we mean by the behavior of the system.

Communication

Spec mediates communication between the client of the system and its implementer. One way to
view the spec is as a contract between these parties:

The client agrees to depend only on the system behavior expressed in the spec; in return it
only has to read the spec, and it can count on the implementer to provide a system that
actually does behave as the spec says it should.

The implementer agrees to provide a system that behaves according to the spec; in returnitis
freeto arrange the internals of the system however it likes, and it does not have to deliver
anything not laid down in the spec.

Usually the implementer of a spec is a programmer, and the client is another programmer.
Usually the implementer of a program is a compiler or acomputer, and the clientisa
programme.

Usually the system that the implementer provides is called an implementation, but in this course
wewill call it code for short.

Behavior

What do we mean by behavior? In real life a spec defines not only the functional behavior of the
system, but also its performance, cost, reliability, availability, size, weight, etc. In this course we
will deal with these mattersinformally if at all. The Spec language doesn’t help much with them.

Spec is concerned only with the possible state transitions of the system, on the theory that the
possible state transitions tell the complete story of the functional behavior of adigital system. So
we make the following definitions:

A stateisthe values of a set of names (for instance, x=3, col or =r ed).
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A history is a sequence of states such that each pair of adjacent states is atransition of the
system (for instance, x=1; x=2; x=5 isthehistory if theinitial stateisx=1 and the
transitionsare“if x = 1thenx := x + 1" and“ifx = 2thenx := 2 * x + 1").

A behavior isaset of histories (a non-deterministic system can have more than one history).
How can we specify a behavior?

One way to do thisisto just write down all the histories in the behavior. For example, if the state
just consists of asingleinteger, we might write

11111111111
1

11 11
1 2 111111111111

P
P

1
1
12121 2121212121212
123451 2312345678 910
The exampl e reveal s two problems with this approach:

The sequences arelong, and there are alot of them, so it takes alot of space to write them
down. In fact, in most cases of interest the sequences are infinite, so we can't actually write
them down.

Itisn’t too clear from looking at such a set of sequences what is really going on.

Another description of this set of sequences from which these examples are drawn is“ 18
integers, each one either 1 or one more than the preceding one.” Thisis concise and
understandable, but it is not formal enough either for mathematical reasoning or for directionsto
acomputer.

Precise

In Spec the set of sequences can be described in many ways, for example, by the expression

{s: SEQ Int | s.size = 18
/\ (ALL i: Int | O<=1i /\ i < s.size ==>

s(i) =1\ (i >0/\ s(i) =s(i-1) + 1)) }

Heretheexpressionin{. ..} isvery closeto the usual mathematical notation for defining a set.
Read it as“ The set of all s which are sequences of integerssuchthat s. si ze = 18 and ...". Spec
sequences areindexed from 0. The (ALL . ..) isauniversally quantified predicate, and ==>
stands for implication, since Spec uses the more familiar => for ‘then’ in aguarded command.
Throughout Spec the ‘| * symbol separates a declaration of some new names and their types from
the scopein which they are meaningful.

Alternatively, hereis a state machine that generates the sequences we want as the successive
values of the variablei . We specify the transitions of the machine by starting with primitive
assignment commands and putting them together with afew kinds of compound commands.

Each command specifies a set of possible transitions.
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VAR i, | |
<<i;:]_;j;:]_>>;
DO<<j <18 =>BEGANi :=1[] i :=i +1END j :=j +1>>0D

Herethereisagood deal of new notation, in addition to the familiar semicolons, assignments,
and plus signs.

VARi, j | introducesthelocal variablesi andj with arbitrary values. Because; binds
moretightly than | , the scope of the variablesis the rest of the example.

The<< ... >> brackets delimit the atomic actions or transitions of the state machine. All
the changes inside these brackets happen as one transition of the state machine.

j < 18 => ... isatransitionthat can only happenwhenj < 18.Readitas“ifj < 18
then ...”. Thej < 18iscaledaguard. If theguardisfase, we say that the entire
command fails.

i :=1[] i :=1i + 1isanon-deterministictransition which can either seti to1 or
increment it. Read [] as‘or’.

TheBEG N ... ENDbrackets arejust brackets for commands, like{ ...} in C. They arethere
because => binds more tightly than the[] operator inside the brackets; without them the
meaning would be “either seti to1ifj < 18 orincrementi andj unconditionally”.

Finaly, thepo ... oD brackets mean: repesat the. .. transition aslong as possible.
Eventually j becomes 18 and the guard becomes false, so the command insidetheDo . . .
op fails and can no longer happen.

The expression approach is better when it works naturally, as this example suggests, so Spec has
lots of facilities for describing values: sequences, sets, and functions as well asintegers and
booleans. Usually, however, the sequences we want are too complicated to be conveniently
described by an expression; a state machine can describe them much more easily.

State machines can be written in many different ways. When each transition involves only
simple expressions and changes only asingle integer or boolean state variable, we think of the
state machine as a program, since we can easily make a computer exhibit this behavior. When
there are transitions that change many variables, non-deterministic transitions, big values like
sequences or functions, or expressions with quantifiers, we think of the state machine as a spec,
since it may be much easier to understand and reason about it, but difficult to make a computer
exhibit this behavior. In other words, large atomic actions, non-determinism, and expressions
that compute sequences or functions are hard to code. It may take a good deal of ingenuity to
find code that has the same behavior but uses only the small, deterministic atomic actions and
simple expressions that are easy for the computer.

Essential

The hardest thing for most people to learn about writing specsisthat a spec is not a program. A
spec defines the behavior of a system, but unlike a program it need not, and usually should not,
give any practical method for producing this behavior. Furthermore, it should pin down the
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behavior of the system only enough to meet the client’ s needs. Details in the spec that the client
doesn’t need can only make trouble for the implementer.

The example we just saw istoo artificial toillustrate this point. To learn more about the
difference between a spec and code consider the following:

CONST eps := 10**-8

APRCC Squar eRoot O(x: Real) -> Real =
<< VAR Yy : Real | Abs(x - y*y) < eps => RET y >>

(Spec as described in the reference manual doesn't have aReal datatype, but we'll add it for the
purpose of this example.)

The combination of VAR and => isa very common Spec idiom; read it as“choose ay such that
Abs(x - y*y) < eps anddoRET y”. Why isthisthe meaning? The VAR makes a choice of any
Real asthevalue of y, but the entire transition on the second line cannot occur unless the guard
istrue. The result isthat the choice is restricted to a value that satisfies the guard.

What can we learn from this example? First, the result of Squar eRoot 0(x) isnot completely
determined by the value of x; any result whose square is within eps of x is possible. Thisiswhy
Squar eRoot 0 iswritten as a procedure rather than a function; the result of afunction has to be
determined by the arguments and the current state, so that the value of an expression like

f(x) = f(x) will betrue. Inother words, Squar eRoot 0 is non-deterministic.

Why did we write it that way? First of all, there might not be any Real (that is, any floating-point
number of the kind used to represent Real ) whose square exactly equals x.1 Second, we may not
want to pay for code that gives the closest possible answer. Instead, we may settle for aless
accurate answer in the hope of getting the answer faster.

Y ou have to make sure you know what you are doing, though. This spec allows a negative result,
which is perhaps not what we really wanted. We could have written (highlighting changes with
boxes):

APRCC Squar eRoot 1(x: Real) -> Real =

<< VARy : Real | [y >= 0 /1] Abs(x - y*y) < eps => RET y >>

to rulethat out. Also, the spec produces no result if x < 0, which means that Squar eRoot 1( - 1)
will fail (seethe section on commands for adiscussion of failure). We might prefer atotal
function that raises an exception:

APROC Squar eRoot 2(x: Real ) -> Real [RAISES {lundefined}] =

<< X >> 0 => VARy : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y
[*1 RAISE undefined| >>

The [*] is‘ése; it doesits second operand iff thefirst one fails. Exceptionsin Spec are much
like exceptionsin cLU. An exception is contagious: once started by a RAI SE it causes any

1 We could accommodate this fact of life by specifying the closest floating-point number. Thiswould still be non-
deterministic in the case that two such numbers are equally close, so if we wanted a deterministic spec we would
have to give arule for choosing one of them, for instance, the smaller.
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containing expression or command to yield the same exception, until it runs into an exception
handler (not shown here). The RaI SES clause of aroutine declaration must list all the exceptions
that the procedure body can generate, either by RAI SES or by invoking another routine.

Codefor this spec would look quite different from the spec itself. Instead of the existential
quantifier implied by the VAR v, it would have an agorithm for finding y, for instance, Newton's
method. In the algorithm you would only see operations that have obvious codes in terms of the
load, store, arithmetic, and test instructions of a computer. Probably the code would be
deterministic.

Another way to write these specsis as functions that return the set of possible answers. Thus

Squar eRoot s1(x: Real) -> [SET Real] =
RET fly : Real | y >= 0 /\ Abs(x - y*y) < epsf]

Notethat theforminsidethe{. ..} set constructor isthe same asthe guard on the RET. To get a
single result you can use the set’s choose method: Squar eRoot s1( 2) . choose.?

In the next section we give an outline of the Spec language. Following that are three extended
examples of specs and codefor fairly realistic systems. At the end is a one-page summary of the

language.
An outline of the Spec language

The Spec language has two main parts:

¢ An expression describes how to compute a result (a value or an exception) as a function of
other values: either literal constants or the current values of state variables.

* A command describes possible transitions of the state variables. Another way of saying this
isthat acommand is arelation on states: it allows atransition froms1 tos2 iff it relatess1 to
s2.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the sequence example abovethey arei andj .
Actually acommand relates states to outcomes; an outcome is either a state (a normal outcome)
or a state together with an exception (an exceptional outcome).

There are two kinds of commands:

* Anatomic command describes a set of possible transitions, or equivalently, a set of pairs of
states, or arelation between states. For instance, thecommand<< i := i + 1 >> describes
thetransitionsi =1 -»i =2, i=2-i =3, etc. (Actually, many transitions are summarized by
i =1-i=2,forinstance, (i=1, j=1) -»(i=2, j=1) and (i=1, j=15) »(i=2, j=15)).Ifa
command allows more than one transition from a given state we say it is non-deterministic.

2y : = squareRoot s1(x) . choose (using the function) is almost the same asr : = Squar eRoot 1(x) (using the
procedure). The differenceisthat because choose isafunction it always returns the same element (even though we
don’t know in advance which one) when given the same set, and hence when Squar eRoot s1 is given the same
argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls.
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For instance, on page 3thecommandBEG N i := 1 [] i :=i + 1 ENDalowsthe
transitionsi =2 i =1 andi =2 - i =3.

* A non-atomic command describes a set of sequences of states (by contrast with the set of
pairs for an atomic command). More on this below.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.

The meaning of an expression, which is afunction from states to values (or exceptions), is much
simpler than the meaning of an atomic command, which isarelation between states, for two
reasons:

* Theexpression yields asingle value rather than an entire state.

* Theexpression yields at most one value, whereas a non-deterministic command can yield
many final states.

A atomic command is still simple, much simpler than a non-atomic command, because:

e Taken inisolation, the meaning of a non-atomic command is arelation between an initial
state and a history. Again, many histories can stem from asingleinitial state.

* Themeaning of the composition of two non-atomic commandsis not any simple
combination of their relations, such as the union, because the commands can interact if they
share any variables that change.

These considerations |ead us to describe the meaning of a non-atomic command by breaking it
down into its atomic subcommands and connecting these up with anew state variable called a
program counter. The details are somewhat complicated; they are sketched in the discussion of
atomicity below, and described in handout 17 on formal concurrency.

The moral of al thisisthat you should use the simpler parts of the language as much as possible:
expressions rather than atomic commands, and atomic commands rather than non-atomic ones.
To encourage this style, Spec has alot of syntax and built-in types and functions that make it
easy to write expressions clearly and concisely. Y ou can write many things in asingle Spec
expression that would require a number of C statements, or even aloop. Of course, code with a
lot of concurrency will necessarily have more non-atomic commands, but this complication
should be put off aslong as possible.

Organizing the program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

* A routine is anamed computation with parameters, in other words, an abstraction of the
computation. Parameters are passed by value. There are four kinds of routine:

A function (defined with FUNC) is an abstraction of an expression.

Handout 3. Introduction to Spec 7

6.826—Principles of Computer Systems 2002

An atomic procedure (defined with APROC) is an abstraction of an atomic command.
A genera procedure (defined with PROC) is an abstraction of a non-atomic command.
A thread (defined with THREAD) is the way to introduce concurrency.

* Atypeisahighly stylized assertion about the set of values that a name or expression can
assume. A typeis also a convenient way to group and name a collection of routines, called its
methods, that operate on valuesin that set.

« An exception isaway to report an unusua outcome.

* A moduleisaway to structure the name space into atwo-level hierarchy. An identifier i
declared in amodule mhasthe namem i throughout the program. A classis a module that
can beinstantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a
set of modules each of which declares some variables, routines, types, and exceptions.

The next two sections describe things about Spec’s expressions and commands that may be new
to you. It doesn’t answer every question about Spec; for those answers, read the reference
manual and the handouts on Spec semantics. There is a one-page summary at the end of this
handout.

Expressions, types, and functions

Expressions are for computing functions of the state. A Spec expression is a constant, a variable,
or an invocation of afunction on an argument that is some sub-expression. The values of these
expressions are the constant, the current value of the variable, or the value of the function at the
value of the argument. There are no side-effects;, those are the province of commands. Thereis
quite abit of syntactic sugar for function invocations. An expression may be undefined in a state;
if asimple command evaluates an undefined expression, the command fails (see bel ow).

A Spec type defines two things:
A set of values; we say that a value has thetypeif it'sin the set. The sets are not disjoint.

A set of functions called the methods of the type. Thereis convenient syntax v. mfor
invoking method mon avaluev of thetype. A method mof type T islifted to functions U- >T,
sets of T's, and relations from Uto T in the obvious way, unless overridden by a different min
the definition of the higher type.

Spec is strongly typed. This means that you are supposed to declare the types of your variables,
just asyou do in Pascal or cLu. In return the language defines atype for every expressions and
ensures that the value of the expression always has that type. In particular, the value of avariable
always has the declared type. Y ou should think of atype declaration as a stylized comment that
has a precise meaning and could be checked mechanically.

3 Note that a value may have many types, but a variable or an expression has exactly one type: for avariable, it'sthe
declared type, and for a complex expression it’s the result type of the top-level function in the expression.
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If Foo isatype, you can omit it in adeclaration of the identifiersf oo, fool, foo' etc. Thus
VAR intl, bool2, char'' |

is short for
VAR intl: Int, bool2: Bool, char'': Char |

Spec has the usual types: I nt, Nat (hon-negative nt ), Bool , functions, sets, records, tuples, and
variable-length arrays called sequences. A sequenceisafunction whosedomainis{o, 1, ...,
n- 1} for somen. In addition to the usual functionslike" +" and "\ /", Spec also has some less
usual operations on these types, which are valuable when you want to suppress code detail:
constructors and combinations.

Y ou can make atype with fewer values using SUCHTHAT. For example,

TYPE T = Int SUCHTHAT (\ i: Int | O <=i /\ i <= 4)
hasthevalueset {0, 1, 2, 3, 4}.Herethe(\ ...) isalambdaexpression (with\ for X) that
defines afunction from 1 nt to Bool , and avalue hastype T if it'san I nt and the function mapsit
totrue.

Section 5 of the reference manual describes expressions and lists all the built-in operators. Y ou
should read the list, which also gives their precedence and has pointers to explanations of their
meaning. Section 4 describes the types. Section 9 defines the built-in methods for sequences,
sets, and functions; you should read it over so that you know the vocabulary.

Constructors

Constructors for functions, sets, and sequences make it easy to toss large values around. For
instance, you can describe a database as a function db from names to data records with two
fields:

TYPE DB = (String -> Entry)

TYPE Entry = [salary: Int, birthdate: Int]

VAR db := DB{}

Here db isinitialized using a function constructor whose value is a function undefined
everywhere. The type can be omitted in a variable declaration when the variableisinitialized; it
is taken to be the type of theinitializing expression. The type can aso be omitted when it isthe
upper case version of the variable name, DB in this example.

Now you can make an entry with

db :=db{ "Smth" -> Entry{salary := 23000, birthdate := 1955} }
using another function constructor. The value of the constructor is afunction that is the same as
db except at theargument " Sii t h" , whereit hasthevalueEnt ry{. ..}, whichisarecord
constructor. The assignment could also be written

db("Smth") := Entry{salary := 23000, birthdate := 1955}
which changes the value of the db function at " Smi t h* without changing it anywhere else. This
is actually a shorthand for the previous assignment. Y ou can omit the field namesiif you like, so
that

db("Smith") := Entry{23000, 1955}
has the same meaning as the previous assignment. Obviously this shorthand is less readable and
more error-prone, so use it with discretion. Another way to write this assignment is

db("Smth").salary := 23000; db("Snmith").birthdate := 1955

Handout 3. Introduction to Spec 9

6.826—Principles of Computer Systems 2002

The set of names in the database can be expressed by a set constructor. It isjust

{n: String | db!n},
in other words, the set of al the strings for which the db function is defined (‘! ’ isthe‘is-
defined’ operator; that is, f ! x istrueiff f isdefined at x). Read this “the set of stringsn such that
db! n”. You can also write it asdb. dom the domain of db; section 9 of the reference manual
defineslots of useful built in methods for functions, sets, and sequences. It simportant to realize
that you can freely use large (possibly infinite) values such asthe db function. Y ou are writing a
spec, and you don’t need to worry about whether the compiler is clever enough to turn an
expensive-looking manipulation of alarge object into a cheap incremental update. That’sthe
implementer’ s problem (so you may have to worry about whether sheis clever enough).

If we wanted the set of lengths of the names, we would write

{n: String | db!'n | n.size}
Thisthree part set constructor containsi if and only if there exists an n such that db! n and
i = n.size.So{n: String | db!n}isshortfor{n: String | db!'n | n}.Youcan
introduce more than one name, in which case the third part defaults to the last name. For
example, if we represent adirected graph by afunction on pairs of nodes that returnst r ue when
there's an edge from thefirst to the second, then

{nl: Node, n2: Node | graph(nl, n2) | n2}
isthe set of nodes that are the target of an edge, and the“| n2” could be omitted. Thisisjust the
range gr aph. r ng of therelation gr aph on nodes.

Following standard mathematical notation, you can also write

{f :IN openFiles | f.nodified}
to get the set of all open, modified files. Thisis equivaent to

{f: File | f INopenFiles /\ f.nodified}
becauseif s isaSET T,thenI N s isatypewhosevaluesarethe T’sins; infact, it'sthe type
T SUCHTHAT (\ t | t IN s). Thisform asoworksfor sequences, where the second operand
of : I Nprovidesthe ordering. Soif s isasequence of integers, {x :IN s | x > 0} isthe
positiveones, {x :INs | x >0 | x * x} isthesquares of the positiveones, and{x :IN s
| | x * x} isthesguares of al the integers, because an omitted predicate defaultstot r ue.4

To get sequences that are more complicated you can use sequence generators with BY and WHI LE.
{i :=1BYi +1WILEi <=5 true| i}
is{1, 2, 3, 4, 5};thesecond and third parts could be omitted. Thisisjust likethe “for”
construction in C. An omitted WHI LE defaultstot r ue, and an omitted : = defaultsto an arbitrary
choicefor theinitial value. If you write several generators, each variable gets anew value for
each value produced, but the second and later variables are initialized first. So to get the sums of
successive pairs of elements of s, write
{x := s BY x.tail WHLE x.size > 1| | x(0) + x(1)}
To get the sequence of partial sums of s, write (eliding| | sumat the end)
{x :INs, sum:= 0 BY sum + x}
Taking | ast of thiswould give the sum of the elements of s. To get a sequence whose elements
arereversed from those of s, write

4n the sequence form, I N s isnot a set type but a special construct; treating it as a set type would throw away the
essential ordering information.
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{x :INs, rev :={} BY {x} + rev}.last
To get thesequence{e, f(e), f2(e), , f'e)}, write

{i :IN1 .. n, iter := e BY f(iter)}
Thisusesthe.. operator;i .. j isthesequence{i, i+1, ..., j-1, j}.It'stheempty
sequenceifi > j.

Combinations

A combination is away to combine the elements of a sequence or set into a single value using an
infix operator, which must be associative, must have an identity, and must be commutativeif it is
applied to aset. Y ou write “operator : sequence or set”. Thus

+: (SEQ String){"He", "I", "lo"} = "He" +"I" + "l 0" = "Hello"
because + on sequences is concatenation, and
+ 0 {i (IN1 .. 4] | i**2} =1+4+9+16 =30

Existential and universal quantifiers make it easy to describe properties without explaining how
to test for them in a practical way. For instance, a predicate that ist r ue iff the sequences is
sorted is

(ALL i :IN1 .. s.size-1 | s(i-1) <= s(i))
Thisisacommon idiom; read it as

“forali in1 .. s.size-1,s(i-1) <= s(i)".

This could a so be written

(ALL i :IN (s.dom- {0}) | s(i-1) <= s(i))
sinces. domisthe domain of the function s, which is the non-negative integers< s. si ze. Or it
could be written

(ALL i :INs.dom| i >0 ==> s(i-1) <= s(i))

Because a universal quantification isjust the conjunction of its predicate for all the values of the
bound variables, it is simply acombination using /\ asthe operator:

(ALL i | Predicate(i)) =/\ : {i | Predicate(i)}
Similarly, an existential quantification isjust asimilar disunction, hence acombination using\ /
as the operator:

(EXISTS i | Predicate(i)) =\/ : {i | Predicate(i)}

Spec has the redundant ALL and EXI STS notations because they are familiar.

If you want to get your hands on a value that satisfies an existential quantifier, you can construct
the set of such values and use the choose method to pick out one of them:

{i | Predicate(i)}.choose
Thisisdeterministic: choose always returns the same value given the same set (a necessary
property for it to be afunction). It is undefined if the set is empty, which isthe casein the
exampleif noi satisfiesPredi cat e.

The VAR command described in the next section on commands is another form of existential
quantification that |ets you get your hands on the value, but it is non-deterministic.

Methods

Methods are a convenient way of packaging up some functions with a type so that the functions
can be applied to values of that type concisely and without mentioning the typeitself. Look at the
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definitions in section 9 of the Spec Reference Manual, which give methods for the built-in types
SEQ T, SET T,and T->U. If s iSaSEQ T, s. head iSSequence[ T] . Head(s) , whichisjust s(0)
(which isundefined if s is empty). You can seethat it's shorter to write s. head.5

Y ou can define your own methods by using w TH. For instance, consider

TYPE Conmplex = [re: Real, im Real] WTH {"+": =Add, mag: =Mag}
Add and Mag are ordinary Spec functions that you must define, but you can now invoke them on a
¢ which is Conpl ex by writing ¢ + ¢' and c. mag, which mean Add(c, c¢') and Mag(c).You
can use existing operator symbols or make up your own; see section 3 of the reference manual
for lexical rules. Y ou can also write Conpl ex. " +" and Conpl ex. mag to denote the functions Add
and Mag; this may be convenient if Conpl ex was declared in adifferent module. Using Add asa
method does not make it private, hidden, static, local, or anything funny like that.

When you nest w TH the methods pile up in the obvious way. Thus

TYPE MoreConpl ex = Conplex WTH {"-":=Sub, mag: =Mag2}
has an additional method "- ", the same" +" as Conpl ex, and a different mag. Many people call
this ‘inheritance’ and ‘overriding'.

Functions

A function isaset of ordered pairs; the first element of each pair comes from the functions
domain, and the second from its range. A function produces at most one value for an argument;
that is, two pairs can’t have the same first element. A function may be partial, that is, undefined
at some elements of itsdomain. The expression ! x istrueif f isdefined at x, false otherwise.
Like everything (except types), functions are ordinary valuesin Spec.

Given afunction, you can use a function constructor to make another one that is the same except
at a particular argument, as in the DB example above. Another exampleisf{x -> 0}, whichis
thesameast except that itisO at x. If you have never seen a construction like this one, think
about it for a minute. Suppose you had to implement it. If f is represented as a table of
(argument, result) pairs, the code will be easy. If f is represented by code that computes the
result, the code for the constructor is less obvious, but you can make a new piece of code that
says

(VysInt | (y =x) =>0([*] f(y)))
Here'\’ is‘lambda’, and the subexpression( (y = x) => 0 [*] f(y) ) isaconditional,
modeled on the conditional commands we saw in the first section; itsvalueiso ify = x and
f(y) otherwise, so we have changed f just at 0, asdesired. If theelseclause [*] f(y) is
omitted, the condition isundefined if y # x. Of course in arunning program you probably
wouldn’t want to construct new functions very often, so a piece of Spec that isintended to be
closeto practical code must use function constructors carefully.

Functions can return functions as results. Thus T- >U- >V is the type of afunction that takesaT
and returns a function of type U- >v, which in turn takesau and returnsa V. If f has thistype,
thenf (t) hastypeU >v,andf(t) (u) hastypeVv. Comparethiswith (T, U)->V, thetypeof a
function which takesaT and auand returnsa V. If g hasthistype, g(t) doesn’t type-check, and
g(t, u) hastypev. Obviously f and g are closely related, but they are not the same.

5 Of course, s(0) isshorter still, but that’s an accident; there is no similar alternative for s. tai | .
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Y ou can define your own functions either by lambda expressions like the one above, or more
generally by function declarations like this one

FUNC NewF(y: Int) ->1Int = RET ( (y = x) =>0 [*] f(y) )
The value of this Newr is the same as the value of the lambda expression. To avoid some
redundancy in the language, the meaning of the function is defined by a command in which RET
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might contain VAR or [] ), but it must specify at most one result
valuefor any argument value; if it specifies no result values for an argument or more than one
value, the function is undefined there. If you need a full-blown command in afunction
constructor, you can write it with LAMBDA instead of \ :

(LAMBDA (y: Int) ->1Int = RET ( (y = x) => 0 [*] f(y) ))

Y ou can compose two functions with the* operator, writingf * g. Thismeansto apply f first
and then g, so you read it “f then g”. Itis often useful whent isaseguence (remember that a SEQ
Tisafunctionfrom{o, 1, si ze- 1} t0T), since theresult is a sequence with every

(s

element of f mapped by g. ThisisLisp’sor Scheme's“map”. So:

(0 .. 4 * {\ i: Int | i*i} = (SEQInt){0, 1, 4, 9, 16}
since0 .. 4 = {0, 1, 2, 3, 4} becauselnt hasamethod. . with the obvious meaning:
i .. j = {i, i+1, ..., j-1, j}.Inthesection on constructorswe saw another way to
write

(0 .. 4 * {\ i: Int | i*i},
as

{i (INO .. 4] | i*i}.

Thisis more convenient when the mapping function is defined by an expression, asit is here, but
it's less convenient if the mapping function already has aname. Then it's shorter and clearer to

write
(0 .. 4) * factorial

rather than
{i :INO .. 4| | factorial(i)}.

A functionf has methodsf. domandf . r ng that yield its domain and range sets, f . i nv that
yiddsitsinverse (which isundefined at y if f maps zero or more than one argument toy), and
f.rel thatturnsitinto arelation (seebelow). f.restrict(s) isthesameast on elements of s
and undefined elsewhere. The overlay operator combines two functions, giving preference to the
second: (f1 + f2)(x) isf2(x) if that isdefined and f 1(x) otherwise. Sof{3 -> 24} =f +
{3 -> 24}.

If type U has method m then the function typev = T->Uhasa“lifted” method mthat composes
U. mwith v, unless v already has ammethod. v. mis defined by

(Vv (V] ov(t).m)
sothatv.m = v * U m For example, {"a", "ab", "b"}.size = {1, 2, 1}.If mtakesa
second argument of type w then v. mtakes a second argument of type w = T->wand is defined
pairwise on the intersection of the domains, soif Q = SEQ Int,Q1, 2, 3} + Q10, 20} =
Q 11, 22}.
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Relations

A relationr isageneralization of afunction: an arbitrary set of ordered pairs, defined by atotal
function from pairsto Bool . Thusr can relate an element of its domain to any number of
elements of its range (including none). Like afunction, r hasdom r ng, and i nv methods (the
inverseis obtained just by flipping the ordered pairs), and you can compose relations with *. The
advantage of relationsis simplicity and generality; for example, there’s no notion of “undefined”
for relations. The drawback is that you can’t writer (x) (although you canwrite{x} ** r for
the set of valuesrelated to x by r ; see below).

A relationr has methods

r.func toturnitintoafunction: r. f unc(x) isundefined unlessr relatesx to exactly one
value.

r.set Ftoturnitinto aset function: r. set F(x) isthe set of elementsthat r relatestox. This
istotal. Theinverse of set F isthe set Rel method for a function whose values are sets:
r.setF.setRel = r,andf.setRel.setF = f if f yieldssets.

If sisaset, s. rel isareation that relatesni | to each member of the set. Therdation’sr ng
method inverts this. Y ou can extend composition to sets in two ways:

s * f istheset that results from applying f to every member of s, just likeq * f fora
sequence; it's undefined if f isundefined on any member of s.

s ** r takestheview of s asarelation more serioudly; it isthe set of all valuesthat are
relatedtoamember of s by r: (s.rel * r).rng,whichisaso\/ : (s * r.setF).Thisis
never undefined.

A method mof Uislifted to SET Uandtorelationsto Ujust asitisto functionsto u. If mtakesa
second argument, R. mworks on all pairs of related values, sothat r. n(rr) relatest tou. m(w)
whenever r rdlatest tou andrr relatest tow. Thusif S = SET Int,S{1, 2} + S{10, 20} =
S{11, 12, 21, 22}.

If Udoesn’t have a method mbut Bool does, then the lifting is done on the function that defines
therélation, sothatr1 \/ r2istheunion of thereations, r1 /\ r2 theintersection,r1 — r2
the difference, and ~r the complement.

Commands

Commands are for changing the state. Spec has a few simple commands, and seven operators for
combining commands into bigger ones. The main simple commands are assignment and routine
invocation. There are also simple commands to raise an exception, to return a function result, and
to SKi P, that is, do nothing. If asimple command evaluates an undefined expression, it fails (see
below).

Youcanwritei + := 3insteedofi :=i + 3, andsimilarly with any other binary operator.

The operators on commands are:
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* A conditional operator: predi cate => conmand, read “if pr edi cat e then conmand”. The
predicateis called aguard.

e Choiceoperators:c1 [] c2andcl [*] c2,read ‘or and ‘else’.

* Seguencing operators: c1 ; c2 andcl EXCEPT handl er. Thehandl er isaspecial form of
conditional command: excepti on => comand.

e Variableintroduction: VAR id: T | command, read “choosei d of type T such that conmand
doesn’t fail”.

e Loops: DO command OD.

Section 6 of the reference manual describes commands. Atomic Semantics of Spec gives aprecise
account of their semantics. It explains that the meaning of acommand is arelation between a
state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions.

Conditionals and choice

The figure below (copied from Nelson’s paper) illustrates conditionals and choice with some
very simple examples. Here is how they work:

The command

p=>c
meansto doc if p istrue. If p isfalse this command fails; in other words, it has no outcome.
More precisdly, if s isastatein which p isfalse or undefined, this command does not relate s to
any outcome.

What good is such a command? One possibility isthat p will be true some time in the future, and
then the command will have an outcome and allow atransition. Of course this can only happen
in aconcurrent program, where there is something el se going on that can make p true. Even if
there' s no concurrency, there might be an alternative to this command. For instance, it might
appear in the larger command
p =>c
(1 p =>c
inwhichyouread[] as‘or’. Thisfalsonly if each of p and p' isfalse or undefined. If both are
true (asin the 00 state in the south-west corner of the figure), it means to do either ¢ or ¢' ; the
choiceis non-deterministic. If p' is ~p then they are never both false, and if p is defined this
command is equivalent to
p=>c
[*] ¢
inwhich youread [ *] as‘else’. On the other hand, if p is undefined the two commands differ,
because the first onefails (since neither guard can be evaluated), while the second does ¢’ .

Bothc1 [] c2andc1 [*] c2fail onlyif bothc1 and c2 fail. If you think of a Spec program
operationally (that is, as executing one command after another), this meansthat if the execution
makes some choice that leads to failure later on, it must ‘ back-track’ and try the other
alternatives until it finds a set of choices that succeed. For instance, no matter what x is, after
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y=0=>x:=x-1, x<y=x:=1
[] y >0 =>x:=3 ;X <y =>x =2
[*] SKIP

ify = oinitidly,x = 1 afterwards, ify > 3 initidly, x = 2 afterwards, and otherwisex is
unchanged. If you think of it relationally, c1 [] c2 hasall thetransitions of c1 (there are noneif
c1 fails, several if it is non-deterministic) aswell as all the transitions of c2. Both failure and
non-determinism can arise from deep inside a complex command, not just from atop-level [] or
VAR.

Xy Xy Xy xy
00——————™ 00 00— 00

oL———*™ o1 Ol— 01

10— 10 10 10
n—> 1 11 11
SKI P X = 0 => SKIP
(partial)
Xy Xy Xy Xy
01 01 01 01
11 11 11 11
y =1 y = 0 => y =1
(partial)
Xy Xy Xy Xy

00 00 OOS 00
01 S: o1 01 o1
10 10 10§: 10
11 \ 11 11 11

X =0 => SKI P SKI P
[]y_=0=>y:=_1__ []y=0=>){5=_1
(partial, non-deterministic) (non-deterministic)

Combining commands
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The precedence rules for commands are
EXCEPT  bindstightest
; next
= | next (for the right operand; the lft sideis an expression or delimited by VAR)
[1 1*] bind least tightly.

These rules minimize the need for parentheses, which are written around commands in the ugly

formBEG N ... ENDorthedlightly prettier formiF ... FI; thetwo forms have the same
meaning, but as a matter of style, the latter should only be used around guarded commands. So,
for example,

p => cl; c2
isthe same as

p => BEG N c1; c2 END
and meansto do c1 followed by c2 if p istrue. To guard only c1 with p you must write
IFp=>cl[*] SKIP FI; c2
which meanstodoc1 if p istrue, and thentodoc2. The [*] SKI P ensures that the command
beforethe"; * doesnot fail, which would prevent c2 from getting done. Without the [*] SKI P,
thatisin
IFp=>clFl; c2
if pisfasethel F ... FI fails, sothereisno possible outcome from which c2 can be done and
thewholething fails. ThusI F p => c1 FI; c2 hasthesamemeaningasp => BEG N c1; c2
END, which isabit surprising.

Sequencing

Acl ; c2 command meansjust what you think it does: first c1, then c2. The command

cl ; c2getsyou from states1 to states2 if thereis an intermediate state s such that c1 gets you
froms1tos and c2 gets you from s to s2. In other words, its relation is the composition of the
relationsfor c1 and c2; sometimes* ;* iscalled ‘ sequential composition’. If c1 produces an
exception, the composite command ignores c2 and produces that exception.

A cl EXCEPT ex => c2 commandisjustlikecl ; c2 except that it treats the exception ex the
other way around: if c1 produces the exception ex then it goesonto c2, but if c1 producesa
normal outcome (or any other exception), the composite command ignores c2 and produces that
outcome.

Variable introduction

VAR gives you more dramatic non-determinism than [ ] . The most common useisin theidiom
VAR x: T | P(x) =>c¢
which isread “ choose some x of type T such that P(x) , and doc”. It failsif thereisnox for
which P(x) istrueand c succeeds. If you just write
VAR x: T | ¢
then VAR acts like ordinary variable declaration, giving an arbitrary initial valueto x.

Variableintroduction is an aternative to existential quantification that lets you get your hands on
the bound variable. For instance, you can write
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IF VAR nNn: Int, x: Int, y: Int, z: Int |
(n>2/\ x**n + y**n = z**n) => out :=n
[*] out :=0
FI
whichisread: chooseintegersn, x, y, zsuchthatn > 2andx" + y" = z", and assignn to
out ; if there are no such integers, assign 0 to out .6 The command beforethe [ *] succeedsiff
(EXISTS n: Int, x: Int, y: Int, z: Int | n>2/\ Xx**n + y**n = z**n),
but if we wrote that in a guard there would be no way to set out to one of then’sthat exist. We
could also write
VARs :={ n: Int, x: Int, y: Int, z: Int
| n>2/\ x**n + y**n = z**np
[ (n %y, 2)}
to construct the set of all solutions to the equation. Thenif s # {},s. choose yieldsatuple
(n, x, y, z) withthedesired property.

Y ou can use VAR to describe all the transitions to a state that has an arbitrary relation Rto the
current state: VAR s' | R(s, s') => s := s' if thereisonly one state variables.

The precedence of | ishigher than [ ], which means that you can string together different VAR
commandswith[] or [*], but if you want several alternatives within a VAR you have to use
BEG N ... ENDOriF ... FI.Thus
VAR x: T | P(x) =>cl
[1 q=>c2
is parsed the way it isindented and is the same as
BEG N VAR x: T | P(x) => cl END
[l BEGNg =>c2 END

but you must write the bracketsin

VAR x: T |
IF P(x) =>cl
[] Ax) =>c2
FI
which might be formatted more concisely as
VAR x: T |

IF P(x) =>cl
[1 R(x) => c2 FI
or even
VAR x: T | IF P(x) =>cl [] R(x) => c2 FI

Y ou are supposed to indent your programs to make it clear how they are parsed.

Loops

Y ou can always write arecursive routine, but often aloop isclearer . In SpecyouuseDO ... D
for this. These are brackets, and the command inside is repeated as long as it succeeds. When it
fails, therepetitionisover and the o ... ODiscomplete. The most common formis

DO P =>c OD

6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat's
time and 1993.
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whichisread “whileP istruedo c”. After this command, P must be false. If the command inside
thepo ... oD succeeds forever, the outcomeis alooping exception that cannot be handled.
Note that thisis not the same as a failure, which simply means no outcome at all.

For example, you can zero al the elements of a sequence s with

VARi := 0| DOi < s.size =>s(i) :=0; i - :=10D
or the simpler form (which aso avoids fixing the order of the assignments)
DOVAR i | s(i) # 0 =>s(i) := 0 OD

Thisis another common idiom: keep choosing ani aslong as you can find one that satisfies
some predicate. Since's isonly defined fori between 0 and s. si ze- 1, the guarded command
fails for any other choice of i . The loop terminates, sincethes(i) := 0 definitely reducesthe
number of i 'sfor which the guard is true. But although thisis a good example of aloop, it is bad
style; you should have used a sequence method or function composition:

s := S fill(0, s.size)
or

s:={x :INs | | 0}
(asequencejust likes except that every element is mapped to 0), remembering that Spec makes
it easy to throw around big things. Don’t write aloop when a constructor will do, because the
loop is more complicated to think about. Even if you are writing code, you still shouldn’'t use a
loop here, becauseit’s quite clear how to write C code for the constructor.

To zero al the elements of s that satisfy some predicate P you can write

DOVAR i: Int | (s(i) # 0 /\ P(s(i))) =>s(i) :=0 OD

Again, you can avoid the loop by using a sequence constructor and a conditional expression
s:={x :INs | | (P(x) =>0T[*] x) }

Atomicity

Each <<. . . >> command is atomic. It defines a single transition, which includes moving the
program counter (which is part of the state) from before to after the command. If acommand is
not inside<<. . . >>, itisatomic only if there’ s no reasonable way to split it up: SKI P, HAVCC, RET,
RAI SE. Here are the reasonabl e ways to split up the other commands:

* Anassignment has one internal program counter value, between evaluating the right hand
side expression and changing the left hand side variable.

* A guarded command likewise has one, between evaluating the predicate and the rest of the
command.

* Aninvocation has one after evaluating the arguments and before the body of the routine, and
another after the body of the routine and before the next transition of the invoking command.

Note that evaluating an expression is always atomic.
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Modules and names

Spec’s modules are very conventional. Mostly they are for organizing the name space of alarge
program into atwo-level hierarchy: nodul e. i d. It's good practice to declare everything except a
few names of global significance inside a module. Y ou can also declare CONST's, just like VAR's.

MODULE f 00 EXPORT i, j, Fact =
CONST ¢ := 1
VAR i :=0

joi=1

FUNC Fact(n: Int) ->Int =
IF n<=1=>RET1
[*] RET n * Fact(n - 1)
FI

END f oo

Y ou can declare an identifier i d outside of amodule, in which case you can refer toit asi d
everywhere; thisis short for G obal . i d, SO G obal behaves much like an extra module. If you
declarei d at thetop level in modulem i d isshort for m i d inside of m If you includeitinms
EXPORT clause, you can refer toit asm i d everywhere. All these names are in the global state
and are shared among all the atomic actions of the program. By contrast, names introduced by a
declaration inside aroutine are in the local state and are accessible only within their scope.

The purpose of the EXPORT clause is to define the external interface of amodule. Thisis
important because module T implements module s iff T's behavior at its external interfaceisa
subset of S'sbehavior at its external interface.

The other feature of modulesisthat they can be parameterized by typesin the same styleas cLu
clusters. The memory systems modules in handout 5 are examples of this.

Y ou can aso declare a class, which is amodule that can be instantiated many times. The Qoj
class produces aglobal obj typethat has as its methods the exported identifiers of the class plus
anew procedure that returns a new, initialized instance of the class. It also produces a j Mbd
modul e that contains the declaration of the Obj type, the code for the methods, and a state
variable indexed by ovj that holds the state records of the objects. For example:

CLASS Stat EXPORT add, mean, variance, reset =

VAR n o Int :=0
sum :oInt :=0
sunsq : Int :=0
PROC add(i: Int) = n + :=1; sum+ :=i; sumsq + := i**2

FUNC nmean() -> Int = RET sunin

FUNC variance() -> Int = RET sunmsqg/n — self.mean**2
PROC reset() = n :=0; sum:= 0; sumsq := 0

END St at

Then you can write
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VAR s: Stat | s := s.new(); s.add(x); s.add(y); print(s.variance)
In abstraction functions and invariants we also write obj . n for field n in obj 's state.

Section 7 of the reference manual deals with modules. Section 8 summarizes all the uses of
names and the scope rules. Section 9 gives several modul es used to define the methods of the
built-in data types such as functions, sets, and sequences.

This compl etes the language summary; for more details and greater precision consult the
reference manual. Therest of this handout consists of three extended examples of specs and code
written in Spec: topological sort, editor buffers, and a simple window system.

Example: Topological sort

Suppose we have a directed graph whose n+1 vertexes are labeled by theintegerso .. n,
represented in the standard way by arelation g; g(v1, v2) istrueif v2 isasuccessor of vi, that
is, if thereisan edgefromv1 tov2. We want atopological sort of the vertexes, that is, a
sequence that isapermutation of 0 .. n inwhichv2 followsv1 whenever v2 is a successor of
v1. Of coursethis possible only if the graph is acyclic.

MODULE Topol ogi cal Sort EXPORT V, G Q TopSort =

TYPEV =INO .. n % Vertex
G=(V, V) -> Bool % Graph
Q= SEQV

PROC TopSort(g) -> Q RAISES {cyclic} =
IF VARQgq | gIN(O .. n).perns /\ IsTSorted(q, g) => RET q
[*] RAISE cyclic % g must be cyclic
Fl

FUNC | sTSorted(q, g) -> Bool =
% Not tsorted if v2 precedesv1 inq butisaso achild
RET ~ (EXISTS vl :IN g.dom v2 :INg.dom| v2 < vl /\ g(q(vl), q(v2))

END Topol ogi cal Sort

Note that this solution checks for a cyclic graph. It alows any topologically sorted result that isa
permutation of the vertexes, becausethe VAR q in TopSort alowsany q that satisfies the two
conditions. The per ms method on sets and sequencesis defined in section 9 of the reference
manual; the dommethod gives the domain of afunction. TopSort isa procedure, not afunction,
because its result is non-deterministic; we discussed this point earlier when studying

Squar eRoot . Like that one, this spec has no interna state, since the module has no vAR. It
doesn’t need one, because it does all its work on the input argument.

Thefollowing codeis from Cormen, Leiserson, and Rivest. It adds vertexes to the front of the
output sequence as depth-first search returns from visiting them. Thus, a child is added before its
parents and therefore appears after them in the result. Unvisited vertexes are whi t e, nodes being
visited aregr ey, and fully visited nodes are bl ack. Note that all the descendants of abl ack node
must bebl ack. The gr ey stateis used to detect cycles: visiting agr ey node meansthat thereisa
cycle containing that node.
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This module has state, but you can see that it’s just for convenience in programming, sinceit is
reset each time TopSort iscalled.

MODULE TopSortlnpl EXPORT Vv, G Q TopSort = % implements TopSor t

TYPE Col or = ENUM white, grey, black] % plus the spec’ stypes

VAR out : Q

color: V -> Color % every vertex starts white

PROC TopSort(g) -> Q RAISES {cyclic} = VARi := 0 |
out :={}; color :={* -> white}
DO VAR v | color(v) = white => Visit(v, g) OD % visit every unvisited vertex
RET out

PROCVisit(v, g) RAISES {cyclic} =
color(v) := grey;
DO VAR v' | g(v, Vv') /\ color(v') # black =>
IF color(v') = white => Visit(v', Q)
[*] RAISE cyclic
FI

% pick an successor not done
% grey — partly visited

QaD;

color(v) := black; out :={v} + out % add v to front of out

The code is as non-deterministic as the spec: depending on the order in which TopSort choosesv
and Vi si t choosesv' , any topologically sorted sequence can result. We could get deterministic
code in many ways, for example by taking the smallest node in each case (the ni n method on
setsis defined in section 9 of the reference manual):

VAR v :={v0 | color(v0) = white}.mn in TopSort

VAR v' :={v0 | g(v, vO) /\ color(v') # black }.mn inVisit
Codein C would do something like this; the details would depend on the representation of G.

Example: Editor buffers

A text editor usually has a buffer abstraction. A buffer is a mutable sequence of C's. To get
started, supposethat C = char and a buffer has two operations,

Get (i) to get character i

Repl ace to replace a subsequence of the buffer by a subsequence of an argument of type SEQ
C, where the subseguences are defined by starting position and size.

We can make this spec precise as a Spec class.
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CLASS Buffer EXPORT B, C, X, Get, Replace =

TYPE X = Nat % indeX in buffer
C = Char
B = SEQ C % Buffer contents

VAR b : B:={} % Note: initially empty

FUNC Get (x) -> C = RET b(x) % Note: defined iff 0<=x<b. si ze

PROC Repl ace(from X, size: X b': B, fronm: X size': X) =
% Note: failsif it touches C' sthat aren’t there.
VAR bl, b2, b3 | b =bl + b2 + b3 /\ bl.size = from/\ b2.size = size =>
b :=bl + b .seg(from, size') + b3

END Buf f er

We can implement a buffer asasorted array of pieces called a‘ piece table' . Each piece contains
asEQ c, and thewhole buffer is the concatenation of al the pieces. We use binary search to find
apiece, so the cost of Get isat most logarithmic in the number of pieces. Repl ace may require
inserting a piece in the piece table, soits cost is a most linear in the number of pieces.” In
particular, neither depends on the number of C's. Also, each Repl ace increases the size of the
array of pieces by at most two.

A pieceisaB (in Cit would be a pointer to a B) together with the sum of the length of al the
previous pieces, that is, theindex in Buf f er . b of thefirst Cthat it represents; the index is there
so that the binary search can work. There areinternal routines Locat e( x) , which uses binary
search to find the piece containing x, and Spl i t (x) , which returns theindex of a piece that
starts at x, if necessary creating it by splitting an existing piece. Repl ace callsSpl it twiceto
isolate the substring being removed, and then replaces it with asingle piece. Thetime for

Repl ace islinear in pt . si ze because on the average half of pt ismoved when split or

Repl ace insertsapiece, and in half of pt, p. x isadjusted if si ze' # si ze.

7By using atree of pieces rather than an array, we could make the cost of Repl ace logarithmic aswell, but to
keep things simple we won't do that. See FSI npl in handout 7 for more on this point.
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CLASS Buf I npl EXPORT B, C X, Get, Replace = % implements Buf f er

TYPE % Typesasin Buf f er, plus
N =X % iNdex in piece table
P =1b, X] % Piece: x isposinBuffer. b
PT =SEQP % Piece Table

VAR pt = PT{}

ABSTRACTI ON FUNCTI ON buffer.b =+ : {p :INpt | | p.b}

% buf f er . b isthe concatenation of the contents of the piecesin pt

I NVARI ANT (ALL n :IN pt.dom| pt(n).b # {}
I\ pt(n).x =+ :{i :INO .. n-1 | | pt(i).b.size})
% no pieces are empty, and x isthe position of the piecein Buf f er . b, as promised.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.X)

PRCC Repl ace(from X, size: X, b': B, from: X size': X) =
VAR nl := Split(from; n2 := Split(from+ size),
new := P{b := b'.seg(from, size'), x := fron} |
pt pt.sub(0, nl - 1)
+ NonNul | (new)
+ pt.sub(n2, pt.size - 1) * AdjustX(size' - size)

PROC Split(x) -> N =
% Makept (n) sartatx,sopt(Split(x)).x = x. Falsifx > b.size.
% If pt=abcd|efg|hi,thenSplit(4) is RET 1 and Split(5) is pt:=abcd|e|fg|hi; RET 2

IF pt ={} /\ x =0=>RETO

[*] VAR n := Locate(x), p := pt(n), bl, b2 |

p.b = bl + b2 /\ p.x + bl.size = x =>
VAR fragl := p{b := b1}, frag2 := p{b := b2, x := x} |
pt := pt.sub(0, n - 1)
+ NonNul | (fragl) + NonNull (frag2)
+ pt.sub(n + 1, pt.size - 1);
RET (bl = {} =>n [*] n + 1)

FI
FUNC Locate(x) -> N= VAR Nl := 0, n2 := pt.size - 1|
% Use binary search to find the piece containing x. Yields O if pt ={},
%pt.size-1ifpt#{} /\ x>=b.si ze; neverfals. Theloopinvariantis
% pt={} \/ n2 >=nl/\ pt(nl).x <= x /\ ( X < pt(n2).x \/ x >= pt.last.x )
% The loop terminatesbecausen2 - nl > 1 ==> nl < n < n2,s0n2 — nl decreases.

DOn2 - n1 > 1 =>

VAR N :=(nl +n2)/2 | IFpt(n).x <=x = nl :=n[*] n2 :=n FI
OD; RET (x < pt(n2).x =>nl [*] n2)

FUNC NonNul I (p) -> PT = RET (p.b # {} => PT{p} [*] {})
FUNC Adj ust X(dx: Int) -> (P ->P) = RET (\ p | p{x + := dx})
END Buf | npl

If subsequences were represented by their starting and ending positions, there would be lots of
extreme cases to worry about.
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Suppose we now want each C in the buffer to have not only a character code but also some
additional properties, for instance the font, size, underlining, etc. Get and Repl ace remain the
same. In addition, we need a third exported method Appl y that applies to each character ina
subsequence of the buffer amap function Cc -> C. Such afunction might make all the C'sitalic,
for example, or increase the font size by 10%.
PROC Apply(map: C->C, from X size: X) =
b := b.sub(0, from1)
+ b.seg(from size) * map
+ b.sub(from+ size, b.size-1)

Hereiscode for Appl y that takes time linear in the number of pieces. It works by changing the
representation to add amap function to each piece, and in Appl y composing the map argument
with the map of each affected piece. We need anew version of Get that appliesthe proper map
function, to go with the new representation.

TYPEP = [b, x, map: C>C % x isposinBuf fer.b

ABSTRACTI ON FUNCTI ON buffer.b = + :{p :INpt | | p.b * p.nmap}
% buf f er . b isthe concatenation of the piecesin p with their map's applied.
% Thisisthe same AF we had before, except for the addition of * p. map.

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x))
PROC Apply(map: C->C, from X, size: X) =
VAR nl := Split(from, n2 := Split(from+ size) |
pt := pt.sub(0, nl - 1)

+ pt.sub(nl, n2 - 1) * (\ p| p{map := p.map * nap})
+ pt.sub(n2, pt.size - 1)

Notethat we wrote Spl i t so that it keeps the same map in both parts of a split piece. We aso
needtoaddmap := (\ ¢ | c) totheconstructor for newin Repl ace.

This code was used in the Bravo editor for the Alto, the first what-you-see-is-what-you-get
editor. It isstill used in Microsoft Word.

Example: Windows

A window (the kind on your computer screen, not thekind in your house) is a map from points to
colors. There can be lots of windows on the screen; they are ordered, and closer ones block the
view of more distant ones. Each window has its own coordinate system; when they are arranged
on the screen, an offset says where each window’ s origin falls in screen coordinates.

MODULE W ndow EXPORT Get, Paint =

TYPEI = Int
Coor d = Nat
Intensity = IN (0 .. 255).rng
P = [x: Coord, y: Coord] WTH {"-":=PSub} % Point
C =[r: Intensity, g: Intensity, b: Intensity] % Color
w =P->C % Window

FUNC PSub(pl, p2) -> P = RET P{x := pl.x - p2.x, y := pl.y - p2.y}
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The shape of the window is determined by the points whereit is defined; obviously it need not be
rectangular in this very general system. We have given apoint a“- " method that computes the
vector distance between two points; we somewhat confusingly represent the vector as a point.

A ‘window system’ consists of asequenceof [w, of fset: P] pars, wecal aparaVv. The
sequence defines the ordering of the windows (closer windows comefirst in the sequence); it is
indexed by ‘window number’ WN. The of f set gives the screen coordinate of the window's

(0, 0) point, which wethink of asits upper left corner. There are two main operations:

Pai nt (wn, p, c) tosetthevalueof Pinwindow wn, and Get (p) toread the value of p inthe
topmost window whereit is defined (that is, the first one in the sequence). Theideais that what
you see (the result of Get ) istheresult of painting the windows from last to first, offsetting each
oneby itsof f set component and using the color that is painted later to completely overwrite
one painted earlier. Of course real window systems have other operations to change the shape of
windows, add, del ete, and move them, change their order, and so forth, aswell as ways for the
window system to suggest that newly exposed parts of windows be repainted, but we won't
consider any of these complications.

First we give the spec for awindow system initialized with n empty windows. It is customary to
call the coordinate system used by Get the screen coordinates. Thev. of f set field givesthe
screen coordinate that correspondsto {0, 0} inv.w. Thev. c(p) method below givesthe value
of v’swindow at the point corresponding to p after adjusting by v’s offset. The statews isjust the
sequence of V's. For simplicity we initialize them all with the same offset { 10, 5}, whichis not
too redlistic.

Get findsthe smallest N that is defined at p and uses that window’ s color at p. This corresponds
to painting the windows from last (biggest W) to first with opaque paint, which is what we
wanted. Pai nt uses window rather than screen coordinates.

The state (the VAR) is a single sequence of windows.

TYPE WN = INO.. n-1 % Window Number
\% = [w, offset: P] % window on the screen
WTH {c:=(\ v, p|] v.w(p - v.offset))} % Cof ascreen point p
VAR ws = {i :INO..n-1 | | WV{{}, P{10,5}}} % the Window System

FUNC Get(p) -> C=VARwW := {wn' | V.c!(ws(wn'), p)}.mn | RET ws(wn).c(p)
PROC Paint(wn, p, ¢) = ws(wn).w(p) :=¢
END W ndow

Now we give code that only keeps track of the visible color of each point (that is, it just keeps
the pixels on the screen, not all the pixels in windows that are covered up by other windows). We
only keep enough state to handle Get and Pai nt .

The state is one wthat represents the screen, plus an exposed variable that keeps track of which
window is exposed at each point, and the offsets of the windows. This s sufficient to implement
Get and Pai nt ; to deal with erasing points from windows we would need to keep more
information about what other windows are defined at each point, so that exposed would have a
typeP -> SET WN. Alternatively, we could keep track for each window of whereit is defined.
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Real window systems usually do this, and represent exposed as a set of visible regions of the
various windows. They also usually have a‘background’ window that covers the whole screen,
so that every point on the screen has some color defined; we have omitted this detail from the
spec and the code.

We need a history variable wH that contains the w part of al the windows. The abstraction
function just combineswH and of f set to makews. The important properties of the code are
contained in the invariant, from which it's clear that Get returns the answer specified by

W ndow. Get . Another way to do it isto have a history variablewsH that is equal tows. This
makes the abstraction function very simple, but then we need an invariant that says of f set (wn)
= wsH(n). of f set. Thisis perfectly correct, but it's usually better to put as little stuff in history
variables as possible.

MODULE W nl npl EXPORT Get, Paint =

VAR w = W} % no points defined
exposed : P->W:={} % which wn shows at p
of f set = {i :INO..n-1 | | P(5, 10)} %
wH = {i :INO..n-1 | | W}} % history variable

ABSTRACTI ON FUNCTION ws = (\ wn | W{w := wH(wn), offset := offset(wn)})

I NVARI ANT

(ALL p | w p = exposed!p
I\ (Wp ==> {wn | V.cl(ws(wn), p)}.mn

= exposed(p)
I\ w(p) = ws(exposed(p)).c(p) ) )

The invariant says that each visible point comes from some window, exposed tells the topmost
window that definesit, and its color is the color of the point in that window. Note that for
convenience the invariant uses the abstraction function; of course we could have avoided this by
expanding it in line, but thereis no reason to do so, since the abstraction function is a perfectly
good function.

FUNC Get(p) -> C = RET wW(p)

PROC Pai nt(wn, p, c) =
VAR pO | p = pO - offset(wn) => % the screen coordinate
I F wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI;
wH(wn) (p) := ¢ % update the history var

END W nl npl
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How to Write a Spec

Figure out what the stateis.

Choose the state to make the spec ssimple and clear, not to match the code.
Describe the actions.

What they do to the state.

What they return.

Helpful hints

Notation isimportant, because it helps you to think about what’ s going on.
Invent a suitable vocabulary.

Lessismore. Less state is better. Fewer actions are better.

More non-determinism is better, because it allows more implementations.
In distributed systems, replace the separate nodes with non-determinism in the spec.

Pass the coffee-stain test: people should want to read the spec.

I’msorry | wrote you such a long letter; | didn’t have time to write a short one. — Pascal

How to Design an | mplementation

Write the spec first.
Dream up theidea of theimplementation.
Embody the key ideain the abstraction function.
Check that each implementation action simulates some spec actions.
Add invariants to make this easier. Each action must maintain them.
Change the implementation (or the spec, or the abstraction function) until this works.
Makethe implementation correct first, then efficient.
More efficiency means more complicated invariants.
Y ou might need to change the spec to get an efficient implementation.
Measure first before making anything faster.

An efficient programis an exercise in logical brinkmanship. — Dijkstra
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4. Spec Reference Manual

Spec is alanguage for writing specifications and the first few stages of successive refinement
towards practical code. As a specification language it includes constructs (quantifiers,
backtracking or non-determinism, some uses of atomic brackets) which areimpractical in fina
code; they are there because they make it easier to write clear, unambiguous and suitably general
specs. If you want to write a practical program, avoid them.

This document defines the syntax of the language precisely and the semanticsinformally. You
should read the Introduction to Spec (handout 3) beforetrying to read this manual. In fact,
this manual isintended mainly for reference; rather than reading it carefully, skim through it, and
then use the index to find what you need. For a precise definition of the atomic semantics read
Atomic Semantics of Spec. (handout 9). Handout 17 on Formal Concurrency gives the non-
atomic semantics semi-formally.

1. Overview

Spec is anotation for writing specs for a discrete system. What do we mean by a spec? It isthe
allowed sequences of transitions of a state machine. So Spec is a notation for describing
sequences of transitions of a state machine.

Expressions and commands
The Spec language has two essential parts:

An expression describes how to compute a value as a function of other values, either
constants or the current values of state variables.

A command describes possible transitions, or changes in the values of the state variables.

Both are based on the state, which in Spec is a mapping from names to values. The names are
called state variables or simply variables: in the examples below they arei andj .

There are two kinds of commands:

An atomic command describes a set of possible transitions. For instance, the command

<< i :=i + 1 >>describesthetransitionsi =1-i =2, i=2-i=3, etc. (Actually, many
transitions are summarized by i =1 -i =2, for instance, (i =1, j=1) -(i=2, j=1) and (i =1,
j =15) - (i =2, j=15)).If acommand alows more than one transition from a given state we
say it isnon-deterministic. For instance, thecommand, << i := 1 [] i =i + 1 >>
allowsthetransitionsi =2 -i =1 and i =2 —.i =3. More on this in Atomic Semantics of Spec.

A non-atomic command describes a set of sequences of states. More on thisin Formal
Concurrency.

A sequential program, in which we are only interested in the initial and final states, can be
described by an atomic command.
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Spec’ s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’'s
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended
by Greg Nelson (G. Nelson, A generalization of Dijkstra's calculus, ACM TOPLAS 11, 4, Oct.
1989, pp 517-561). The notation for expressions is derived from mathematics.

Organizing a program

In addition to the expressions and commands that are the core of the language, Spec has four
other mechanisms that are useful for organizing your program and making it easier to
understand.

A routine is a named computation with parameters (passed by value). There are four kinds:
A function is an abstraction of an expression.
An atomic procedure is an abstraction of an atomic command.
A genera procedure is an abstraction of a non-atomic command.
A thread is the way to introduce concurrency.

A typeisastylized assertion about the set of values that a name can assume. A typeisalso an
easy way to group and name a collection of routines, called its methods, that operate on
valuesin that set.

An exception is away to report an unusual outcome.

A moduleis away to structure the name space into atwo-level hierarchy. Anidentifier i
declared in amodule misknown asi inmand asm i throughout the program. A classisa
modul e that can be instantiated many times to create many objects.

A Spec program is some global declarations of variables, routines, types, and exceptions, plusa
set of modules each of which declares some variables, routines, types, and exceptions.

Outline

This manual describes the language bottom-up:
Lexical rules
Types
Expressions
Commands
Modules

At the end there are two sections with additional information:
Scoperules
Built-in methods for set, sequence, and routine types.

Thereis also an index. The Introduction to Spec has a one-page language summary.
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2. Grammar rules

Nonterminal symbols arein lower case; terminal symbols are punctuation other than: : =, or are
guoted, or arein upper case.

Alternative choicesfor a nonterminal are on separate lines.
symbol * denotes zero of more occurrences of symbol .

The symbol enpt y denotes the empty string.

If x isanonterminal, the nonterminal xLi st is defined by
xLi st I=X )
X , xList

A comment in the grammar runs from %to the end of the line; thisisjust like Spec itself.

A [n] in acomment means that thereis an explanation in a note labeled [n] that follows this chunk
of grammar.

3. Lexical rules

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation
(Y[ 14}y, :.] << > :==>->[] [*].Symbolsmust not have embedded white
space. They are always taken to be as long as possible.

A literal isadecima number such as 3765, a quoted character such as* x' , or a double-quoted
string such as" Hel 1 o\ n".

Anidentifier (i d) isaletter followed by any number of letters, underscores, and digits followed
by any number of ' characters. Caseis significant in identifiers. By convention type and
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword.
The predefined identifiers Any, Bool, Char, Int, Nat, Null, String, true, false,and
ni | aredeclared in every program. The meaning of an identifier is established by a declaration;
see section 8 on scope for details. Identifiers cannot be redeclared.

By convention keywords are written in upper case, but you can write them in lower caseif you
like; the same strings with mixed case are not keywords, however. The keywords are

ALL APRCC AS BEG N BY CLASS
CONST DO END ENUM EXCEPT EXCEPTI ON
EXI STS EXPORT Fl FUNC HAVOC IF

I'N IS LAVBDA MODULE oD PROC

RAI SE RAI SES RET SEQ SET SKI P
SUCHTHAT THREAD TYPE VAR VWH LE W TH

An operator is any sequence of the characters! @$~&*- +=: . <>2/\ | ~ except the sequences
| << >> := => -> (thesearepunctuation), or one of the keyword operatorsAs, I N, and | S.

A comment in a Spec program runs from a %outside of quotes to the end of theline. It does not
change the meaning of the program.
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4. Types

A type defines a set of values, we say that avaluev hastype T if v isin T's set. The sets are not
disioint, so a value can belong to more than one set and therefore can have more than one type.

In addition to its value set, a type also defines a set of routines (functions or procedures) called

its methods; a method normally takes a value of the type asits first argument.

An expression has exactly one type, determined by the rulesin section 5; the result of the
expression has this type unless it is an exception.

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. Y ou
can skip them on first reading, or if you don't care about type-checking.

About unions: If the expression e hastype T we say that e has aroutine type wif T isaroutine
typewor if T isaunion type and exactly one type win the union is a routine type. Under
corresponding conditions we say that e has a sequence or set type, or arecord type with afield f .

Two types are equal if their definitions are the same (that is, have the same parse trees) after all
type names have been replaced by their definitions and all w TH clauses have been discarded.
Recursion is alowed; thus the expanded definitions might be infinite. Equal types define the
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by
atype checker, whereas the set equality is intractable.

A typeT fitsatype Uif the type-checker thinks they may have some values in common. This can
only happen if they have the same structure, and each part of T fits the corresponding part of u.
‘Fits' isan equivaencereation. Precisdly, T fits Uif:

T=U

TiST SUCHTHAT For(... + T + ...) and T fitsy, or vice versa. There may be no
valuesin common, but the type-checker can’t analyze the SUCHTHAT clauses to find out.

T and U are tuples of the same length and each component of T fits the corresponding
component of u.

T and U are record types, and for every decl id: T inT thereisacorresponding decl id:
U inusuchthat T fitsu , or vice versa

T=T1->T2 RAI SES EXt and U=Ul->U2 RAI SES EXu, or one or both RAI SES are missing, and
T1 fitsul and T2 fits u2. Similar rules apply for PROC and APROC types.

T=SET T' and U=SET U and T fitsu .
T=1Int->T OrSEQ T andU = SEQ U and T fitsu .
T includes Uif the same conditions apply with “fits” replaced by “includes’, all the “vice versa’

clauses dropped, and in the - > rule “T1 fits U1” replaced by “u1 includes T1 and Ext isa superset
of Exu”. If T includes Uthen T's value set includes U' s value set; again, the reverseisintractable.

An expression e fitsatypeuin state s if e’stype fits U and the result of e in state s hastype U or
is an exception; in general this can only be checked at runtime unless Uincludese’stype. The
check that e fits T is required for assignment and routine invocation; together with afew other
checksit is called type-checking. Therules for type-checking are given in sections 5 and 6.
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type

nane

decl

uni on

aType
returns

rai ses

exceptionSet ::

exception

net hod

nmet hodDef

L= hanme

" Any"
“Nul "

" Bool "

" Char"

"String"

"Int"

"Nat "

SEQ type

SET type

( typeList )

[ declList ]

( union )

aType -> type raises

APRCC aType returns raises
PROC aType returns raises
type WTH { net hodDef Li st }
type SUCHTHAT primary

I'N exp

id[ typeList ] . id

i=id.id

id

type . id

o= id: type

id

ii=type + type

uni on + type

=0

type

ci=enpty

-> type

1i=enpty

RAI SES except i onSet

= { exceptionList }
nane
exceptionSet \/ exceptionSet
exceptionSet - exceptionSet

o= id

o= id

stringLiteral

;= method : = nane
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% name of atype

% every value has this type

% withvalueset{ni | }

% withvalueset{true, fal se}
% like an enumeration

%= SEQ Char

% integers

% naturals: non-negative integers
% sequence [1]

% set

%tuple; (T) isthesameas T

% record with declared fields

% union of the types

% function [2]

% atomic procedure

% non-atomic procedure

% attach methods to a type [3]

% restrict the value set [4]

%= T SUCHTHAT (\ t: T ] t IN exp)
% where exp’stype hasan | N method
% type from amodule[5]

% the first id denotes amodule

% short form i d if i d isdeclared

% in the current module m and for

% d obal . idifidisdeclared globally
% thei d method of t ype

% i d hasthistype

% short fori d: 1d[6]

% only for procedures

% the exceptions it can return

% a set of exceptions

% declared as an exception set
% set union

% set difference

% means"i d"

% the string must be an operator
% other than" =" or " #" (see section 3)
% narre isaroutine

6.826—Principles of Computer Systems 2002

The ambiguity of the type grammar is resolved by taking - > to be right associative and giving
W TH and RAI SES higher precedence than - >.

[1] A sEQ Tisjustafunctionfrom{0, 1, ..., size-1} toT. Thatis,itisshort for
(Int->T) SUCHTHAT (\ f: Int->T | (EXI STS size: Int |
(ALL i: Int | fli = (i INO ..
W TH { seesection9 }.
This means that invocation, ! , and * work for a sequence just as they do for any function. In
addition, there are many other useful operators on sequences; see section 9. The Stri ng typeis
just SEQ Char ; thereare St ri ng literals, defined in section 5.

[2] A T->uvaueisapartia function from a state and a value of type T to avalue of type U. A
T->U RAI SES xs valueisthe same except that the function may raise the exceptionsin xs.

[3] We say misamethod of T defined by f, and denotef by T. m if

T=T WTH{..., m:=1f, ...} ardmisanidentifier oris"op" whereop isan operator
(the construct in bracesis anet hodDef Li st ), or

T =T WTH{ methodDefList },misnotdefinedin et hodDef Li st, and mis amethod
of T defined by f, or

T=(... +T +...),misamethod of T defined by f, and thereis no other typein the
union with amethod m

There are two special forms for invoking methods: e1 i nfixQOp e2 or prefixp e, and
el.id(e2) ore.idore.id().They areexplainedin notes[1] and [3] to the expression grammar
in the next section. This notation may be familiar from object-oriented languages. Unlike many
such languages, Spec makes no provision for varying the method in each object, though it does
alow inheritance and overriding.

A method doesn’t have to be aroutine, though the special formswon’t type-check unlessthe
method isaroutine. Any method mof T can bereferredto by T. m

If type U has method m then the function typeVv = T->U has alifted method mthat composes U. m
with v, unless v already hasammethod. V. mis defined by

(Vv (vt ]ov(t).m)
sothatv.m = v * U m For example {"a", "ab", "b"}.size = {1, 2, 1}.If mtakesa
second argument of type w then v. mtakes a second argument of typew = T->wand is defined

on the intersection of the domains by applying mto the two results. Thusin this case V. mis
(\ v, vw | (\Vt :INv.dom/\ vv.dom]| v(t).m(vv(t))))

Lifting also works for relations to U, and therefore also for SET U. Thusif R = (T, U) - >Bool and
mreturnstype X, R mis defined by

(\r ] (Vt, x| x IN{u | r(t, u) | unt))
sothatr.m=r * U mrel.If mtakesasecond argument, then R mtakes a second argument of
typeRR = T->Wandr. n(rr) relatest tou. m(w) wheneverr relatest tou andrr relatest tow.
In other words, R mis defined by

(\oryorr ] (Vt, x ] x INfu, wor(t, u) /N orr(t, W] oumwl}))
If Udoesn’t have a method mbut Bool does, then thelifting is done on the function that defines
therelation, sothatr1 \/ r2istheunion of therelations,r1 /\ r2 theintersection,r1 — r2
the difference, and ~r the complement.
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[4] InT SUCHTHAT f,f isapredicateon T's, that is, afunction (T -> Bool ). Thetype
T SUCHTHAT f hasthe same methods as T, and its value set is the values of T for which f istrue.
Seesection 5 for pri mary.

[5] If atypeisdefined by nf t ypeLi st] . i d and mis a parameterized module, the meaning is
m .idwherem isdefined by MODULE mi = nitypeList] END m . Seesection 7 for afull
discussion of thiskind of type.

[6] 1disthei d of atype, obtained fromi d by dropping trailing ' characters and digits, and
capitalizing the first letter or al the letters (it's an error if these capitalizations yield different
identifiers that are both known at this point).
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5. Expressions

An expression isapartial function from states to results; results are values or exceptions. That is,
an expression computes aresult for agiven state. The stateis a function from names to values.
This state is supplied by the command containing the expression in away explained later. The
meaning of an expression (that is, the function it denotes) is defined informally in this section.
The meanings of invocations and lambda function constructors are somewhat tricky, and the
informal explanation here is supplemented by aformal account in Atomic Semantics of Spec.
Because expressions don’t have side effects, the order of evaluation of operandsisirrelevant (but
see[5] and [13]).

Every expression has atype. The result of the expression isa member of thistypeif it isnot an
exception. This property is guaranteed by the type-checking rules, which require an expression
used as an argument, the right hand side of an assignment, or aroutine result to fit the type of the
formal, left hand side, or routine range (see section 4 for the definition of ‘fit"). In addition,
expressions appearing in certain contexts must have suitable types: in e1( e2) , e1 must havea
routine type; in e1+e2, el must have atypewith a" +" method, etc. Theserulesare givenin
detail in therest of this section. A union typeis suitable if exactly one of the membersis suitable.
Also, if Tissuitablein somecontext, soareT WTH {... } and T SUCHTHAT f.

An expression can be aliteral, a variable known in the scope that contains the expression, or a
function invocation. The form of an expression determines both itstype and itsresult in a state:

l'iteral hasthetypeand value of theliteral.

nane has the declared type of name and its value in the current state, st at e(" nane") . The
form T. m(where T denotes atype) is also a name; it denotes the mmethod of T. Note that if
nane isi d andi d isdeclared in the current module m then it is short for m i d.

invocation f (e) : f must have afunction (not procedure) type U- >T RAI SES EX or U->T (note
that a sequence is afunction), and e must fit U; then f (e) hastypeT. In more detail, if f has
resultrf and e hastypeU andresultre, then U must fit U (checked statically) and r e must
have type U (checked dynamically if U involves aunion or SUCHTHAT; if the dynamic check
failstheresultisafatal error). Thenf (e) hastypeT.

If either rf or re isundefined, soisf (e) . Otherwise, if either is an exception, that exception
istheresult of f (e) ; if both are, rf istheresult.

If bothrf andre arenormal, theresult of rf at re can be:
A normal value, which becomestheresult of f (e) .

An exception, which becomes theresult of f (e) . If rf is defined by afunction body that
loops, the result is a special |ooping exception that you cannot handle.

Undefined, in which casef (e) isundefined and the command containing it fails (has no
outcome) — failureis explained in section 6.

A function invocation in an expression never affects the state. If the result is an exception,
the containing command has an exceptional outcome; for details see section 6.

The other forms of expressions (e. i d, const ruct or S, prefix and infix operators, combinations,
and quantifications) are all syntactic sugar for function invocations, and their results are obtained
by the rule used for invocations. Thereis a small exception for conditionals [5] and for the
conditional logical operators/\ ,\/, and ==> that are defined in terms of conditionals [13].
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exp

primry

literal

argument s

constructor

fiel dDef

resul t

seqGen

pred
quanti f

prinmary
prefixQp exp
exp infixQOp exp
infixQp : exp
exp IS type
exp AS type
literal

nane

primary . id

primary argunents

constructor
( exp)

( quantif declList

( pred => exp1 [*] exp2 )
( pred => exp1 )

intLiteral
charlLiteral
stringLiteral

( expList )

()

{1

{ expList }

( expList )

name {1}

name { expList }

primary { fiel dDefList
primary { exp -> result }
->result }
( LAMBDA signature

primary { *

( \ decllList |
{ decl Li st |
{ seqGenList |

id:= exp
enpty

exp
RAI SE exception

id:= exp BY exp WH LE exp

id:IN exp
exp

ALL

EXI STS
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%[1]

%[1]

% exp’s elements combined by op [2]
% (EXI STS x: type | exp = X)
% error unless(exp | S type) [14]

% method invocation [3] or record field
% function invocation

%/\:{d | p} forALL,\/ for EXI STS[4]
% if pr ed thenexpy elseexpz [5]
% undefined if pr ed isfalse

% sequence of decimal digits
%" X', X aprinting character
%" xxx", with\ escapesasin C

% the arg isthe tuple ( expLi st)

% empty function/sequence/set [6]

% sequence/set constructor [6]

% tuple constructor

% name denotes a func/seg/set type [6]
% name denotes a seg/set/record type [6]
% record constructor [7]

% function or sequence constructor [8]
% function constructor [8]

% function with the local state [9]

% short for ( LAMBDA( d) - >T=RET exp) [9]
% set constructor [10]

% sequence constructor [11]

% the function is undefined
% the function yields exp
% the function yieldsexcept i on

% sequence generator [11]

% predicate, of type Bool

6.826—Principles of Computer Systems

(precedence)
infixOp R % (8)
* % (7)
%
% (7)
11 % (7)
+ % (6)
%
%
- % (6)
%
%
! % (6)
! % (6)
. % (5)
<= % (4)
%
%
< % (4)
%
> % (4)
%
>= % (4)
%
= % (4)
# % (4)
%
<<= %)
IN  %(4)
/\ % (2)
%
\/ % (1)
%
==> % (0)
op % (5)
prefixOp 1= - % (6)
~ % (3)
op % (5)
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argument/result types

(Int, Int)->Int
(Int, Int)->Int

(T->U, U>V)->(T->V)

(Int, Int)->Int
(Int, Int)->Int
(Int, Int)->Int

(SEQ T, SEQ T)->SEQ T
(T->U, T->0->(T->U)

(Int, Int)->Int

(SET T, SET T)->SET T
(SEQ T, SEQ T)->SEQ T

(T->U, T)->Bool
(T->U, T)->Bool

(I'nt, Int)->SEQ Int

(I'nt, Int)->Bool

(SET T, SET T)->Bool
(SEQ T, SEQ T)->Bool
(T, T)->Bool, T wth

el<e2 = (el<=e2 /\
(T, T)->Bool, T wth

el>e2 = e2<el

(T, T)->Bool, T wth
el>=e2 = e2<=el

(Any, Any) - >Bool
(Any, Any) - >Bool

el#e2 = ~ (el=e2)
(SEQ T, SEQ T)->Bool

(T, SET T)->Bool

(Bool, Bool ) ->Bool
(SET T, SET T)->SET T
(Bool, Bool ) ->Bool
(SET T, SET T)->SET T
(Bool, Bool ) ->Bool

not one of the above

I nt->Int
Bool - >Bool
not one of the above

[12]

[12]
[12]

[12]
[12]
[12]
[12]
[12]

[12]
[12]

<=

el#e2)

<=
<=

(4

[12]
[12]
[13]
[12]
[13]
[12]
[13]
[

[

2002

operation

exponentiate
multiply

function composition
divide

remainder

add

concatenation
function overlay
subtract

set difference;
multiset difference
function is defined
func has normal value
subrange

less than or equal
subset

prefix

lessthan

greater than
greater or equal

equal
not equal

non-contiguous sub-seq
membership
conditional and
intersection

conditional or

union

conditional implies

negation
complement

10
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The ambiguity of the expression grammar is resolved by taking thei nf i xOps to be left
associative and using the indicated precedences for the pr ef i xOps and i nf i xQps (with8for 1 s
and As and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The
precedence is determined by the operator symbol and doesn’t depend on the operand types.

[1] The meaning of prefixOp eis T."prefixp"(e), whereT ise’stype, and of

el infixQp e2iSTL. "infixp"(el, e2),whereTlisel stype. Thebuilt-intypesint (and
Nat with the same operations), Bool , sequences, sets, and functions have the operations given
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than
I'nt and Bool . Special casel el I N e2 meansT2."IN'(el, e2),whereT2 ise2’stype.

Note that the = operator does not require that the types of its arguments agree, since both are Any.
Also, = and # cannot be overridden by w TH. To define your own abstract equality, use adifferent

[2] Theexp must havetype SEQ T or SET T. The valueisthe elements of exp combined into a
single value by i nf i xOp, which must be associative and have an identity, and must also be
commutative if exp isaset. Thus

+: {i: Int | O<i /\ i<5 | i**2} =1+ 4 + 9 + 16 = 30,
and if s isaseguence of strings, + : s isthe concatenation of the strings. For another example,
see the definition of quantificationsin [4]. Note that the entire set is evaluated; see[10].

[3] Methods can be invoked by dot notation.
Themeaningof e.id ore.id() isT.id(e), whereTise’stype.
Themeaning of el. i d(e2) iST.id(el, e2),whereTisel stype.
Section 9 on built-in methods gives the methods for built-in types other than 1 nt and Bool .

[4] A quantification isaconjunction (if the quantifier isALL) or dijunction (if it isEXI STS) of
thepred with thei d’sinthedecl Li st bound to every possible value (that is, every valuein
their types); see section 4 for decl . Precisely, (ALL d | p) =/\ : {d | p} and

(EXtsTS d | p) =\/ : {d | p}.Alltheexpressionsin these expansions are evaluated,
unlikee2 inthe expressionsel /\ e2andel \/ e2 (see[10] and [13]).

[5] A conditional (pred => el [*] e2) isnot exactly aninvocation. If pred istrue, the result
istheresult of e1 even if e2 isundefined or exceptional; if pred isfalse, theresult isthe result of
e2 evenif el isundefined or exceptional. If pr ed isundefined, so isthe result; if pred raisesan
exception, that istheresult. If [ *] e2 isomitted and pr ed isfalse, the result is undefined.

[6] Inaconstructor {expLi st} each exp must have the sametype T, the type of the
constructor iIS(SEQ T + SET T), and its valueis the sequence containing the values of the
expsin the given order, which can also be viewed as the set containing these values.

If expLi st isempty thetypeisthe union of al function, sequence and set types, and the valueis
the empty sequence or set, or afunction undefined everywhere. If desired, these constructors can
be prefixed by aname denoting a suitable set or sequence type.

A constructor T{e1, , en},whereTisarecordtype[f1: T1, ..., fn: Tn], isshortfor
arecord constructor (see[7]) T{f1: =el, ..., fn:=en}.

[7] Thepri mary must have arecord type, and the constructor has the sametype asitspri mary
and denotes the same value except that the fields named in thef i el dDef Li st have the given
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values. Each value must fit the type declared for itsi d in therecord type. Thepri mary may also
denote arecord type, in which case any fields missing fromthef i el dDef Li st are given
arbitrary (but deterministic) values. Thusif R=[a: Int, b: Int],R{a := 3, b := 4} isa
record of typeRwitha=3 andb=4, andR{a := 3, b := 4}{a := 5} isarecord of type Rwith
a=5 and b=4. If therecord typeis qualified by a SUCHTHAT, the fields get values that satisfy it,
and the constructor is undefined if that’s not possible.

[8] Thepri mary must have afunction or sequence type, and the constructor has the same type as
itspri mar y and denotes a value equal to the value denoted by the pri mary except that it maps
the argument value given by exp (which must fit the domain type of the function or sequence) to
resul t (which must fit the range typeif it isan exp). For afunction, if resul t isenpty the
constructed function is undefined at exp, and if resul t iISRAI SE except i on, thenexcepti on
must be in the RAI SES set of pri mary’stype. For asequencer esul t must not beenpty or

RAI SE, and exp must bein pri mary. domor the constructor expression is undefined.

Inthe* formthe pri mary must be afunction type or a function, and the value of the constructor
isafunction whoseresultisresul t at every value of the function’s domain type (the type on the
left of the->). Thusif F=(1nt->Int) andf=F{*->0}, thenf iszero everywhereand f { 4->1} is
zero except at 4, whereit is 1. If this value doesn’t have the function type, the constructor is
undefined; this can happen if the type has a SUCHTHAT clause. For example, thetype can’'t bea
seguence.

[9] A LAMBDA const ruct or isastatically scoped function definition. When it isinvoked, the
meaning of the body is determined by the |ocal state when the LAVBDA was evaluated and the
global state when it isinvoked; thisis ad-hoc but convenient. See section 7 for si gnat ur e and
section 6 for cmd. Ther et ur ns inthesi gnat ur e may not be enpt y. Note that a function can’t
have side effects.

Theform(\ decl List | exp) isshort for (LAMBDA (decl List) -> T = RET exp),whereT
isthetype of exp. See section 4 for decl .

[10] A setconstructor { declList | pred | exp } hastypeSET T, whereexp hastypeT
in the current state augmented by decl Li st ; seesection 4 for decl . Itsvalueis aset that
containsx iff (EXI STS decl List | pred /\ x = exp). Thus

{i: Int | O<i /\ i<5 | i**2} ={1, 4, 9, 16}
and both havetype SET Int. If pred isomitted it defaultstotrue. If | exp isomitted it
defaultsto thelasti d declared:

{i: Int | O<i /\ i<5} ={1, 2, 3, 4}
Notethat if s isaset or sequence, | N s isatype (see section 4), so you can write a constructor

like{i :INs | i > 4} fortheedementsof s greater than 4. Thisis shorter and clearer than
{i ] i INs/\i >4

If there are any values of the declared i d’sfor which pr ed isundefined, or pr ed istrue and exp
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions;
if more than one exception is raised, the result exception is an arbitrary choice among them.

[11] A sequence constructor { seqGenList | pred | exp } hastypeSEQ T, whereexp has
type T in the current state augmented by seqGenLi st , asfollows. The value of
{x1 := e01 BY el WVHILE p1, ... , xn := eOn BY en VHILE pn | pred | exp}
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is the sequence which isthe value of r esul t produced by the following program. Here exp has
typeT andresul t isafreshidentifier (that is, one that doesn’t appear el sewhere in the program).
There' san informal explanation after the program.

VAR x2 := €02, ..., xn :=e0n, result := T{}, x1 := e01 |
DO pl => x2 :=e2; p2 => ... =>Xxn :=en; pn =>
IF pred => result :=result + {exp} [*] SKIP FI;
x1 := el
(05)

However, e0i andei arenot allowed torefertoxj ifj > i. Thusthen sequences are unrolled
in parallel until one of them ends, asfollows. All but thefirst are initialized; then the firstis
initialized and all the others computed, then all are computed repeatedly. In each iteration, once
al thexi have been set, if pred istruethe value of exp is appended to the result sequence; thus
pr ed servesto filter the result. As with set constructors, an omitted pr ed defaultstot r ue, and an
omitted | exp defaultsto| xn. Anomitted WHI LE pi defaultsto WHI LE t r ue. An omitted
1= e0i defaultsto

= {x: Ti | true}.choose
whereTi isthetype of ei ; that is, it defaults to an arbitrary value of the right type.

Thegenerator xi : 1N ei generatesthe elements of the sequenceei in order. It isshort for

j »=0BYj +1WILE| <ei.size, xi BY ei(j)
wherej isafreshidentifier. Notethat if the: | Nisn't the first generator then thefirst element of
ei isskipped, which is probably not what you want. Note that : 1 Nin a sequence constructor
overridesthe normal use of I N s asatype (see[10]).

Undefined and exceptional results are handled the same way asin set constructors.

Examples
{i :=0BY i+l WHLE i <= n} =0..n={0, 1, ..., n}
(r := head BY r.next WHILE r # nil | | r.val} theval fiddsof alist starting at head
{x :INs, sum:= 0 BY sum + x} partial sumsof s
{x :INs, sum:= 0 BY sum+ x}.last + : s, thelast partial sum
{x :INs, rev :={} BY {x} + rev}.last reverseof s
{x :INs | | f(x)} s * f
{i ‘INL..n | i // 2#0] i * i} squares of odd numbers <= n
{i :IN21..n, iter := e BY f(iter)} {f(e), f2%(e), ..., f'%e)}

[12] These operations are defined in section 9.

[13] The conditional logical operators are defined in terms of conditionals:
el \/ e2=( el =>true [*] e2)
el /\ e2 =( ~el =>false [*] e2)
el ==> e2 = ( ~el =>true [*] e2)
Thus the second operand is not evaluated if the value of the first one determines the result.

[14] As changes only the type of the expression, not its value. Thusif (exp 1S type) thevalue
of (exp AS type) isthevalue of exp, but itstypeist ype rather than the type of exp.
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6. Commands

A command changes the state (or does nothing). Recall that the state is a mapping from namesto
values, we denote it by st at e. Commands are non-deterministic. An atomic command is one
that isinside <<. . . >> brackets.

The meaning of an atomic command is a set of possible transitions (that is, arelation) between a
state and an outcome (a state plus an optional exception); there can be any number of outcomes
from a given state. One possibility is alooping exceptional outcome. Another is no outcomes. In
this case we say that the atomic command fails; this happens because all possible choices within
it encounter afalse guard or an undefined invocation.

If a subcommand fails, an atomic command containing it may still succeed. This can happen
because it’s one operand of [] or [ *] and the other operand succeeds. If can also happen because
anon-deterministic construct in the language that might make a different choice. Leaving
exceptions aside, the commands with this property are[ ] and VAR (because it chooses arbitrary
values for the new variables). If we gave an operational semantics for atomic commands, this
situation would correspond to backtracking. In the relational semantics that we actually give (in
Atomic Semantics of Spec), it corresponds to the fact that the predicate defining the relation is the
“or” of predicates for the subcommands. Look there for more discussion of this point.

A non-atomic command defines a collection of possible transitions, roughly one for each
<<...>>command that is part of it. If it has simple commands not in atomic brackets, each one
also defines a possible transition, except for assi gnment sand i nvocat i ons. An assi gnnent
defines two transitions, one to evaluate the right hand side, and the other to change the value of
theleft hand side. Ani nvocat i on defines atransition for evaluating the arguments and doing
the call and one for evaluating the result and doing the return, plus all the transitions of the body.
These rules are somewhat arbitrary and their details are not very important, since you can always
write separate commands to express more transitions, or atomic brackets to express fewer
transitions. The motivation for the rulesisto have as many transitions as possible, consistent
with theideathat an expression is evaluated atomically.

A complete collection of possible transitions defines the possibl e sequences of states or histories;
there can be any number of histories from a given state. A non-atomic command still makes
choices, but it does not backtrack and therefore can have historiesin which it gets stuck, even
though in other histories a different choice allows it to run to completion. For the details, see
handout 17 on formal concurrency.
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cmd := SKIP % [1]
HAVOC %[1]
RET %[2]
RET exp %[2]
RAI SE exception % [9]
CRASH %[10]
invocation % [3]
assi gnnment % [4]
cmd [T cmd % or [5]
cmd [*] cmd % else[5]
pred = cmd % guarded cmd: if pr ed then cd [5]
VAR decl InitList | cnd % variable introduction [6]
cmd ;o cnd % sequential composition
cmd EXCEPT handl er % handle exception [9]
<< cmd >> % atomic brackets [7]
BEG N cnd END % just brackets
IF cnd FI % just brackets [5]
DO cnd OD % repeat until cmd fails[8]
invocation = primary argunents % pri mary hasaroutine type [3]
assi gnnment =1lhs 1= exp %state : = state{name -> exp} [4]
lhs infixQp := exp %shortforl hs := I hs infixOp exp
I hs ;= invocation % of a PROC or APROC
( lhsList ) := exp % exp atuplethat fits| hsLi st
( lhsList ) := invocation
I hs 1= name % defined in section 4
lhs . id % record field [4]
| hs argunents % function [4]
declInit = decl % initially any value of the type [6]
id: type := exp % initially exp, which must fit t ype [6]
id = exp Y%shortforid: T := exp,where
% Tisthetype of exp
handl er ;= exceptionSet => cnd % [9]. See section 4 for except i onSet

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions;,[],and[*] tobeleft-associative and EXCEPT to beright associative, and giving[] and
[*] lowest precedence, => and | next (to theright only, sincetheir |eft operand is an exp), ;
next, and EXCEPT highest precedence.

[1] The empty command and ski P make no change in the state. HAVOC produces an arbitrary
outcome from any state; if you want to specify undefined behavior when a precondition is not
satisfied, write ~pr econdi ti on => HAVOC.

[2] A RET may only appear in aroutine body, and the exp must fit the result type of the routine.
Theexp isomitted iff ther et ur ns of therouting ssi gnat ur e is empty.

[3] For ar gunent s see section 5. The argument are passed by value, that is, assigned to the
formals of the procedure A function body cannot invoke a PROC or APROC; together with therule
for assignments (see[7]) this ensuresthat it can't affect the state. An atomic command can
invoke an APROC but not aPROC. A command is atomiciff itis<< cmd >>, asubcommand of an
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atomic command, or one of the simple commands Ski P, HAVCC, RET, or RAI SE. The type-
checking rulefor i nvocat i onsisthe same as for function invocations in expressions.

[4] You can only assign to a name declared with VAR or in asi gnat ur e. In an assi gnnent the
exp must fit the type of thel hs, or thereisafatal error. In afunction body assi gnment s must be
to names declared in the signature or the body, to ensure that the function can’t have side effects.

An assignment to aleft hand side that is not a name is short for assigning a constructor to a
name. In particular,

| hs(argunents) := expisshortforlhs := | hs{argunents->exp}, and

lhs . id ;= expisshortforihs := I hs{id := exp}.
These abbreviations are expanded repeatedly until | hs isanane.

In an assignment the right hand side may be ani nvocat i on (of aprocedure) aswell asan
ordinary expression (which can only invoke afunction). The meaning of | hs : = exp or

I hs := invocation istofirst evaluate theexp or dothei nvocat i on and assign theresult to a
temporary variablev, andthendo| hs : = v. Thusthe assignment command is not atomic unless
itisinsde<<...>>.

If the left hand side of an assi gnnent isa (I hsLi st), theexp must be atuple of the same
length, and each component must fit the type of the corresponding | hs. Note that you cannot
write atuple constructor that contains procedure invocations.

[5] A guarded command failsif the result of pr ed isundefined or f al se. It isequivalent to cnd if
theresult of pred istrue. A pred isjust aBoolean exp; see section 4.

S1 [] s2 choosesoneof thesi to execute. It chooses one that doesn't fail. Usually s1 and S2
will be guarded. For example,

x=1 => y:=0 [] x> 1 => y:=1sasy too if x=1, to1 if x>1, and has no outcome if x<1. But
x=1 => y:=0 [] x>=1 => y:=1mightsetytoo or1 if x=1.

S1 [*] S2isthesameas Si unless Si fails, in which caseit’ s the same as s2.

IF ... FI arejust command brackets, but it often makes the program clearer to put them
around a sequence of guarded commands, thus:

IF x<0=>y:=3
[] x:0:>y;:4
[*] y :=5

FlI

[6] InaVAR the unadorned form of decl | ni t initializes a new variable to an arbitrary value of
the declared type. The: = form initializes anew variable to exp. Precisdly,
VAR id: T:=exp | c
isequivalent to
VAR id: T | id :=exp; c
The exp could also be a procedure invocation, asin an assi gnrent .

Severd decl | ni t s after VAR s short for nested VARs. Precisdly,
VAR decl I ni t declInitList | cnd

is short for
VAR decl I nit | VAR decl|InitList crd

Thisisunlike amodule, where all the names are introduced in parallel.

[7] Inan atomic command the atomic brackets can be used for grouping instead of BEG N . . .
END; since the command can’t be any more atomic, they have no other meaning in this context.
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[8] Execute crd repeatedly until it fails. If cd never fails, the result is alooping exception that
doesn’t have a name and therefore can’t be handled. Note that thisis not the same asfailure.

[9] Exception handling isasin Clu, but a bit simplified. Exceptions are named by literal strings
(which are written without the enclosing quotes). A module can also declare an identifier that
denotes a set of exceptions. A command can have an attached exception handl er , which getsto
look at any exceptions produced in the command (by RAI SE or by an invocation) and not handled
closer to the point of origin. If an exception is not handled in the body of aroutine, it israised by
the routin€’ s invocation.

An exception ex must bein the RAI SES set of aroutiner if either RAI SE ex or an invocation of a
routinewith ex in its RAI SES set occurs in the body of r outside the scope of ahandler for ex.

[10] crasH stops the execution of any current invocations in the module other than the one that
executes the CRASH, and discards their local state. The same thing happens to any invocations
outside the modul e from within it. After CRASH, no procedure in the modul e can be invoked from
outside until the routine that invokes it returns. CRASH is meant to be invoked from within a
special Cr ash procedure in the module that models the effects of afailure.

7. Modules

A program is some global declarations plus a set of modules. Each module contains variable,
routine, exception, and type declarations.

Modul e definitions can be parameterized with nf or mal s after the modulei d, and a
parameterized modul e can be instantiated. Instantiation is like macro expansion: the formal
parameters are replaced by the arguments throughout the body to yield the expanded body. The
parameters must be types, and the body must type-check without any assumptions about the
argument that replaces aformal other than the presence of aw TH clause that contains all the
methods mentioned in the formal parameter list (that is, formals are treated as distinct from all
other types).

Each moduleis a separate scope, and thereisalso ad obal scope for the identifiers declared at
thetop level of the pr ogram Anidentifier i d declared at the top level of a non-parameterized
module mis short for m i d when it occursin m If it appearsin theexport s, it can be denoted by
m i d anywhere. When an identifier i d that is declared globally occurs anywhere, it is short for
G obal . i d.d obal cannot be used asamodulei d.

An exported i d must be declared in the module. If an exported i d has aw TH clause, it must be
declared in the module as atype with at least those methods, and only those methods are
accessible outside the modulg; if thereisno W TH clause, all its methods and constructors are
accessible. Thisis Spec’'s version of data abstraction.
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program
nmodul e

nmodcl ass

exports
export

nformal s

nf p

body

topl evel

routi neDecl

si gnature

exSet Decl

t ypeDecl

=id

;= toplevel * nodul e* END

;= nodclass id nfornals exports

MODULE
CLASS

EXPORT exportLi st
id
id WTH {nmet hodLi st}

D= enpty

[ nfpList ]

i=id

id WTH { declList }

;= toplevel *

id [ typelList ]

:= VAR decl I nit*

CONST decl I nit*
routi neDecl

EXCEPTI ON exSet Decl *
TYPE typeDecl *

:=FUNC id signature = cnd
APROC id signature =<<cnd>>
PROC id signature = cmd
THREAD id signature = cnd

;1= ( declList ) returns raises
()

returns raises

;1= id = exceptionSet

type
ENUM [ idList ]

id

2002

= body END id

%[4]

% see section 4 for mret hod

% module formal parameter
% see section 4 for decl

% i d must be themoduleid
% instance of parameterized module

% declaresthedecl ids[1]

% declaresthe decl ids as constant
% declaresther out i ne id

% declares the exception set ids

% declaresthet ype idsand any

% idsin ENUVs

% function

% atomic procedure

% non-atomic procedure

% one thread for each possible
% invocation of the routine [2]
% see section 4 for r et ur ns
% andrai ses

% see section 4 for except i onSet

% see section 4 for t ype
% avalueisoneof thei d’s[3]

[1] The“: = exp” inadecl I ni t (defined in section 6) specifiesan initial value for the variable.
Theexp isevaluated in astate in which each variable used during the evaluation has been
initialized, and the result must be anormal value, not an exception. The exp sees al the names
known in the scope, not just the ones that textually precede it, but the relation “used during
evaluation of initial values’ on the variables must be a partial order so that initialization makes
sense. Asin an assi gnment , the exp may be a procedure invocation as well as an ordinary
expression. It'safatal error if theexp isundefined or theinvocation fails.

[2] Instead of being invoked by the client of the module or by another procedure, athread is
automatically invoked in parallel once for every possible value of its arguments. Thethread is
named by thei d in the declaration together with the argument values. So

VAR sum:= 0, count := 0

THREAD P(i: Int) =i INO .. 9 =>

VAR t

t = F(i); <<sum:= sum + t>>;
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adds up the values of F(0)
threads P( 0) , P(9) for which the guard istrue invoke F( 0) ,
total theresultsin sum When count = 10 thetotal is complete.

F(9) inparalld. It createsathread P(i) for every integer i ; the
F(9) inparale and

A thread is the only way to get an entire program to do anything (except evaluate initializing
expressions, which could have side effects), since transitions only happen as part of some thread.

[3] Thei d’sinthelist are declared in the module; their typeis the ENUMtype. There are no
operations on enumeration values except the ones that apply to all types: equality, assignment,
and routine argument and result communication.

[4] A classisshorthand for a module that declares a convenient object type. The next few
paragraphs specify the shorthand, and the last one explains the intended usage.

If the classi d isbj , themodulei d is oj Mbd. Each variable declared in atop level VAR in the
class becomes afield of the Obj Rec record typein the module. The module exports only atype
vj that isalso declared globally. obj indexes a collection of state records of type Obj Rec stored
in the modul€ s obj s variable, which is afunction Obj - >bj Rec. bj 's methods are all the
names declared at top level in the class except the variables, plus the new method described

bel ow; the exported Obj s methods are all the ones that the class exports plus new.

To make aclass routine suitable as a method, it needs access to an Obj Rec that holds the state of
the object. It getsthis access through asel f parameter of type Obj , which it usesto refer to the
object state obj s(sel f). To carry out this scheme, each routine in the module, unless it appears
inaw THclausein theclass, is ‘objectified’ by giving it an extrasel f parameter of type Qvj . In
addition, in aroutine body every occurrence of avariablev declared at top level intheclassis
replaced by obj s(sel f). v inthe module, and every invocation of an objectified class routine
getssel f asan extrafirst parameter.

The modul e also gets a synthesized and objectified St dNew procedure that adds a state record to
obj s, initializesit from the class' s variabl e initializations (rewritten like the routine bodies), and
returnsits obj index; this procedure becomes the new method of tbj unless the class already has
anewroutine.

A class cannot declare a THREAD.

The effect of thistransformation is that a variable obj of type avj behaveslike an object. The
state of the object isobj s(obj ) . Theinvocation obj . mor obj . n(x) isshort for Gvj Mbd. n( obj )
or Obj Mod. m(obj , x) by the usual rule for methods, and it thus invokes the method ri innis
body each occurrence of a class variable refers to the corresponding field in obj ' s state.

obj . new() returnsanew and initialized obj object. The following example shows how aclassis
transformed into a module.
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CLASS Obj EXPORT T1, f, p, ..= MODULE Obj Mod EXPORT Cbj WTH {T1, f, p, new} =
TYPET1 = ... WTH {add: =AddT} TYPE T1 = ... WTH {add: =AddT}
CONST ¢ := ... CONST ¢ := ...
VAR v1:Tl:=ei, v2:T2:=pi(vl), .. TYPE GbjRec = [v1l: T1, v2: T2, .]
oj =Int WTH {T1, ¢, f:=f, p:=p,
AddT: =AddT, .., new =St dNew}
VAR objs: Obj -> bjRec := {}
FUNC f(pl: RT1, .) = ..v1l .. FUNC f(self: Obj, pl: RT1, .) = ...objs(self).vl ...
PRCC p(p2: RT2, .) = ..v2 .. PRCC p(self: Obj, p2: RT2, .) = ...objs(self).v2 ..

FUNC AddT(t1, t2) = ... FUNC AddT(t1, t2) = ...

PROC StdNew(sel f: bj) -> Cbj =

VAR obj: Obj | ~ obj IN objs.dom=>
obj s(obj) 1= Obj Rec{};
objs(obj).vl :=ei;
obj s(obj).v2 := pi(objs(obj).vl);
RET obj

END bj END Obj Mod

TYPE Gbj = Obj Mod. Obj

In abstraction functions and invariants we also write obj . n for field n in obj 's state, that is, for
Gbj Mod. obj s(obj).n.

8. Scope

The declaration of an identifier is known throughout the smallest scope in which the declaration
appears (redeclaration is not alowed). This section summarizes how scopes work in Spec; terms
defined before section 7 have pointers to their definitions. A scopeis one of

the whole pr ogr am in which just the predefined (section 3), module, and globally declared
identifiers are declared;

anmodul e;
the part of ar out i neDecl or LAVBDA expression (section 5) after the =;
the part of avARdecl Init | cmd command after the| (section 6);
the part of a constructor or quantification after thefirst | (section 5).
arecordt ype or met hodDef Li st (section 4);

An identifier is declared by

amodulei d, nf p, or t opl evel (for types, exception sets, ENUMelements, and named
routines),

adecl inarecordtype (section4),| constructor or quantification (section 5), decl I ni t
(section 6), routine si gnat ur e, or W TH clause of anf p, or

anet hodDef inthew TH clause of at ype (section 4).
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An identifier may not be declared in a scope where it is aready known. An occurrence of an
identifier i d aways refersto the declaration of i d which is known at that point, except wheni d
isbeing declared (precedes a: , the= of at opl evel , the: = of arecord constructor, or the: = or
BY in aseqGen), or follows adot. There are four cases for dot:

modul el d . id—theid must be exported from the basic module modul el d, and this
expression denotes the meaning of i d in that module.

record . id—theid must bedeclared asafield of therecord type, and this expression
denotes that field of recor d. In an assi gnment sl hs see[7] in section 6 for the meaning.

typeld . id—thetypel d denotesatype, i d must be amethod of thistype, and this
expression denotes that method.

primary . id—theid must beamethod of pri mary’stype, and this expression, together
with any following arguments, denotes an invocation of that method; see[2] in section 5 on
expressions.

If i d refersto an identifier declared by at opl evel inthe current modulem it isshort for mi d.

If it refersto an identifier declared by at opl evel intheprogram itisshort for G obal . i d.
Once these abbreviations have been expanded, every name in the state is either global (contains a
dot and isdeclared in at opl evel ), or local (does not contain adot and is declared in some other
way).

Exceptions look like identifiers, but they are actually string literals, written without the enclosing
quotes for convenience. Therefore they do not have scope.

9. Built-in methods

Some of the type constructors have built-in methods, among them the operators defined in the
expression grammar. The built-in methods for types other than | nt and Bool are defined below.
Note that these are not complete definitions of the types; they do not include the constructors.

Sets
A set has methods for

computing union, intersection, and set difference (lifted from Bool ; see note 3 in section 4),
and adding or removing an element, testing for membership and subset;

choosing (deterministically) a single element from a set, or a sequence with the same
members, or a maximum or minimum el ement, and turning a set into its characteristic
predicate (theinverseis the predicate’ sset method);

composing a set with afunction or relation, and converting a set into arelation fromni | to
the members of the set (theinverse of thisis just the range of the relation).

We define these operations with a modul e that represents a set by its characteristic predicate.
Precisely, SET T behavesasthough it were Set [ T] . S, where
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MODULE Set[T] EXPORT S =

TYPE S = Any->Bool SUCHTHAT (\ s | (ALL any | s(any) ==> (any IS T)))
% Defined everywhere so that type inclusion will work; see section 4.
WTH {"\/":=Union, "/\":=Intersection, "-":=Difference,
"IN'":=In, "<=":=Subset, choose: =Choose, seq: =Seq,
pred: =Pred, perns:=Perns, fsort:=FSort, sort:=Sort,
fmax: =FMax, fmn:=FM n, nmax:=Max, mn:=Mn
"*":=ConposeF, rel:=Rel, "**":=ConposeR }

FUNC Uni on(s1, s2)->S
FUNC I ntersection(sl, s2)->S
FUNC Di fference(sl, s2)->S

RET (\ t | s1(t) \/ s2(t)) %sl\/ s2
RET (\ t | si(t) /\ s2(t)) %sl /\ s2
RET (\ t | s1(t) /\ ~s2(t)) %sl1l - s2

FUNC I n(s, t)->Bool RET s(t) %t INs
FUNC Subset (s1, s2)->Bool RET (ALL t] si(t) ==> s2(t)) %sl <= s2
FUNC Si ze(s)->Int %s. si ze

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET O
FUNC Choose(s)->T = VARt | s(t) => RET t %s. choose
% Not really, since VAR makes a non-deterministic choice,
% but choose makes a deterministic one. It isundefined if s isempty.
FUNC Seq(s)->SEQ T = %s. seq
% Defined only for finite sets. Note that Seq chooses a sequence deterministically.
RET {q: SEQT | g.rng = s /\ q.size = s.size}.choose
FUNC Pred(s)->(T->Bool) = RET s %s. pred
%s. predisjusts. Wedefine pr ed for symmetry with seq, set , etc.

FUNC Pernms(s)->SET SEQ T = RET s.seq. perms %s. permnms

FUNC FSort (s, f: (T,T)->Bool)->S = RET s.seq.fsort(f) %s. fsort(f);f iscompare
FUNC Sort(s)->S = RET s.seq.sort %s. sort;onlyif Thas<=
FUNC FMax(s, f: (T,T)->Bool)->T = RET s.fsort(f).last %s. f max(f);amax under f
FUNC FM n(s, f: (T,T)->Bool)->T = RET s.fsort(f).head %s. fm n(f);aminunderf
FUNC Max(s)->T = RET s.fmax(T."<=") %s. max; only if T has<=
FUNC M n(s)->T = RET s.fmn(T."<=") %s. m n;onlyif Thas<=

% Note that these functions are undefined if s isempty. If there are extremal

% elements not distinguished by f or " <=" , they make an arbitrary deterministic choice.

FUNC ConposeF(s, f: T->U)->SET U = RET {t :INs | | f(t)} %s * f;imageofs underf
% ConposeF by analogy with sequences, where ordinary function composition applies pointwise to the elements.

FUNC Rel (s) -> ((Null, T)->Bool) = RET (\ null, t | t INSs)

%s. rel relatesni | toevery element of s

FUNC ConmposeR(s, r: (T, U)->Bool)->SET U = RET(s.rel*r).rng %s ** r;imageof s underr
% ConposeRisrelational composition: anything you can get to by r , starting with a member of s. We could have written
explicitly: {t :INs, u | r(t, u) | u},oras\/ : (s * r.setF),oras(s.rel * r).rng

END Set

There are constructors{} for the empty set, {e1, e2, ...} for aset with specific elements, and
{decl List | pred | exp} for aset whose e ements satisfy a predicate. These constructors are
described in [6] and [10] of section 5. Notethat {t | p}.pred = (\ t | p),andsimilarly (\ t
| p).set = {t | p}. A method on T islifted to amethod on S, unless the name conflicts with
one of S's methods, exactly likeliftingon s. r el ; see note 3 in section 4.

Functions
Thefunction types T- >Uand T->U RAI SES XS have methods for

composition, overlay, inverse, and restriction;
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testing whether afunction is defined at an argument and whether it produces anormal (non-
exceptional) result at an argument, and for the domain and range;

converting afunction to arelation (the inverseistherelation’sf unc method) or a function
that produces a set to arelation with each element of the set (set Rel ; theinverseisthe
relation’s set F method).

In other words, they behave as though they were Function[ T, U] . F, where (making allowances
for the fact that xs and v are pulled out of thin air):

MODULE Function[T, U EXPORT F =

TYPE F = T->U RAISES XS WTH {"*": =Conpose, "+":=CQverl ay,
inv:=lnverse, restrict:=Restrict,
"1":=Defined, "!!":=Nornal,
dom =Domai n, rng: =Range, rel:=Rel, setRel:=SetRel}
R = (T, U -> Bool

FUNC Conpose(f, g: U->V) -> (T ->V) = RET (\ t | g(f(t)))

% Note that the order of the argumentsis reversed from the usual mathematical convention.
FUNC Overlay(f1, f2) -> F = RET (\ t | (f2lt => f2(t) [*] f1(t)))
%(f1l + f2) isf2(x) if that isdefined, otherwise f 1( x)

FUNC I nverse(f) -> (U ->T) = RET f.rel.inv.func
FUNC Restrict(f, s: SETT) -> F = RET (\ t | (t INs =>f(t)))

FUNC Defined(f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true

FUNC Nornal (f, t)->Bool =
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET fal se

FUNC Domai n(f) -> SET T
FUNC Range (f) -> SET U

RET {t | fIt}
RET {t | fi1t | f(t)}

FUNC Rel (f) -> R=RET (\ t, u | f(t) =u)
FUNC SetRel (f) -> ((T, V)->Bool) = RET (\ t, v | (flt ==>v INTf(t) [*] false) )
%if U = SET V,f. set Rel relateseacht inf. domtoeachelementof f (t).

END Function

Note that there are constructors{} for the function undefined everywhere, T{* -> resul t} for
afunction of type T whose valueisresul t everywhere, andf{exp -> resul t} for afunction
which isthesameast except at exp, whereits valueisr esul t . These constructors are described
in[6] and [8] of section 5. There are also lambda constructors for defining afunction by a
computation, described in [9] of section 5. A method on Uislifted to a method on F, unless the
name conflicts with a method of F; see note 3 in section 4.

A total function T- >Bool is a predicate and has an additional method to compute the set of T's
that satisfy the predicate (the inverseisthe set’s pr ed method). In other words, a predicate
behaves as though it were Pr edi cat e[ T] . P, where

MODULE Predi cate[ T] EXPORT P =
TYPE P =T -> Bool WTH {set:=Set}

FUNC Set(p) -> SET T = RET {t | p(t)}
END Predi cate
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A predicatewith T = (U, V) isarelation and has additional methods to turn it into a function u
-> vorafunctionu -> SET V, and to get its domain and range, invert it or compose it
(overriding the methods for afunction). In other words, it behaves as though it were

Rel ation[ U, V].R, where (alowing for the fact that wis pulled out of thin air in Conpose):

MODULE Rel ation[U, V] EXPORT R =

TYPE R = (U, V) -> Bool WTH {func: =Func, setF:=Set Func, dom =Domai n, rng :=Range,
inv:=lnverse, "*":=Conpose}
FUNC Func(r) -> (U ->V) =
% Func(r) isdefinedat u iff r relatesu toasinglev.
RET (\ u | (r.setF(u).size =1 => r.setF(u).choose))
FUNC Set Func(r) -> (U ->SET V) = RET (\ u| {v | r(u, v)})
% Set Func(r) isdefined everywhere, returning the set of V'srelated to u.

FUNC Domain(r) -> SET U = RET {u, v | r(u, v) | u}
FUNC Range (r) -> SET V = RET {u, v | r(u, v) | v}

FUNC I nverse(r) -> ((V, U ->Bool) = RET (\ v, u | r(u, v))

FUNC Conpose(r: R s: (V, W->Bool) -> (U W->Bool =
RET (\ u, w]| (EXISTSvV | r(u, v) /\ s(v, w)) )

END Rel ation
A method on v islifted to a method on R, unless there's a name conflict; see note 3 in section 4.

A relationwith U = visagraph and has additional methods to yield the sequences of U sthat are
pathsin the graph and to compute the transitive closure. In other words, it behaves as though it
were G aph[ U] . G, where

MODULE Graph[T] EXPORT G =

TYPE G = (T, T) -> Bool WTH {paths:=Paths, closure:=TransitiveC osure }
P=SEQT
FUNC Paths(g) -> SET P = RET {p | (ALL i :IN p.dom- {0} | g(p(i-1), p(i)))}

% Any p of size<= 1 isapath by this definition.
FUNC TransitiveC osure(g) -> G= RET (\ t1, t2 |
(EXISTS p | p.size > 1 /\ p.head =t1 /\ p.last =t2 /\ p INg.paths ))

END Graph

Sequences

A function is called a sequenceif its domain is afinite set of consecutive | nt 's starting at 0, that
is, if it hastype
Q=1Int -> T SUCHTHAT (\ q | (EXISTS size: Int | g.dom= (0 .. size-1).rng))
We denote this type (with the methods defined below) by SEQ T. A sequence inherits the
methods of the function (though it overrides +), and it also has methods for

detaching or attaching thefirst or last element,

extracting a segment of a sequence, concatenating two sequences, or finding the size,
making a sequence with all elements the same

making a sequence into atuple (r ng makesit into a set),

testing for prefix or sub-sequence (not necessarily contiguous),
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composing with arelation (SEQ T inherits composing with a function),

lexical comparison, permuting, and sorting,

treating a sequence as a multiset with operations to:
count the number of times an element appears, test membership and multiset equality,
take differences, and remove an element (" +" or "\ /" isunion and addl addsan
element).

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence
is always defined regardless of the subscripts, by taking the largest number of elements allowed
by the size of the sequence.

We define the sequence methods with amodule. Precisely, SEQ T iSSequence[ T] . Q where:

MODULE Sequence[ T] EXPORTS Q =

TYPEI
Q

I nt

(r->7m

SUCHTHAT (\ g | (ALL i | g'i = (0 <=1i /\ i < qg.size)))

W TH { size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate,
head: =Head, tail:=Tail, addh:=AddHead, renh:=Tail,
| ast: =Last, remnl:=RenovelLast, addl:=AddLast,
fill:=Fill, tuple:=Tuple,
"<=":=Prefix, "<<=":=SubSeq,
"*%": =ConposeR, | exLE: =LexLE, perns: =Perns,
fsorter:=FSorter, fsort:=FSort, sort:=Sort,

% These methods treat a sequence as a multiset (or bag).
count: =Count, "IN':=In, "==":=EqEl em
"\/":=Concatenate, "-":=Diff, set:=Qrng }

FUNC Si ze(q)-> Int = RET q.dom size

FUNC Sub(q, i1, i2) -> Q=
%4q.sub(il, i2); vyields{q(il),...,q(i2)},orashorter sequenceifil < Oori2 >= q.size
RET ({0, il1}.max .. {i2, g.size-1}.mn) * q

FUNC Seg(q, i, n: 1) -> Q= RET g.sub(i, i+n-1) %q.seg(i,n);n Tsfromq(i)
FUNC Concatenate(ql, g2) -> Q = VAR q | %ql + g2
g.sub(0, gl.size-1) = g1 /\ g.sub(qgl.size, g.size-1) = g2 => RET g
FUNC Head(qg) -> T = RET q(0) %q. head; first element
FUNC Tail (qg) -> Q = %gq.tail; allbutfirst
g.size > 0 => RET g.sub(1, g.size-1)
FUNC AddHead(qg, t) -> Q= RET {t} + ¢ %q. addh(t)
FUNC Last(qg) -> T = RET g(qg.size-1) %q. | ast ; last element
FUNC Renpvelast(q) -> Q = %4q. ren ; al but last

q # {} => RET ¢.sub(0, q.size-2)

FUNC AddLast(qg, t) -> Q= RET g + {t} %q. addl (t)

FUNC Fill(t, n: 1) ->Q=RET {i :INO .. n-1] | t} %yieldsi copiesoft
FUNC Prefix(qgl, g2) -> Bool = %ql <= g2

RET (EXISTS g | g1 + g = g2)
FUNC SubSeq(ql, g2) -> Bool = %ql <<= g2

% Areql’selementsin g2 in the same order, not necessarily contiguously.
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RET (EXISTS p: SET Int | p <= g2.dom/\ gl = p.seq.sort * Q2)

FUNC ConposeR(q, r: (T, U->Bool) -> SEQU = %q ** r
% Elements related to nothing are dropped. If an element isrelated to several things, they appear in arbitrary order.
RET + : (g * r.setF * (\s: SET U | s.seq))

FUNC LexLE(ql, g2, f: (T,T)->Bool) -> Bool = %ql. | exLE(g2, f); fis<=
% 1sql lexicaly lessthan or equal to g2. Trueif g1 isaprefix of g2,
% or the first element in which q1 differsfrom q2 isless.

RET ql <= g2

\/ (EXISTS i :IN ql.dom/\ q2.dom | ql.sub(0, i-1) = g2.sub(0, i-1)
I\ oql(i) # 92(i)) /\ f(ql(i), q2(i))

FUNC Pernms(q)->SET Q = %q. per s
RET {q" | (ALL t | g.count(t) = q' .count(t))}

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = %gq. fsorter(f);fis<=
% The permutation that sorts q stably. Note: can’'t use mi n to define this, sincem n isdefined usingsort .
VAR ps := {p :IN q.dom perns % all permsthat sort q
| (ALL i :IN (g.dom- {0O}) | f((p*q)(i-1), (p*a)(i))) } |
VAR pO :IN ps | % the one that reorders the |east
(ALL p :IN ps | pO.lexLE(p, Int."<=")) => RET p0

FUNC FSort(q, f: (T,T)->Bool) -> Q =
RET g.fsorter(f) * q
FUNC Sort(q)->Q = RET q.fsort(T."<=")

%gq. fsort(f);f is<= forthesort
%gq. sort;onlyif Thas<=
FUNC Count(q, t)->Int = RET {t' :INqg | t' =t}.size %q.count(t)

FUNC In(t, q)->Bool = RET (q.count(t) # 0) %t INq
FUNC EqEl en(ql, g2) -> Bool = RET gl IN qg2.perns %qgl == g2; equal asmultisets

FUNC Diff(ql, g2) -> Q= %ql - g2
RET {g | (ALL t | g.count(t) = {qgl.count(t) - g2.count(t), O0}.max)}.choose

END Sequence

We can't program Tupl e in Spec, but it is defined asfollows. If g: SEQ T,theng. tupl eisa
tuple of g. si ze T's, thefirst equal to q( 0) , the second equal to q( 1) , and so forth. For the
inverse, if uisatuple of T's, thenu. seq isaSEQ T such that u. seq. tupl e = u.lfuisatuplein
which not all the elements have the same declared type, then u. seq isaSEQ Any such that
u.seq.tuple = u.

Int hasamethod .. for making sequences:i .. j = {i, i+1, -1, gyIfj o<y,

i .. j ={}. Youcanasowritei .. j as{k :=i BY k + 1 WHILE k <= j};see[11] in
section 5.1 nt dsohasaseq method:i.seq = 0 .. i-1.

Thereisaconstructor {e1, e2, ...} for asequence with specific elements and a constructor

{} for the empty sequence. Thereis also aconstructor g{ e1 -> e2}, which isequal to q except
at el (and undefined if el is out of range). For the constructors see [6] and [8] of section 5. To
generate a sequence there are constructors{x : IN q | pred | exp} and{x := el BY e2
VH LE predl | pred2 | exp}. Forthesesee[11] of section 5.

Tomap each element t of q tof (t) usefunction compositiong * f. Thusifqg: SEQ Int,

g * (\i: Int | i*i) yiedsasequence of squares. You can also writethis
{i :INqg | | i*i}.
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5. Examples of Specsand Code

This handout is a supplement for the first two lectures. It contains several example specs and
code, all written using Spec.

Section 1 contains a spec for sorting a sequence. Section 2 contains two specs and one code for
searching for an element in a sequence. Section 3 contains specs for a read/write memory.
Sections 4 and 5 contain code for a read/write memory based on caching and hashing,
respectively. Finally, Section 6 contains code based on replicated copies.

1. Sorting

The following spec describes the behavior required of a program that sorts sets of some type T
with a" <=" comparison method. We do not assumethat " <=" is antisymmetric; in other words,
wecanhavet1 <= t2andt2 <= t1 without havingt1 = t 2, sothat " <=" isnot enough to
distinguish values of T. For instance, T might be therecord type[ name: String, salary: Int]
with " <=" comparison of thesal ary field. Several T's can have different nanes but the same
sal ary.

APRCC Sort(s: SET T) -> SEQT = <<
VAR q: SEQT | (ALL i: T | s.count(i) = g.count(i)) /\ Sorted(b) => RET b >>

This spec uses the auxiliary function Sor t ed, defined as follows.
FUNC Sorted(q: SEQ T) -> Bool = RET (ALL i :INg.dom- {0} | q(i-1) <= q(i))

If we made Sort a FUNC rather than a PROC, what would be wrong?! What could we change to
make it a FUNC?

We could have written this more concisely as

APRCC Sort(s: SET T) -> SEQT =
<< VAR g :IN a.pernms | Sorted(q) => RET q >>

using the per ms method for sets that returns a set of sequences that contains all the possible
permutations of the set.

2. Searching

Search spec

We begin with a spec for a procedure to search an array for agiven element. Again, thisisan
APROC rather than a FUNC because there can be several allowable results for the same inputs.

APRCC Search(q: SEQ T, x: T) -> Int RAISES {Not Found}
<< IF VARIi: Int | (0O <=1i /\ i <q.size/\ q(i)

X) => RET i

1 Hint: a FUNC can't have side effects and must be deterministic (return the same value for the same arguments).
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[*] RAISE Not Found
FI >

Or, equivaently but slightly more concisely:

APRCC Search(q: SEQ T, x: T) -> Int RAISES {Not Found} =
<< IF VARi [INg.dom| q(i) = x => RET i [*] RAISE NotFound FI >>

Sequential search code

Hereis code for the Sear ch spec given above. It uses sequential search, starting at the first
element of the input sequence.

APRCC SeqSearch(q: SEQ T, x: T) -> Int RAISES {Not Found} = << VARi := 0 |
DOi < qg.size =>1Fq(i) =x =>RETi [*] i +:=1Fl OD RA SE NotFound >>
Alternative search spec

Some searching al gorithms, for example, binary search, assume that the input argument sequence
is sorted. Such agorithms require a different spec, one that expresses this requirement.

APRCC Searchl(q: SEQ T, x: T) -> Int RAISES {Not Found} = <<
IF ~Sorted(q) => HAVCC

[*] VARi :INg.dom]| q(i) = x => RET i
[*] RAISE Not Found
Fl >>

Y ou might consider writing the spec to raise an exception when the array is not sorted:

APRCC Search2(q: SEQ T, x: T) -> Int RAISES {Not Found, NotSorted} = <<
IF ~Sorted(q) => |RAI SE Not Sort ed

Thisisnot agood idea. The whole point of binary search isto obtain O(log n) time performance
(for asorted input sequence). But any code for the Sear ch2 spec requires an O(n) check, even
for a sorted input sequence, in order to verify that the input sequenceisin fact sorted.

Thisisasimple but instructive example of the difference between defensive programming and
efficiency. If sear ch were part of an operating system interface, it would beintolerable to have
HAVCC as a possible transition, because the operating system is not supposed to go off the deep
end no matter how it is called (though it might be OK to return the wrong answer if the input
isn't sorted; what would that spec be?). On the other hand, the efficiency of a program often
depends on assumptions that one part of it makes about another, and it’s appropriate to express
such an assumption in a spec by saying that you get HAvCC if it is violated. We don’t care to be
more specific about what happens because we intend to ensure that it doesn’t happen. Obviously
aprogram written in this style will be more prone to undetected or obscure errors than one that
checks the assumptions, as well as more efficient.
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4. Write-back cache code
3. Read/write memory
Our first codeis based on two memory mappings, a main memory mand awrite-back cachec.
The simplest form of read/write memory is asingle read/write register, say of type Vv (for value), The code maintains the invariant that the number of addresses at which ¢ is defined is constant.
with arbitrary initial value. The following Spec module describes this: A real cache would probably maintain awesker invariant, perhaps bounding the number of
addresses at which ¢ is defined.
MODULE Regi ster [V] EXPORT Read, Wite =
MODULE WBCache [A, V] EXPORT Read, Wite, Reset, Swap =

VAR x: V % arbitrary initial value % implements Meror y

APROC Read() -> V = << RET x >> TYPEM = A->V

APRCC Wite(v) = << X 1=V > c = A->V

END Regi st er CONST GCsi ze coInt =L % cache size
Now we give a spec for a simple addressable memory with elements of typev. Thisislikea VAR m = InitM)

collection of read/write registers, one for each addressin aset A. In other words, it's afunction c = 1nitC)

from addresses to data values. For variety, we include new Reset and Swap operationsin APROC InitM) -> M= << VAR m | (ALL a | m!a) = RET M >>

addition to Read and Wi te. % Returns a Mwith arbitrary values.
MODULE Menory [A, V] EXPORT Read, Wite, Reset, Swap = APROC InitC() -> C=<< VAR Cc' | c'.domsize = CSize => RET ¢' >>

% Returns a Cthat has exactly CSi ze entries defined, with arbitrary values.
TYPEM = A ->V

VAR m:=Init() APRCC Read(a) -> V = << Load(a); RET c(a) >>

. APRCC Wite(a, v) = << IF ~cla => FlushOne() [*] SKIP FI; c(a) :=v >>
APROC Init() -> M = << VARM | (ALL a | m'a) => RET m >> % Makes room in the cache if necessary, then writes to the cache.
% Choose an arbitrary function that is defined everywhere.

APRCC Reset (v) = <<...>> % exercise for the reader

FUNC Read(a) -> V = << RET m(a) >>
APROC Wite(a, v) = <<ma) :=v >> APRCC Swap(a, v) -> V = << VAR V' | Load(a); v' :=c(a); c(a) :=v; RET v' >>
APRCC Reset (V) =<<m:= M* ->v} > % Internal procedures.

% Set all memory locationsto v.
APRCC Load(a) = << IF ~cla => FlushOne(); c(a) := nma) [*] SKIP FI >>
APROC Swap(a, v) -> V = << VARV' :=nma) | ma) := v, RET v' >> % Ensures that address a appearsin the cache.

% Set location a to the input value and return the previous value.
APRCC Fl ushOne() =
END Menory % Removes one (arbitrary) address from the cache, writing the data val ue back to main memory if necessary.
) ) << VAR a | cla == IFDrty(a) => ma) :=c(a) [*] SKIPFI; ¢c :=c{a ->} >
The next three sections describe code for Merrory.
FUNC Dirty(a) -> Bool = RET cla /\ c(a) # m(a)
% Returnst r ue if the cache is more up-to-date than the main memory.

END WBCache

The following Spec function is an abstraction function mapping a state of the wBCache module to
a state of the Memor y module. It’s written to live inside the module. It says that the contents of
locationaisc(a) if aisinthecache, and n(a) otherwise.

FUNC AF() -> M= RET (\ a | cla => c(a) [*] ma) )
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5. Hash table code

Our second code for Meror y uses a hash table for the representation.

MODULE HashMenory [A WTH {hf: A->Int}, V] EXPORT Read, Wite, Reset, Swap =

% Implements Menor y.
% The module expects that the hash function A. hf istotal and that itsrangeis0 .. n for somen.

TYPE Pai r = [a, V]
B = SEQ Pair % Bucket in hash table
HashT = SEQB
VAR nb = NunB() % Number of Buckets
m = HashT.fill (B{}, nb) % Memory hash table; initially empty
def aul t Vv % arbitrary default value
APROC Read(a) -> V = << VAR b := n(a.hf), i: Int |

i := FindEntry(a, b) EXCEPT Not Found => RET default ; RET b(i).v >>

APROC Wite(a, v) = << VAR b := DeleteEntry(a, m(a.hf)) |
ma.hf) :=b + {Pair{a, v}} >>

APRCC Reset(v) = << m:= HashT.fill(B{}, nb); default := v >>
APRCC Swap(a, v) ->V = << VAR V' | v' := Read(a); Wite(a, v); RET v' >>
% Internal procedures.

FUNC NunBs() -> Int =
% Returns the number of buckets needed by the hash function; havoc if the hash function is not as expected.
IF VAR n: Nat | A hf.rng = (0 .. n).rng => RET n + 1 [*] HAVOC FI

APRCC Fi ndEntry(a, b) -> Int RAISES (Not Found) =
% If a appearsin apair in b, returns the index of some pair containing a; otherwise raises Not Found.
<< VAR i :INb.dom| b(i).a = a => RET i [*] RAI SE NotFound >>

APRCC Del eteEntry(a, b) -> B << VAR i: Int |

% Removes some pair with address afrom b, if any exists.
i = FindEntry(a, b) EXCEPT Not Found => RET b ;
RET b.sub(0, i-1) + b.sub(i+1, b.size-1) >>

END HashMenory

Notethat Fi ndent ry and Del et eEnt ry are APROCS because they are not deterministic when
given arbitrary b arguments.

Thefollowing is akey invariant that holds between invocations of the operations of HashMenory:

FUNC I nv() -> Bool = RET
( nb>0
/\ msize = nb
/\ (ALL a | a.hf IN mdom
/\ (ALL i :INmdom p :INmi).rng | p.a.hf =1i)
/\ (ALL a | { j :INma.hf).dom| n{a.hf)(j).a = a }.size <= 1) )

This says that the number of bucketsis positive, that the hash function maps all addresses to
actual buckets, that a pair containing address a appears only in the bucket at index a. hf inm and
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that at most one pair for an address appears in the bucket for that address. Note that these
conditions imply that in any reachable state of HashMenor y, each address appearsin at most one
pair in the entire memory.

The following Spec function is an abstraction function between states of the HashMermor y module
and states of the Menory module:

FUNC AF() -> M = RET
(LAMBDA(a) -> V =
IF VARi :INmdom p :INmi).rng | p.a =a => RET p.v
[*] RET default
Fl)

That is, the data value for address a is any value associated with address a in the hash table; if
thereis none, the data value is the default value. Spec says that afunction is undefined at an
argument if its body can yield more than one result value. The invariants given above ensure that
the LAMVBDA is actually single-valued for all the reachable states of HashMenory.

Of course HashMenor y is not fully detailed code. Its main deficiency isthat it doesn’t explain
how to maintain the variable-length bucket sequences, which is usually done with alinked list.
However, the code does capture all the essential details.

6. Replicated copies

Our final codeis based on some number k = 1 of copies of each memory location. Initidly, al
copies have the same default value. A Wi t e operation only modifies an arbitrary majority of the
copies. A Read reads an arbitrary majority, and selects and returns the most recent of the values
it sees. In order to alow the Read to determine which value is the most recent, each Wi te
records not only its value, but also a sequence number.

For simplicity, wejust show the module for a single read/write register. The constant k
determines the number of copies.

MODULE Maj orityRegister [V] = % implements Regi st er

CONST k = 5
TYPEN = Nat
Ki nt = IN1.. k % i nt sbetween 1 and k
Maj = SET KiInt % all majority subsets of Ki nt
SUCHTHAT (\m Maj | msize>k/2)
TYPE P = [D, seqgno: N % Pair
M = Kint ->P % Memory
S = SET P
VAR default . D
m = M* -> P{d := default, seqno := 0}}

APRCC Read() -> D = << RET ReadPair().d >>

APROCC Wite(d) = << VAR i: Int, maj |
% Determines the highest sequence number i , then writesd paired withi +1 to some majority maj of the copies.
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i := ReadPair().seqgno;
DO VAR j :INmaj | n(j).seqno # i+1 => n(j) := P{d := d, seqno := i+1} OD >>

% Internal procedures.

APROC ReadPair() -> P = << VAR s := ReadMaj () |
% Returns apair with the largest sequence number from some mgjority of the copies.

VAR p :INs | p.seqno = {p' :INs | | p'.segno}.max => RET p >>
APROC ReadMaj () -> S =<<VARmj | RET{ i :INmj | | mi) } >>
% Returns the set of pairs belonging to some majority of the copies.

END Maj orityRegi ster
We could have written the body of ReadPai r as

<< VAR s := ReadMsj () | RET s.fmax((\ pl, p2 | pl.segno <= p2.segno)) >>
except that f max always returns the same maximal p from the same s, whereas the vAR in
ReadPai r chooses one non-deterministicaly.
Thefollowingisakey invariant for Myj ori t yRegi ster.

FUNC Inv(m M -> Bool = RET
(ALL p :INmrng, p' :INmrng | p.segno = p'.segno ==> p.v = p'.vV)
/\ (EXISTS maj | (ALL i :INmj, p:INmrng | m(i).seqno >= p.seqno)))

Thefirst conjunct says that any two pairs having the same sequence number also have the same
data. The second conjunct says that the highest sequence number appears in some majority of the
copies.

Thefollowing Spec function is an abstraction function between states of the Maj ori t yRegi st er
module and states of the Regi st er module.

FUNC AF() -> V = RET mrng. fmax((\ pl, p2 | pl.segno <= p2.seqno)).vVv

That is, the abstract register data valueis the data component of a copy with the highest sequence
number. Again, because of the invariants, thereis only onep. v that will be returned.
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6. Abstraction Functionsand Invariants

This handout describes the main techniques used to prove correctness of state machines:
abstraction functions and invariant assertions. We demonstrate the use of these techniques for
some of the Menor y examples from handout 5.

Throughout this handout, we consider modules all of whose externally invocable procedures are
APROCs. We assume that the body of each such procedure is executed &l at once. Also, we do not
consider procedures that modify global variables declared outside the modul e under
consideration.

M odules as state machines

Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a
Spec modul e to define a state machine. Each state of the automaton designates values for all the
variables declared in the module. Theinitial states of the automaton consist of initial values
assigned to all the modul €' s variables by the Spec code. The transitions of the automaton
correspond to the invocations of APROCS together with their result values.

An execution fragment of a state machineis a sequence of theform s, 14, S;, T, ..., where each
sisadtate, each Ttisalabel for atransition (an invocation of aprocedure), and each consecutive
(s, 8,4, S,y triple follows the rules specified by the Spec code. (We do not define these rules
here—wait for the lecture on atomic semantics.) An execution is an execution fragment that
beginsin aninitial state.

The 1 arelabels for the transitions; we often call them actions. When the state machineis
written in Spec, each transition is generated by some atomic command, and we can use some
unambiguous identification of the command for the action. At the moment we are studying
sequential Spec, in which every transition is the invocation of an exported atomic procedure. We
use the name of the procedure, the arguments, and the results as the label.

Figure 1 shows some of the states and transitions of the state machine for the Meror y module
withA = IN 1 .. 4, and Figure 2 does likewisefor the iBCache module with Csi ze = 2. The
arrow for each transition islabeled by its 15, that is, by the procedure name, arguments, and
result.
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(Read(2),8)

Figure 1: Part of the verory state machine

D(Read(Z),a)

Write(4,c)

(Read(1),b)
a b[b

a
a
C

Figure 2: Part of the wBcache state machine
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External behavior

Usually, aclient of amoduleis not interested in all aspects of its execution, but only in some
kind of external behavior. Here, we formalize the external behavior as aset of traces. That is,
from an execution (or execution fragment) of a module, we discard both the states and the
internal actions, and extract the trace. Thisis the sequence of labels 15, for external actions (that
is, invocations of exported routines) that occur in the execution (or fragment). Then the external
behavior of the moduleis the set of traces that are obtained from all of its executions.

It'simportant to realize that in going from the execution to the trace we are discarding a great
deal of information. First, we discard al the states, keeping only the actions or labels. Second,
we discard all the internal actions, keeping only the external ones. Thus the only information we
keep in the trace is the behavior of the state machine at its external interface. Thisis appropriate,
since we want to study state machines that have the same behavior at the externa interface; we
shall see shortly exactly what we main by ‘the same' here. Two machines can have the same
traces even though they have very different state spaces.

In the sequential Spec that we are studying now, a module only makes atransition when an
exported routineis invoked, so al the transitions appear in the trace. Later, however, we will
introduce modules with internal transitions, and then the distinction between the executions and
the external behavior will be important.

For example, the set of traces generated by the Meror y module includes the following trace:
(Reset (v),)
(Read(al), v)
(Wite(a2,v'))
(Read(a2),v')

However, thefollowing traceisnot included if v # v' :
(Reset (Vv))
(Read(al),v')
(Wite(a2,v'))
(Read(a2), v)

should have returned v
should have returned v'

In generdl, atraceisincluded in the external behavior of Menory if every Read(a) or Swap(a,

v) operation returnsthe last value writtentoa by aw it e, Reset Or Swap operation, or returned
by aRead operation; if thereis no such previous operation, then Read( a) or Swap(a, v) returns
an arbitrary value.

Implementsrelation

In order to understand what it means for one state machine to implement another one, itis
helpful to begin by considering what it means for one atomic procedure to implement another.
The meaning of an atomic procedureis arelation between an initial state just before the
procedure starts (sometimes called a ‘ pre-state’) and afinal state just after the procedure has
finished (sometimes called a ‘ post-state’). Thisis often called an ‘input-output relation’. For
example, the relation defined by a square-root procedure is that the post-state is the same as the
pre-state, except that the square of the procedure result is close enough to the argument. This
meaning makes sense for an arbitrary atomic procedure, not just for onein atrace.
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We say that procedure P implements spec Sif the relation defined by P (considered as a set of
ordered pairs of states) is a subset of the relation defined by S This means that P never does
anything that S couldn’t do. However, P doesn’'t have to do everything that S can do. Code for
square root is probably deterministic and always returns the same result for a given argument.
Even though the spec allows several results (al the ones that are within the specified tolerance),
we don’t require code for to be able to produce al of them; instead we are satisfied with one.

Actually thisis not enough. The definition we have given allows P’ s relation to be empty, that is,
it allows P not to terminate. Thisis usually called ‘partia correctness' . In addition, we usually
want to require that P’ s relation be total on the domain of S that is, P must produce some result
whenever Sdoes. The combination of partial correctness and termination is usually called ‘total
correctness'.

If we are only interested in external behavior of a procedure that is part of a stateless module, the
only state we care about is the arguments and results of the procedure. In this case, atransition is
completely described by asingle entry in atrace, such as(Read(al), v).

Now we are ready to consider modules with state. Our ideais to generalize what we did with
pairs of states described by single trace entries to sequences of states described by longer traces.
Suppose that T and Sare any modules that have the same external interface (set of procedures
that are exported and hence may be invoked externally). In this discussion, we will often refer to
Sasthe spec module and T as the code. Then we say that T implements Sif every trace of T is
also atrace of S That is, the set of traces generated by T is a subset of the set of traces generated
by S

This says that any external behavior of the code T must also be an external behavior of the spec
S Another way of looking at thisis that we shouldn’t be ableto tell by looking at the code that
we aren’t looking at the spec, so we have to be able to explain every behavior of T asapossible
behavior of S

The reverse, however, isnot true. We do not insist that the code must exhibit every behavior
allowed by the spec. In the case of the simple memory the spec is completely deterministic, so
the code cannot take advantage of this freedom. In general, however, the spec may allow |ots of
behaviors and the code choose just one. The spec for sorting, for instance, alows any sorted
sequence as the result of Sor t ; there may be many such sequences if the ordering relation is not
total. The code will usually be deterministic and return exactly one of them, so it doesn’t exhibit
all the behavior alowed by the spec.

Safety and liveness

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive
notion of code. In particular, it allows the set of traces generated by T to be empty; in other word,
the code might do nothing at all, or it might do some things and then stop. As we saw, the analog
of thisfor asimple sequentia procedureis non-termination. Usually we want to say that the code
of aprocedure should terminate, and similarly we want to say that the code of a module should
keep doing things. More generally, when we have concurrency we usually want the code to be
fair, that is, to eventually service all its clients, and more generally to eventually make any
transition that continues to be enabled.
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It turns out that any external behavior (that is, any set of traces) can be described asthe
intersection of two sets of traces, one defined by a safety property and the other defined by a
liveness property.t A safety property says that in the trace nothing bad ever happens, or more
precisdly, that no bad transition occursin the trace. It is analogous to partial correctness for a
statel ess procedure; a state machine that never makes a bad transition can define any safety
property. If atrace doesn’t satisfy a safety property, you can always find this out by looking at a
finite prefix of the trace, in particular, at a prefix that includes the first bad transition.

A liveness property says that in the trace something good eventually happens. It is analogous to
termination for a stateless procedure. Y ou can never tell that atrace doesn’t have aliveness
property by looking at afinite prefix, since the good thing might happen later. A liveness
property cannot be defined by a state machine. It isusual to express liveness propertiesin terms
of fairness, that is, in terms of arequirement that if some transition stays enabled continuoudly it
eventually occurs (wesk fairness), or that if some transition stays enabled intermittently it
eventually occurs (strong fairness).

With afew exceptions, we don’t deal with livenessin this course. There are two reasons for this.
First, it isusually not what you want. Instead, you want a result within some time bound, which
is asafety property, or you want aresult with some probability, which is altogether outside the
framework we have set up. Second, liveness proofs are usually hard.

Abstraction functions and simulation

The definition of ‘implements’ asinclusion of external behavior is asound formalization of our
intuition. It is difficult to work with directly, however, since it requires reasoning about infinite
sets of infinite sequences of actions. We would like to have away of proving that T implements
Sthat allows us to deal with one of T'sactions at atime. Our method is based on abstraction
functions.

An abstraction function maps each state of the code T to a state of the spec S For example, each
state of the viBCache module gets mapped to a state of the Menor y module. The abstraction
function explains how to interpret each state of the code as a state of the spec. For example,
Figure 3 depicts part of the abstraction function from wBCache to Merory. Hereisits definition in
Spec, copied from handout 5.

FUNC AF() -> M= RET (\ a | cla =>c(a) [*] ma) )

1 B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Computing 2, 3 (1987), pp 117-126.
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Figure 3: Abstraction function for vecache
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Y ou might think that an abstraction function should map the other way, from states of the spec to
states of the code, explaining how to represent each state of the spec. This doesn’t work,
however, because there is usually more than one way of representing each state of the spec. For
example, in the viBCache code for Menory, if an addressisin the cache, then the value stored for
that address in memory does not matter. There are also choices about which addresses appear in
the cache. Thus, many states of the code can represent the same state of the spec. In other words,
the abstraction function is many-to-one.

An abstraction function F is required to satisfy the following two conditions.
1. If tisany initia state of T, then F(t) isan initial state of S

2. Iftisareachable state of T and (t, Tt t') isastep of T, then thereis a step of Sfrom F(t) to
F(t"), having the same trace.

Condition 2 saysthat T simulates S; every step of T faithfully copiesastep of S Itisstatedina
particularly simple way, forcing the given step of T to simulate asingle step of S. That is enough
for the special case we are considering right now. Later, when we consider concurrent
invocations for modules, we will generalize condition 2 to allow any number of steps of Srather
than just asingle step.

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction
function F, and the solid arrows represent the transitions; if the lower (double€) solid arrow exists
in the code, the upper (single) solid arrow must exist in the spec. The diagram is sometimes
called a“commutative diagram” because if you start at the lower left and follow arrows, you will
end up in the same state regardless of which way you go.

F) ——° pF(t)

A

Tt

S

Hccccccc’

-

Figure 4: Commutative diagram for correctness
An abstraction function isimportant because it can be used to show that one module implements
another:

Theorem 1: If thereis an abstraction function from T to S then T implements S, i.e., every trace
of Tisatraceof S

Note that this theorem applies to both finite and infinite traces.

Proof: (Sketch) Let 3 beany trace of T, and let a be any execution of T that generates trace 3.
Use Conditions 1 and 2 above to construct an execution a' of Swith the sasmetrace. That is, if tis
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theinitial state of a, then let F(t) be theinitial state of a'. For each step of a in turn, use
Condition 2 to add a corresponding step to a'.

More formally, this proof is an induction on the length of the execution. Condition 1 givesthe
basis: any initial state of T mapsto an initial state of S Condition 2 gives the inductive step: if
we have an execution of T of length n that simulates an execution of S, any next step by T
simulates anext step by S, so any execution of T of length n+1 simulates an execution of S

Wewould like to have an inverse of Theorem 1: if every trace of Tisatrace of S then thereisan
abstraction function that showsit. Thisis not true for the simple abstraction functions and
simulations we have defined here. Later on, in handout 8, we will generalizethemto a
simulation method that is strong enough to prove that T implements Swhenever that is true.

Invariants

Aninvariant of amoduleis any property that is true of all reachable states of the module, i.e., all
states that can be reached in executions of the modul e (starting from initial states). Invariants are
important because condition 2 for an abstraction function requires us to show that the code
simulates the spec from every reachable state, and the invariants characterize the reachable
states. It usually isn’t true that the code simulates the spec from every state.

Here are examples of invariants for the HashMenor y and Mgj or i t yRegi st er modules, written in
Spec and copied from handout 5.

FUNC HashMenory. I nv(nb: Int, m HashT, default: V) -> Bool = RET
( nb>0
/\ msize = nb
/\ (ALL a | a.hf IN mdom
I\ (ALL i :INmdom p :INmMi).rng | p.a hf =1i)
I\ (ALL a | {j :INma.hf) | mla.hf)(j).a = a }.size <= 1) )
FUNC Maj orityRegister.Ilnv(m M -> Bool = RET
(ALL p :INmrng, p' :INmrng | p.seqno = p'.seqno ==> p.v = p'.V)
I\ (EXISTS ngj | (ALL i :INnmgj, p :INmrng | n(i).seqno >= p.seqno)))

For example, for the Hashveror y module, the invariant says (among other things) that a pair
containing address a appears only in the appropriate bucket a. hf , and that at most one pair for an
address appears in the bucket for that address.

The usual way to provethat a property P isan invariant is by induction on the length of finite
executions leading to the states in question. That is, we must show the following:

(Basis, length = 0) Pistruein every initial state.
(Inductive step) If (t, Tt t') isatransition and P istrueint, then Pisalso truein t'.

Not al invariants are proved directly by induction, however. It is often better to prove invariants
in groups, starting with the simplest invariants. Then the proofs of the invariantsin the later
groups can assume the invariants in the earlier groups.

Example: We sketch a proof that the property Maj ori t yRegi st er .l nv isin fact an invariant.
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Basis: In any initial state, asingle (arbitrarily chosen) default value d appearsin all the copies,
along with the seqno 0. Thisimmediately implies both parts of the invariant.

Inductive step: Suppose that (t, 1t t') isatransition and Inv istrueint. We consider cases based
on 1t If Ttisan invocation or response, or the body of aRead procedure, then the step does not
affect the truth of Inv. So it remains to consider the casewhere tisawite, Say Wite(v).

In this case, the second part of the invariant for t (i.e., the fact that the highest seqno appearsin
more than half the copies), together with the fact that the w i t e reads a mgjority of the copies,
imply that thew i t e obtains the highest seqno, say i. Then the new seqgno that thewi t e
chooses must be the new highest seqno. Sincethew i t e writesi+1 to amajority of the copies, it
ensures the second part of theinvariant. Also, sinceit associates the samev with the segno i+1
everywhereit writes, it preserves thefirst part of the invariant.

Proofs using abstraction functions

Example: We sketch a proof that the function WBCache. AF given above is an abstraction
function from viBCache to Merror y. In this proof, we get by without any invariants.

For Condition 1, suppose that t is any initial state of viBCache. Then AF(t) is some (memory) state
of Menory. But al memory states are allowablein initial states of Menory. Thus, AF(t) isan initial
state of Menory, as needed. For Condition 2, suppose that t and AF(t) are states of WBCache and
Menor y, respectively, and suppose that (t, 1t t') is a step of WBCache. We consider cases, based on
T

For example, suppose 1tis Read( a) . Then the step of WwBCache may change the cache and
memory by writing a value back to memory. However, these changes don’t change the
corresponding abstract memory. Therefore, the memory correspondence given by AF holds after
the step. It remains to show that both Reads give the same result. This follows because:

TheRead(a) inWBCache returnsthe valuet.c(a) if it isdefined, otherwiset.n( a) .
TheRead(a) in Menory returnsthe value of AF(t).n( a) .

The value of AF(t).n(a) isequal tot.c(a) if it isdefined, otherwiset.n(a). Thisisby the
definition of AF.

For another example, suppose TtisW i t e( a, v) . Then the step of WBCache writes valuev to
location a in the cache. It may also write some other value back to memory. Since writing a
value back does not change the corresponding abstract state, the only change to the abstract state
isthat the value in location a is changed to v. On the other hand, the effect of Wite(a, v) in
Menor y isto change the valuein location a to v. It follows that the memory correspondence,
given by AF, holds after the step.

We leave the other cases, for the other types of operations, to the reader. It follows that AF isan
abstraction function from WBCache to Menor y. Then Theorem 1 implies that WBCache implements
Menory, in the sense of trace set inclusion.

Example: Hereisasimilar analysisfor Maj ori t yRegi st er, using Maj ori t yRegi st er . AF as
the abstraction function.
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FUNC AF() -> V = RET mrng. fmax((\ pl, p2 | pl.seqgno <= p2.seqno)).vVv

Thistime we depend on the invariant Maj or i t yRegi st er. | nv. SUppose Ttis Read( a) . No state
changes occur in either module, so the only thing to show isthat the return values are the samein
both modules. In Myj ori t yRegi st er, the Read collects amajority of values and returns a value
associated with the highest seqno from among that majority. By the invariant that says that the
highest seqno appearsin amajority of the copies, it must be that the Read in fact obtains the
highest segno that is present in the system. That is, the Read in Mpj ori t yRegi st er returnsa
value associated with the highest seqno that appearsin statet.

On the other hand, the Read in Regi st er just returns the value of the single variable x in state s.
Since AF(t) = s, it must be that s.x is avalue associated with the highest seqno in t. But the
unigueness invariant says that there is only one such value, so thisis the same as the value
returned by the Read in Maj ori t yRegi ster.

Now suppose TtisW i t e(v) . Then the key thing to show isthat AF(t) = s. The magjority invariant
impliesthat thew i t e in Maj ori t yRegi st er seesthehighest seqno i and thusi +1 isthe new
highest segno. It writes (i +1, v) toamajority of the copies. On the other hand, thewite in
Regi st er just setsx tov. But clearly v isavalue associated with the largest seqno after the
step, so AF(t') = S asrequired.

It follows that AF is an abstraction function from Maj ori t yRegi st er t0 Regi st er. Then
Theorem 1 impliesthat Maj or i t yRegi st er implements Regi ster .

Handout 6. Abstraction Functions and Invariants 10



