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1.  Course Information 

Staff 

Faculty   

Butler Lampson  

Martin Rinard  

Office Hours 

Messrs. Lampson and Rinard will arrange individual appointments. The TA will hold 
scheduled office hours  at a time to be announced. In addition to 
holding regularly scheduled office hours, the TA will also be available by appointment. 

Lectures and handouts 

Lectures are held on Tuesdays and Thursdays from 1:00 to 2:30PM. 
Messrs. Lampson and Rinard will split the lectures. The tentative schedule is 
at the end of this handout. 

The source material for this course is an extensive set of handouts. There are about 400 pages of 
topic handouts that take the place of a textbook; you will need to study them to do well in the 
course. Since we don’t want to simply repeat the written handouts in class, we will hand out the 
material for each lecture one week in advance. We expect you to read the day’s handouts before 
the class and come prepared to ask questions, discuss the material, or follow extensions of it or 
different ways of approaching the topic. 

Seven research papers supplement the topic handouts. In addition there are 5 problem sets, and 
the project described below. Solutions for each problem set will be available shortly after the due 
date.  

Current handouts will generally be available in lecture. If you miss any in lecture, you can obtain 
them afterwards from the course secretary. She keeps them in a file cabinet outside her office.  
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Problem sets 

There is a problem set approximately once a week for the first half of the course. Problem sets 
are handed out on Wednesdays and are due in class the following Wednesday. They normally 
cover the material discussed in class during the week they are handed out. Delayed submission of 
the solutions will be penalized, and no solutions will be accepted after Thursday 5:00PM. 

Students in the class will be asked to help grade the problem sets. Each week a team of students 
will work with the TA to grade the week’s problems. This takes about 3-4 hours. Each student 
will probably only have to do it once during the term. 

We will try to return the graded problem sets, with solutions, within a week after their due date. 

Policy on collaboration 

We encourage discussion of the issues in the lectures, readings, and problem sets. However, if 
you collaborate on problem sets, you must tell us who your collaborators are. And in any case, 
you must write up all solutions on your own. 

Project 

During the last half of the course there is a project in which students will work in groups of three 
or so to apply the methods of the course to their own research projects. Each group will pick a 
real system, preferably one that some member of the group is actually working on but possibly 
one from a published paper or from someone else’s research, and write:  

A specification for it. 

High-level code that captures the novel or tricky aspects of the actual implementation. 

The abstraction function and key invariants for the correctness of the code. This is not 
optional; if you can’t write these things down, you don’t understand what you are doing. 

Depending on the difficulty of the specification and code, the group may also write a correctness 
proof for the code.  

Projects may range in style from fairly formal, like handout 18 on consensus, in which the ‘real 
system’ is a simple one, to fairly informal (at least by the standards of this course), like the 
section on copying file systems in handout 7. These two handouts, along with the ones on 
naming, sequential transactions, concurrent transactions, and caching, are examples of the 
appropriate size and possible styles of a project. 

The result of the project should be a write-up, in the style of one of these handouts. During the 
last two weeks of the course, each group will give a 25-minute presentation of its results. We 
have allocated four class periods for these presentations, which means that there will be twelve 
or fewer groups. 

The projects will have five milestones. The purpose of these milestones is not to assign grades, 
but to make it possible for the instructors to keep track of how the projects are going and give 
everyone the best possible chance of a successful project 
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1. We will form the groups around March 5, to give most of the people that will drop the course 
a chance to do so.  

2. Each group will write up a 2-3 page project proposal, present it to one of the instructors 
around spring break, and get feedback about how appropriate the project is and suggestions 
on how to carry it out. Any project that seems to be seriously off the rails will have a second 
proposal meeting a week later. 

3. Each group will submit a 5-10 page interim report in the middle of the project period. 

4. Each group will give a presentation to the class during the last two weeks of classes. 

5. Each group will submit a final report, which is due on Friday, May 17, the last day allowed 
by MIT regulations. Of course you are free to submit it early. 

Half the groups will be ‘early’ ones; the other half will be ‘late’ ones that give their presentations 
one week later. The due dates of proposals and interim reports will be spread out over two weeks 
in the same way. See the schedule later in this handout for precise dates. 

Grades 

There are no exams. Grades are based 30% on the problem sets, 50% on the project, and 20% on 
class participation and quality and promptness of grading. 
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Course Schedule 

Date No By HO Topic PS 
out 

PS 
due 

Tues., Feb. 5 1 L  Overview. The Spec language. State machine 
semantics. Examples of specifications and code.   

1  

   1 Course information   
   2 Background   
   3 Introduction to Spec   
   4 Spec reference manual   
   5 Examples of specs and code   

Thurs., Feb. 7 2 L  Spec and code for sequential programs. Correctness 
notions and proofs. Proof methods: abstraction 
functions and invariants. 

  

   6 Abstraction functions   

Tues., Feb. 12 3 L  File systems 1: Disks, simple sequential file system, 
caching, logs for crash recovery.  

2 1 

   7 Disks and file systems   

Thurs., Feb. 14  4 L  File systems 2: Copying file system.   

Tues., Feb. 19    No class, Monday schedule from Presidents’ Day   

Thurs., Feb. 21 5 R  Proof methods: History and prophecy variables; 
abstraction relations.  

3 2 

   8 History variables   

Tues., Feb. 26 6 R  Semantics and proofs: Formal sequential semantics 
of Spec.  

  

   9 Atomic semantics of Spec   

Thurs., Feb. 28 7 L  Performance: How to get it, how to analyze it. 4 3 
   10 Performance   
   11 Paper: Michael Schroeder and Michael Burrows, 

Performance of Firefly RPC, ACM Transactions on 
Computer Systems 8, 1, February 1990, pp 1-17. 

  

Tues., Mar. 5 8 L  Naming: Specs, variations, and examples of 
hierarchical naming. 

Form 
groups 

   12 Naming   
   13 Paper: David Gifford et al, Semantic file systems, 

Proc.13th ACM Symposium on Operating System 
Principles, October 1991, pp 16-25. 

  

Thurs., Mar. 7 9 R  Concurrency 1: Practical concurrency, easy and hard. 
Easy concurrency using locks and condition variables. 
Problems with it: scheduling, deadlock.  

5 4 
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Date No By HO Topic PS 
out 

PS 
due 

   14 Practical concurrency   
   15 Concurrent disks   
   16 Paper: Andrew Birrell, An Introduction to 

Programming with Threads, Digital Systems Research 
Center Report 35, January 1989. 

  

Tues., Mar. 12 10 R  Concurrency 2: Concurrency in Spec: threads and 
non-atomic semantics. Big atomic actions. Safety and 
liveness. Examples of concurrency. 

  

   17 Formal concurrency   

Thurs., Mar. 14 11 R  Concurrency 3: Proving correctness of concurrent 
programs: assertional proofs, model checking 

 5 

Tues., Mar. 19 12 R  Distributed consensus 1. Paxos algorithm for 
asynchronous consensus in the presence of faults. 

  

Thurs., Mar. 21 13 L  Distributed consensus 2. Early 
proposals 

   18 Consensus   

Mar. 25-29  
 

 Spring Break   

Tues., Apr. 2 14 R  Sequential transactions with caching.   
   19 Sequential transactions   

Thurs., Apr. 4 15 R  Concurrent transactions: Specs for serializability. 
Ways to code the specs.  

Late 
proposals 

   20 Concurrent transactions   

Tues., Apr. 9 16 R  Distributed transactions: Commit as a consensus 
problem. Two-phase commit. Optimizations. 

Late 
interim 
reports 

   27 Distributed transactions   

Thurs., Apr. 11 17 R  Introduction to distributed systems: Characteristics 
of distributed systems. Physical, data link, and 
network layers. Design principles. 
Networks 1: Links. Point-to-point and broadcast 
networks. 

  

   21 Distributed systems   
   22 Paper: Michael Schroeder et al, Autonet: A high-

speed, self-configuring local area network, IEEE 
Journal on Selected Areas in Communications 9, 8, 
October 1991, pp 1318-1335. 

  

   23 Networks: Links and switches   

Tues., Apr. 16  
 

 Patriot’s Day, no class.   
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Date No By HO Topic PS 
out 

PS 
due 

Thurs., Apr. 18 18 L  Networks 2: Links cont’d: Ethernet. Token Rings. 
Switches. Coding switches. Routing. Learning 
topologies and establishing routes. 

  

Tues., Apr. 23 19 L  Networks 3: Network objects and remote procedure 
call (RPC). 

Early 
interim 
reports 

   24 Network objects   
   25 Paper: Andrew Birrell et al., Network objects, 

Proc.14th ACM Symposium on Operating Systems 
Principles, Asheville, NC, December 1993. 

  

Thurs., Apr. 25 20 L  Networks 4: Reliable messages. 3-way handshake 
and clock code. TCP as a form of reliable messages. 

Late 
interim 
reports 

   26 Paper: Butler Lampson, Reliable messages and 
connection establishment. In Distributed Systems, ed. 
S. Mullender, Addison-Wesley, 1993, pp 251-281. 

  

Tues., Apr. 30 21 L  Replication and availability: Coding replicated state 
machines using consensus. Applications to replicated 
storage. 

  

   28 Replication   
   29 Paper: Jim Gray and Andreas Reuter, Fault tolerance, 

in Transaction Processing: Concepts and Techniques, 
Morgan Kaufmann, 1993, pp 93-156. 

  

Thurs., May 2 22 R  Caching: Maintaining coherent memory. Broadcast 
(snoopy) and directory protocols. Examples: 
multiprocessors, distributed shared memory, 
distributed file systems. 

  

   30 Concurrent caching   

Tues., May 7 23   Early project presentations   

Thurs., May 9 24   Early project presentations   

Tues., May 14 25   Late project presentations   

Thurs., May 16 26   Late project presentations   

Fri., May 17    Final reports due  

May 20-24     Finals week. There is no final for 6.826.   
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2.  Overview and Background 

This is a course for computer system designers and builders, and for people who want to really 
understand how systems work, especially concurrent, distributed, and fault-tolerant systems.  

The course teaches you  
how to write precise specifications for any kind of computer system,  
what it means for code to satisfy a specification, and  
how to prove that it does.  

It also shows you how to use the same methods less formally, and gives you some suggestions 
for deciding how much formality is appropriate (less formality means less work, and often a 
more understandable spec, but also more chance to overlook an important detail). 

The course also teaches you a lot about the topics in computer systems that we think are the most 
important: persistent storage, concurrency, naming, networks, distributed systems, transactions, 
fault tolerance, and caching. The emphasis is on  

careful specifications of subtle and sometimes complicated things,  
the important ideas behind good code, and  
how to understand what makes them actually work. 

We spend most of our time on specific topics, but we use the general techniques throughout. We 
emphasize the ideas that different kinds of computer system have in common, even when they 
have different names. 

The course uses a formal language called Spec for writing specs and code; you can think of it as 
a very high level programming language. There is a good deal of written introductory material on 
Spec (explanations and finger exercises) as well as a reference manual and a formal semantics. 
We introduce Spec ideas in class as we use them, but we do not devote class time to teaching 
Spec per se; we expect you to learn it on your own from the handouts. The one to concentrate on 
is handout 3, which has an informal introduction to the main features and lots of examples. 
Section 9 of handout 4, the reference manual, should also be useful. The rest of the reference 
manual is for reference, not for learning. Don’t overlook the one page summary at the end of 
handout 3. 

Because we write specs and do proofs, you need to know something about logic. Since many 
people don’t, there is a concise treatment of the logic you will need at the end of this handout. 

This is not a course in computer architecture, networks, operating systems, or databases. We will 
not talk in detail about how to code pipelines, memory interconnects, multiprocessors, routers, 
data link protocols, network management, virtual memory, scheduling, resource allocation, SQL, 
relational integrity, or TP monitors, although we will deal with many of the ideas that underlie 
these mechanisms. 
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Topics 

General 

Specifications as state machines. 
The Spec language for describing state machines (writing specs and code). 
What it means to implement a spec. 
Using abstraction functions and invariants to prove that a program implements a spec. 
What it means to have a crash. 
What every system builder needs to know about performance. 

Specific 

Disks and file systems. 
Practical concurrency using mutexes (locks) and condition variables; deadlock. 
Hard concurrency (without locking): models, specs, proofs, and examples. 
Transactions: simple, cached, concurrent, distributed. 
Naming: principles, specs, and examples. 
Distributed systems: communication, fault-tolerance, and autonomy. 
Networking: links, switches, reliable messages and connections. 
Remote procedure call and network objects. 
Fault-tolerance, availability, consensus and replication. 
Caching and distributed shared memory. 

Previous editions of the course have also covered security (authentication, authorization, 
encryption, trust) and system management, but this year we are omitting these topics in order to 
spend more time on concurrency and semantics and to leave room for project presentations. 

Prerequisites 

There are no formal prerequisites for the course. However, we assume some knowledge both of 
computer systems and of mathematics. If you have taken 6.033 and 6.042, you should be in good 
shape. If you are missing some of this knowledge you can pick it up as we go, but if you are 
missing a lot of it you can expect to have serious trouble. It’s also important to have a certain 
amount of maturity: enough experience with systems and mathematics to feel comfortable with 
the basic notions and to have some reliable intuition. 

If you know the meaning of the following words, you have the necessary background. If a lot of 
them are unfamiliar, this course is probably not for you. 

Systems  

Cache, virtual memory, page table, pipeline 
Process, scheduler, address space, priority 
Thread, mutual exclusion (locking), semaphore, producer-consumer, deadlock 
Transaction, commit, availability, relational data base, query, join 
File system, directory, path name, striping, RAID 
LAN, switch, routing, connection, flow control, congestion 
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Capability, access control list, principal (subject) 

If you have not already studied Lampson’s paper on hints for system design, you should do so as 
background for this course. It is Butler Lampson, Hints for computer system design, Proceedings 
of the Ninth ACM Symposium on Operating Systems Principles, October 1983, pp 33-48. There 
is a pointer to it on the course Web page. 

Programming 

Invariant, precondition, weakest precondition, fixed point 
Procedure, recursion, stack 
Data type, sub-type, type-checking, abstraction, representation 
Object, method, inheritance 
Data structures: list, hash table, binary search, B-tree, graph 

Mathematics 

Function, relation, set, transitive closure 
Logic: proof, induction, de Morgan’s laws, implication, predicate, quantifier 
Probability: independent events, sampling, Poisson distribution 
State machine, context-free grammar 
Computational complexity, unsolvable problem 

If you haven’t been exposed to formal logic, you should study the summary at the end of this 
handout. 

References 

These are places to look when you want more information about some topic covered or alluded 
to in the course, or when you want to follow current research. You might also wish to consult 
Prof. Saltzer’s bibliography for 6.033, which you can find on the course web page. 

Books 

Some of these are fat books better suited for reference than for reading cover to cover, especially 
Cormen, Leiserson, and Rivest, Jain, Mullender, Hennessy and Patterson, and Gray and Reuter. 
But the last two are pretty easy to read in spite of their encyclopedic character. 

Systems programming: Greg Nelson, ed., Systems Programming with Modula-3, Prentice-Hall, 
1991. Describes the language, which has all the useful features of C++ but is much simpler and 
less error-prone, and also shows how to use it for concurrency (a version of chapter 4 is a 
handout in this course), an efficiently customizable I/O streams package, and a window system. 

Performance: Jon Bentley, Writing Efficient Programs, Prentice-Hall, 1982. Short, concrete, 
and practical. Raj Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991. Tells 
you much more than you need to know about this subject, but does have a lot of realistic 
examples. 
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Algorithms and data structures: Robert Sedgwick, Algorithms, Addison-Wesley, 1983. Short, 
and usually tells you what you need to know. Tom Cormen, Charles Leiserson, and Ron Rivest, 
Introduction to Algorithms, McGraw-Hill, 1989. Comprehensive, and sometimes valuable for 
that reason, but usually tells you a lot more than you need to know. 

Distributed algorithms: Nancy Lynch, Distributed Algorithms, Morgan Kaufmann, 1996. The 
bible for distributed algorithms. Comprehensive, but a much more formal treatment than in this 
course. The topic is algorithms, not systems. 

Computer architecture: John Hennessy and David Patterson, Computer Architecture: A 
Quantitative Approach, 2nd edition, Morgan Kaufmann, 1995. The bible for computer 
architecture. The second edition has lots of interesting new material, especially on 
multiprocessor memory systems and interconnection networks. There’s also a good appendix on 
computer arithmetic; it’s useful to know where to find this information, though it has nothing to 
do with this course. 

Transactions, data bases, and fault-tolerance: Jim Gray and Andreas Reuter, Transaction 
Processing: Concepts and Techniques, Morgan Kaufmann, 1993. The bible for transaction 
processing, with much good material on data bases as well; it includes a lot of practical 
information that doesn’t appear elsewhere in the literature. 

Networks: Radia Perlman, Interconnections: Bridges and Routers, Addison-Wesley, 1992. Not 
exactly the bible for networking, but tells you nearly everything you might want to know about 
how packets are actually switched in computer networks. 

Distributed systems: Sape Mullender, ed., Distributed Systems, 2nd ed., Addison-Wesley, 1993. 
A compendium by many authors that covers the field fairly well. Some chapters are much more 
theoretical than this course. Chapters 10 and 11 are handouts in this course. Chapters 1, 2, 8, and 
12 are also recommended. Chapters 16 and 17 are the best you can do to learn about real-time 
computing; unfortunately, that is not saying much. 

User interfaces: Alan Cooper, About Face, IDG Books, 1995. Principles, lots of examples, and 
opinionated advice, much of it good, from the original designer of Visual Basic. 

Journals 

You can find all of these in the LCS reading room. The cryptic strings in brackets are call 
numbers there. You can also find the last few years of the ACM publications in the ACM digital 
library at www.acm.org. 

For the current literature, the best sources are the proceedings of the following conferences. ‘Sig’ 
is short for “Special Interest Group”, a subdivision of the ACM that deals with one field of 
computing. The relevant ones for systems are SigArch for computer architecture, SigPlan for 
programming languages, SigOps for operating systems, SigComm for communications, SigMod 
for data bases, and SigMetrics for performance measurement and analysis. 

Symposium on Operating Systems Principles (SOSP; published as special issues of ACM 
SigOps Operating Systems Review; fall of odd-numbered years) [P4.35.06] 
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Operating Systems Design and Implementation (OSDI; Usenix Association, now published 
as special issues of ACM SigOps Review; fall of even-numbered years, except spring 1999 
instead of fall 1998) [P4.35.U71] 

Architectural Support for Programming Languages and Operating Systems (ASPLOS; 
published as special issues of ACM SigOps Operating Systems Review, SigArch Computer 
Architecture News, or SigPlan Notices; fall of even-numbered years) [P6.29.A7] 

Applications, Technologies, Architecture, and Protocols for Computer Communication, 
(SigComm conference; published as special issues of ACM SigComm Computer 
Communication Review; annual) [P6.24.D31] 

Principles of Distributed Computing (PODC; ACM; annual) [P4.32.D57] 

Very Large Data Bases (VLDB; Morgan Kaufmann; annual) [P4.33.V4] 

International Symposium on Computer Architecture (ISCA; published as special issues of 
ACM SigArch Computer Architecture News; annual) [P6.20.C6] 

Less up to date, but more selective, are the journals. Often papers in these journals are revised 
versions of papers from the conferences listed above. 

ACM Transactions on Computer Systems 

ACM Transactions on Database Systems 

ACM Transactions on Programming Languages and Systems 

There are often good survey articles in the less technical IEEE journals: 

IEEE Computer, Networks, Communication, Software 

The Internet Requests for Comments (RFC’s) can be reached from 

http://www.cis.ohio-state.edu/hypertext/information/rfc.html 
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Rudiments of logic 

Propositional logic 

The basic type is Bool, which contains two elements true and false. Expressions in these 
operators (and the other ones introduced later) are called ‘propositions’. 

Basic operators. These are ∧  (and), ∨  (or), and ~ (not).1 The meaning of these operators can be 
conveniently given by a ‘truth table’ which lists the value of a op b for each possible 
combination of values of a and b (the operators on the right are discussed later) along with some 
popular names for certain expressions and their operands. 

 
  negation conjunction disjunction  equality  implication 
  not and or    implies 
a b ~a a ∧  b a ∨  b  a = b a ≠ b a ⇒ b 

T T F T T  T F T 

T F  F T  F T F 

F T T F T  F T T 

F F  F F  T F T 

name of a  conjunct disjunct    antecedent 
name of b  conjunct disjunct    consequent 

Note: In Spec we write ==> instead of the ⇒ that mathematicians use for implication. Logicians 
write ⊃  for implication, which looks different but is shaped like the > part of ⇒. 

In case you have an expression that you can’t simplify, you can always work out its truth value 
by exhaustively enumerating the cases in truth table style. Since the table has only four rows, 
there are only 16 Boolean operators, one for each possible arrangement of T and F in a column. 
Most of the ones not listed don’t have common names, though ‘not and’ is called ‘nand’ and ‘not 
or’ is called ‘nor’ by logic designers. 

The ∧  and ∨  operators are  
commutative and 
associative and 
distribute over each other.  

That is, they are just like * (times) and + (plus) on integers, except that + doesn’t distribute over *:  
a + (b * c) ≠ (a + b) * (a + c) 

but ∨  does distribute over ∧ :   
a ∨  (b ∧  c) = (a ∨  b) ∧  (a ∨  c) 

An operator that distributes over ∧  is called ‘conjunctive’; one that distributes over ∨  is called 
‘disjunctive’. So both ∧  and ∨  are both conjunctive and disjunctive. This takes some getting used 
to. 

                                                 
1 It’s possible to write all three in terms of the single operator ‘nor’ or ‘nand’, but our goal is clarity, not minimality. 
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The relation between these operators and ~ is given by DeMorgan’s laws (sometimes called the 
“bubble rule” by logic designers), which say that you can push ~ inside ∧  or ∨  by flipping from 
one to the other: 

~ (a ∧  b)  =  ~a ∨  ~b 
~ (a ∨  b)  =  ~a ∧  ~b 

Because Bool is the result type of relations like =, we can write expressions that mix up relations 
with other operators in ways that are impossible for any other type. Notably 

(a = b)  =  ((a ∧  b) ∨  (~a ∧  ~b)) 
Some people feel that the outer = in this expression is somehow different from the inner one, and 
write it ≡. Experience suggests, however, that this is often a harmful distinction to make.  

Implication. We can define an ordering on Bool with false > true, that is, false is greater 
than true. The non-strict version of this ordering is called ‘implication’ and written ⇒ (rather 
than ≥ or >= as we do with other types; logicians write it ⊃ , which also looks like an ordering 
symbol). So (true ⇒ false) = false (read this as: “true is greater than or equal to false” 
is false) but all other combinations are true. The expression a ⇒ b is pronounced “a implies 
b”, or “if a then b”.2 

There are lots of rules for manipulating expressions containing ⇒; the most useful ones are 
given below. If you remember that ⇒ is an ordering you’ll find it easy to remember most of the 
rules, but if you forget the rules or get confused, you can turn the ⇒ into ∨  by the rule 

(a ⇒ b)  =  ~a ∨  b   
and then just use the simpler rules for ∧ , ∨ , and ~. So remember this even if you forget 
everything else. 

The point of implication is that it tells you when one proposition is stronger than another, in the 
sense that if the first one is true, the second is also true (because if both a and a ⇒ b are true, 
then b must be true since it can’t be false).3 So we use implication all the time when reasoning 
from premises to conclusions. Two more ways to pronounce a ⇒ b are “a is stronger than b” 
and “b follows from a”. The second pronunciation suggests that it’s sometimes useful to write 
the operands in the other order, as b ⇐  a, which can also be pronounced “b is weaker than a” or 
“b only if a”; this should be no surprise, since we do it with other orderings. 

Of course, implication has the properties we expect of an ordering: 

Transitive: If a ⇒ b and b ⇒ c then a ⇒ c.4 

                                                 
2 It sometimes seems odd that false implies b regardless of what b is, but the “if ... then” form makes it clearer 
what is going on: if false is true you can conclude anything, but of course it isn’t. A proposition that implies 
false is called ‘inconsistent’ because it implies anything. Obviously it’s bad to think that an inconsistent 
proposition is true. The most likely way to get into this hole is to think that each of a collection of innocent looking 
propositions is true when their conjunction turns out to be inconsistent. 
3 It may also seem odd that false > true rather than the other way around, since true seems better and so 
should be bigger. But in fact if we want to conclude lots of things, being close to false is better because if false 
is true we can conclude anything, but  knowing that true is true doesn’t help at all.  Strong propositions are as 
close to false as possible; this is logical brinkmanship. For example, a ∧  b is closer to false than a (there are 
more values of the variables a and b that make it false), and clearly we can conclude more things from it than from 
a alone. 
4 We can also write this ((a ⇒ b) ∧  (b ⇒ c)) ⇒ (a ⇒ c). 
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Reflexive: a ⇒ a. 

Anti-symmetric: If a ⇒ b and b ⇒ a then a = b.5 

Furthermore, ~ reverses the sense of implication (this is called the ‘contrapositive’): 
(a ⇒ b)  =  (~b ⇒ ~a) 

More generally, you can move a disjunct on the right to a conjunct on the left by negating it.  
Thus 

(a ⇒ b ∨  c)  =  (a ∧  ~b ⇒ c) 

As special cases in addition to the contrapositive we have 
(a ⇒ b)  =  (a ∧  ~b ⇒ false ) =  ~ (a ∧  ~b) ∨  false = ~a ∨  b 
(a ⇒ b)  =  (true   ⇒ ~a ∨  b) =  false      ∨  ~a ∨  b = ~a ∨  b 

since false and true are the identities for ∨  and ∧ . 

We say that an operator op is ‘monotonic’ in an operand if replacing that operand with a stronger 
(or weaker) one makes the result stronger (or weaker). Precisely, “op is monotonic in its first 
operand” means that if a ⇒ b then (a op c) ⇒ (b op c). Both ∧  and ∨  are monotonic; in 
fact, any conjunctive operator is monotonic, because if a ⇒ b then a = (a ∧  b), so a op c = 
(a ∧  b) op c = a op c ∧  b op c ⇒ b op c. 

If you know what a lattice is, you will find it useful to know that the set of propositions forms a 
lattice with ⇒ as its ordering and (remember, think of ⇒ as “greater than or equal”): 

top  = false 
bottom = true 
meet = ∧  least upper bound,      so (a ∧  b) ⇒ a  and  (a ∧  b) ⇒ b 
join = ∨  greatest lower bound, so  a ⇒ (a ∨  b) and  b ⇒ (a ∨  b) 

This suggests two more expressions that are equivalent to a ⇒ b: 

(a ⇒ b) = (a = (a ∧  b)) ‘and’ing a weaker term makes no difference, 
     because a ⇒ b iff a = least upper bound(a, b). 

(a ⇒ b) = (b = (a ∨  b)) ‘or’ing a stronger term makes no difference, 
     because a ⇒ b iff b = greatest lower bound(a, b). 

Predicate logic 

Propositions that have free variables, like x < 3 or x < 3 ⇒ x < 5, demand a little more 
machinery. You can turn such a proposition into one without a free variable by substituting some 
value for the variable. Thus if P(x) is x < 3 then P(5) is 5 < 3 = false. To get rid of the free 
variable without substituting a value for it, you can take the ‘and’ or ‘or’ of the proposition for 
all the possible values of the free variable. These have special names and notation6: 

∀  x | P(x)  =  P(x1) ∧  P(x2) ∧  ... for all x, P(x). In Spec,  
       (ALL x    | P(x)) or ∧  : {x | P(x)} 

                                                 
5 Thus (a = b) = (a ⇒ b ∧  b ⇒ a), which is why a = b is sometimes pronounced “a if and only if b” and 
written “a iff b”. 
6 There is no agreement on what symbol should separate the ∀  x or ∃  x from the P(x). We use ‘|’ here as Spec does, 
but other people use ‘.’ or ‘:’ or just a space, or write (∀  x) and (∃  x). Logicians traditionally write (x) and (∃  x). 
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∃  x | P(x)  =  P(x1) ∨  P(x2) ∨  ... there exists an x such that P(x). In Spec,  
       (EXISTS x | P(x)) or ∨  : {x | P(x)} 

Here the xi range over all the possible values of the free variables.7 The first is called ‘universal 
quantification’; as you can see, it corresponds to conjunction. The second is called ‘existential 
quantification’ and corresponds to disjunction. If you remember this you can easily figure out 
what the quantifiers do with respect to the other operators. 

In particular, DeMorgan’s laws generalize to quantifiers: 
~ (∀  x | P(x))  =  (∃  x | ~P(x)) 
~ (∃  x | P(x))  =  (∀  x | ~P(x)) 

Also, because ∧  and ∨  are conjunctive and therefore monotonic, ∀  and ∃  are conjunctive and 
therefore monotonic. 

It is not true that you can reverse the order of ∀  and ∃ , but it’s sometimes useful to know that 
having ∃  first is stronger: 

∃  y | ∀  x | P(x, y)  ⇒  ∀  x | ∃  y | P(x, y) 

Intuitively this is clear: a y that works for every x can surely do the job for each particular x.  

If we think of P as a relation, the consequent in this formula says that P is total (relates every x to 
some y). It doesn’t tell us anything about how to find a y that is related to x. As computer 
scientists, we like to be able to compute things, so we prefer to have a function that computes y, 
or the set of y’s, from x. This is called a ‘Skolem function’; in Spec you write P.func (or P.setF 
for the set). P.func is total if P is total. Or, to turn this around, if we have a total function f such 
that ∀  x | P(x, f(x)), then certainly ∀  x | ∃   y | P(x, y); in fact, y = f(x) will do. 
Amazing. 

                                                 
7 In general this might not be a countable set, so the conjunction and disjunction are written in a somewhat 
misleading way, but this complication won’t make any difference to us. 
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Summary of logic 

The ∧  and ∨  operators are commutative and associative and distribute over each other.  

DeMorgan’s laws: ~ (a ∧  b)  =  ~a ∨  ~b 
 ~ (a ∨  b)  =  ~a ∧  ~b 

Implication: (a ⇒ b)   =  ~a ∨  b 

Implication is the ordering in a lattice (a partially ordered set in which every subset has a least 
upper and a greatest lower bound) with 

 top  = false so false ⇒ true 
 bottom = true 
 meet = ∧  least upper bound,      so (a ∧  b) ⇒ a  
 join = ∨  greatest lower bound, so  a ⇒ (a ∨  b) 

For all x, P(x):  
 ∀  x | P(x)  =  P(x1) ∧  P(x2) ∧  ... 
There exists an x such that P(x): 
 ∃  x | P(x)  =  P(x1) ∨  P(x2) ∨  ...  
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3.  Introduction to Spec 

This handout explains what the Spec language is for, how to use it effectively, and how it differs 
from a programming language like C, Pascal, Clu, Java, or Scheme. Spec is very different from 
these languages, but it is also much simpler. Its meaning is clearer and Spec programs are more 
succinct and less burdened with trivial details. The handout also introduces the main constructs 
that are likely to be unfamiliar to a programmer. You will probably find it worthwhile to read it 
over more than once, until those constructs are familiar.  Don’t miss the one-page summary of 
spec at the end. The handout also has an index. 

 

Spec is a language for writing precise descriptions of digital systems, both sequential and 
concurrent. In Spec you can write something that differs from practical code (for instance, code 
written in C) only in minor details of syntax. This sort of thing is usually called a program. Or 
you can write a very high level description of the behavior of a system, usually called a 
specification. A good specification is almost always quite different from a good program. You 
can use Spec to write either one, but not the same style of Spec. The flexibility of the language 
means that you need to know the purpose of your Spec in order to write it well.  

Most people know a lot more about writing programs than about writing specs, so this 
introduction emphasizes how Spec differs from a programming language and how to use it to 
write good specs. It does not attempt to be either complete or precise, but other handouts fill 
these needs. The Spec Reference Manual (handout 4) describes the language completely; it gives 
the syntax of Spec precisely and the semantics informally. Atomic Semantics of Spec (handout 9) 
describes precisely the meaning of an atomic command; here ‘precisely’ means that you should 
be able to get an unambiguous answer to any question. The section “Non-Atomic Semantics of 
Spec” in handout 17 on formal concurrency describes the meaning of a non-atomic command.  

Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s 
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended 
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct. 
1989, pp 517-561). The notation for expressions is derived from mathematics. 

This handout starts with a discussion of specifications and how to write them, with many small 
examples of Spec. Then there is an outline of the Spec language, followed by three extended 
examples of specs and code. At the end are two handy tear-out one-page summaries, one of the 
language and one of the official POCS strategy for writing specs and code. 
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What is a specification for? 

The purpose of a specification is to communicate precisely all the essential facts about the 
behavior of a system. The important words in this sentence are: 

communicate The spec should tell both the client and the implementer what each needs 
to know. 

precisely We should be able to prove theorems or compile machine instructions 
based on the spec. 

essential Unnecessary requirements in the spec may confuse the client or make it 
more expensive to implement the system. 

behavior We need to know exactly what we mean by the behavior of the system. 

Communication 

Spec mediates communication between the client of the system and its implementer. One way to 
view the spec is as a contract between these parties: 

The client agrees to depend only on the system behavior expressed in the spec; in return it 
only has to read the spec, and it can count on the implementer to provide a system that 
actually does behave as the spec says it should. 

The implementer agrees to provide a system that behaves according to the spec; in return it is 
free to arrange the internals of the system however it likes, and it does not have to deliver 
anything not laid down in the spec. 

Usually the implementer of a spec is a programmer, and the client is another programmer. 
Usually the implementer of a program is a compiler or a computer, and the client is a 
programmer. 

Usually the system that the implementer provides is called an implementation, but in this course 
we will call it code for short. 

Behavior 

What do we mean by behavior? In real life a spec defines not only the functional behavior of the 
system, but also its performance, cost, reliability, availability, size, weight, etc. In this course we 
will deal with these matters informally if at all. The Spec language doesn’t help much with them. 

Spec is concerned only with the possible state transitions of the system, on the theory that the 
possible state transitions tell the complete story of the functional behavior of a digital system. So 
we make the following definitions: 

A state is the values of a set of names (for instance, x=3, color=red). 
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A history is a sequence of states such that each pair of adjacent states is a transition of the 
system (for instance, x=1; x=2; x=5 is the history if the initial state is x=1 and the 
transitions are “if x = 1 then x := x + 1” and “if x = 2 then x := 2 * x + 1”).  

A behavior is a set of histories (a non-deterministic system can have more than one history).  

How can we specify a behavior? 

One way to do this is to just write down all the histories in the behavior. For example, if the state 
just consists of a single integer, we might write 

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
 1  2  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  
... 
 1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  1  2  
.... 
 1  2  3  4  5  1  2  3  1  2  3  4  5  6  7  8  9 10  

The example reveals two problems with this approach: 

The sequences are long, and there are a lot of them, so it takes a lot of space to write them 
down. In fact, in most cases of interest the sequences are infinite, so we can’t actually write 
them down. 

It isn’t too clear from looking at such a set of sequences what is really going on. 

Another description of this set of sequences from which these examples are drawn is “18 
integers, each one either 1 or one more than the preceding one.” This is concise and 
understandable, but it is not formal enough either for mathematical reasoning or for directions to 
a computer. 

Precise 

In Spec the set of sequences can be described in many ways, for example, by the expression 

{s: SEQ Int |    s.size = 18  
             /\ (ALL i: Int | 0 <= i /\ i < s.size ==>   
                              s(i) = 1 \/ (i > 0 /\ s(i) = s(i-1) + 1)) } 

Here the expression in {...} is very close to the usual mathematical notation for defining a set. 
Read it as “The set of all s which are sequences of integers such that s.size = 18 and ...”. Spec 
sequences are indexed from 0. The (ALL ...) is a universally quantified predicate, and ==> 
stands for implication, since Spec uses the more familiar => for ‘then’ in a guarded command. 
Throughout Spec the ‘|’ symbol separates a declaration of some new names and their types from 
the scope in which they are meaningful.  

Alternatively, here is a state machine that generates the sequences we want as the successive 
values of the variable i. We specify the transitions of the machine by starting with primitive 
assignment commands and putting them together with a few kinds of compound commands. 
Each command specifies a set of possible transitions. 
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 VAR i, j | 
<< i := 1; j := 1 >> ; 
DO << j < 18 => BEGIN i := 1 [] i := i + 1 END; j := j + 1 >> OD 

Here there is a good deal of new notation, in addition to the familiar semicolons, assignments, 
and plus signs. 

VAR i, j | introduces the local variables i and j with arbitrary values. Because ; binds 
more tightly than |, the scope of the variables is the rest of the example. 

The << ... >> brackets delimit the atomic actions or transitions of the state machine. All 
the changes inside these brackets happen as one transition of the state machine.  

j < 18 => ... is a transition that can only happen when j < 18. Read it as “if j < 18 
then  ...”. The j < 18 is called a guard. If the guard is false, we say that the entire 
command fails. 

i := 1 [] i := i + 1 is a non-deterministic transition which can either set i to 1 or 
increment it. Read [] as ‘or’. 

The BEGIN ... END brackets are just brackets for commands, like { ... } in C. They are there 
because => binds more tightly than the [] operator inside the brackets; without them the 
meaning would be “either set i to 1 if j < 18 or increment i and j unconditionally”. 

Finally, the DO ... OD brackets mean: repeat the ... transition as long as possible. 
Eventually j becomes 18 and the guard becomes false, so the command inside the DO ... 
OD fails and can no longer happen.  

The expression approach is better when it works naturally, as this example suggests, so Spec has 
lots of facilities for describing values: sequences, sets, and functions as well as integers and 
booleans. Usually, however, the sequences we want are too complicated to be conveniently 
described by an expression; a state machine can describe them much more easily. 

State machines can be written in many different ways. When each transition involves only 
simple expressions and changes only a single integer or boolean state variable, we think of the 
state machine as a program, since we can easily make a computer exhibit this behavior. When 
there are transitions that change many variables, non-deterministic transitions, big values like 
sequences or functions, or expressions with quantifiers, we think of the state machine as a spec, 
since it may be much easier to understand and reason about it, but difficult to make a computer 
exhibit this behavior. In other words, large atomic actions, non-determinism, and expressions 
that compute sequences or functions are hard to code. It may take a good deal of ingenuity to 
find code that has the same behavior but uses only the small, deterministic atomic actions and 
simple expressions that are easy for the computer.  

Essential 

The hardest thing for most people to learn about writing specs is that a spec is not a program. A 
spec defines the behavior of a system, but unlike a program it need not, and usually should not, 
give any practical method for producing this behavior. Furthermore, it should pin down the 
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behavior of the system only enough to meet the client’s needs. Details in the spec that the client 
doesn’t need can only make trouble for the implementer. 

The example we just saw is too artificial to illustrate this point. To learn more about the 
difference between a spec and code consider the following: 

CONST eps := 10**-8 

APROC SquareRoot0(x: Real) -> Real =  
<< VAR y : Real | Abs(x - y*y) < eps => RET y >> 

(Spec as described in the reference manual doesn’t have a Real data type, but we’ll add it for the 
purpose of this example.)  

The combination of VAR and => is a very common Spec idiom; read it as “choose a y such that 
Abs(x - y*y) < eps and do RET y”. Why is this the meaning? The VAR makes a choice of any 
Real as the value of y, but the entire transition on the second line cannot occur unless the guard 
is true. The result is that the choice is restricted to a value that satisfies the guard. 

What can we learn from this example? First, the result of SquareRoot0(x) is not completely 
determined by the value of x; any result whose square is within eps of x is possible. This is why 
SquareRoot0 is written as a procedure rather than a function; the result of a function has to be 
determined by the arguments and the current state, so that the value of an expression like 
f(x) = f(x) will be true. In other words, SquareRoot0 is non-deterministic. 

Why did we write it that way? First of all, there might not be any Real (that is, any floating-point 
number of the kind used to represent Real) whose square exactly equals x.1 Second, we may not 
want to pay for code that gives the closest possible answer. Instead, we may settle for a less 
accurate answer in the hope of getting the answer faster. 

You have to make sure you know what you are doing, though. This spec allows a negative result, 
which is perhaps not what we really wanted. We could have written (highlighting changes with 
boxes): 

APROC SquareRoot1(x: Real) -> Real =  
<< VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y >> 

to rule that out. Also, the spec produces no result if x < 0, which means that SquareRoot1(-1) 
will fail (see the section on commands for a discussion of failure). We might prefer a total 
function that raises an exception: 

APROC SquareRoot2(x: Real) -> Real RAISES {undefined} =  
<<     x >= 0 => VAR y : Real | y >= 0 /\ Abs(x - y*y) < eps => RET y  
  [*]  RAISE undefined >> 

The [*] is ‘else’; it does its second operand iff the first one fails. Exceptions in Spec are much 
like exceptions in CLU. An exception is contagious: once started by a RAISE it causes any 

                                                 
1 We could accommodate this fact of life by specifying the closest floating-point number. This would still be non-
deterministic in the case that two such numbers are equally close, so if we wanted a deterministic spec we would 
have to give a rule for choosing one of them, for instance, the smaller. 
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containing expression or command to yield the same exception, until it runs into an exception 
handler (not shown here). The RAISES clause of a routine declaration must list all the exceptions 
that the procedure body can generate, either by RAISES or by invoking another routine. 

Code for this spec would look quite different from the spec itself. Instead of the existential 
quantifier implied by the VAR y, it would have an algorithm for finding y, for instance, Newton’s 
method. In the algorithm you would only see operations that have obvious codes in terms of the 
load, store, arithmetic, and test instructions of a computer. Probably the code would be 
deterministic. 

Another way to write these specs is as functions that return the set of possible answers. Thus 

FUNC SquareRoots1(x: Real) -> SET Real =  
RET {y : Real | y >= 0 /\ Abs(x - y*y) < eps} 

Note that the form inside the {...} set constructor is the same as the guard on the RET. To get a 
single result you can use the set’s choose method: SquareRoots1(2).choose.2 

In the next section we give an outline of the Spec language. Following that are three extended 
examples of specs and code for fairly realistic systems. At the end is a one-page summary of the 
language. 

An outline of the Spec language 

The Spec language has two main parts:  

•  An expression describes how to compute a result (a value or an exception) as a function of 
other values: either literal constants or the current values of state variables. 

•  A command describes possible transitions of the state variables. Another way of saying this 
is that a command is a relation on states: it allows a transition from s1 to s2 iff it relates s1 to 
s2. 

Both are based on the state, which in Spec is a mapping from names to values. The names are 
called state variables or simply variables: in the sequence example above they are i and j.  
Actually a command relates states to outcomes; an outcome is either a state (a normal outcome) 
or a state together with an exception (an exceptional outcome). 

There are two kinds of commands: 

•  An atomic command describes a set of possible transitions, or equivalently, a set of pairs of 
states, or a relation between states. For instance, the command << i := i + 1 >> describes 
the transitions i=1→i=2, i=2→i=3, etc. (Actually, many transitions are summarized by 
i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and  (i=1, j=15)→(i=2, j=15)). If a 
command allows more than one transition from a given state we say it is non-deterministic. 

                                                 
2 r := SquareRoots1(x).choose (using the function) is almost the same as r := SquareRoot1(x) (using the 
procedure). The difference is that because choose is a function it always returns the same element (even though we 
don’t know in advance which one) when given the same set, and hence when SquareRoots1 is given the same 
argument. The procedure, on the other hand, is non-deterministic and can return different values on successive calls. 
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For instance, on page 3 the command BEGIN i := 1 [] i := i + 1 END allows the 
transitions i=2→i=1 and i=2→i=3. 

•  A non-atomic command describes a set of sequences of states (by contrast with the set of 
pairs for an atomic command). More on this below. 

A sequential program, in which we are only interested in the initial and final states, can be 
described by an atomic command.  

The meaning of an expression, which is a function from states to values (or exceptions), is much 
simpler than the meaning of an atomic command, which is a relation between states, for two 
reasons:  

•  The expression yields a single value rather than an entire state. 

•  The expression yields at most one value, whereas a non-deterministic command can yield 
many final states. 

A atomic command is still simple, much simpler than a non-atomic command, because: 

•  Taken in isolation, the meaning of a non-atomic command is a relation between an initial 
state and a history. Again, many histories can stem from a single initial state. 

•  The meaning of the composition of two non-atomic commands is not any simple 
combination of their relations, such as the union, because the commands can interact if they 
share any variables that change. 

These considerations lead us to describe the meaning of a non-atomic command by breaking it 
down into its atomic subcommands and connecting these up with a new state variable called a 
program counter. The details are somewhat complicated; they are sketched in the discussion of 
atomicity below, and described in handout 17 on formal concurrency. 

The moral of all this is that you should use the simpler parts of the language as much as possible: 
expressions rather than atomic commands, and atomic commands rather than non-atomic ones. 
To encourage this style, Spec has a lot of syntax and built-in types and functions that make it 
easy to write expressions clearly and concisely. You can write many things in a single Spec 
expression that would require a number of C statements, or even a loop. Of course, code with a 
lot of concurrency will necessarily have more non-atomic commands, but this complication 
should be put off as long as possible. 

Organizing the program 

In addition to the expressions and commands that are the core of the language, Spec has four 
other mechanisms that are useful for organizing your program and making it easier to 
understand. 

•  A routine is a named computation with parameters, in other words, an abstraction of the 
computation. Parameters are passed by value. There are four kinds of routine:  

A function (defined with FUNC) is an abstraction of an expression. 
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An atomic procedure (defined with APROC) is an abstraction of an atomic command. 

A general procedure (defined with PROC) is an abstraction of a non-atomic command. 

A thread (defined with THREAD) is the way to introduce concurrency. 

•  A type is a highly stylized assertion about the set of values that a name or expression can 
assume. A type is also a convenient way to group and name a collection of routines, called its 
methods, that operate on values in that set.  

•  An exception is a way to report an unusual outcome. 

•  A module is a way to structure the name space into a two-level hierarchy. An identifier i 
declared in a module m has the name m.i throughout the program. A class is a module that 
can be instantiated many times to create many objects. 

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a 
set of modules each of which declares some variables, routines, types, and exceptions. 

The next two sections describe things about Spec’s expressions and commands that may be new 
to you. It doesn’t answer every question about Spec; for those answers, read the reference 
manual and the handouts on Spec semantics. There is a one-page summary at the end of this 
handout. 

Expressions, types, and functions 

Expressions are for computing functions of the state. A Spec expression is a constant, a variable, 
or an invocation of a function on an argument that is some sub-expression. The values of these 
expressions are the constant, the current value of the variable, or the value of the function at the 
value of the argument. There are no side-effects; those are the province of commands. There is 
quite a bit of syntactic sugar for function invocations. An expression may be undefined in a state; 
if a simple command evaluates an undefined expression, the command fails (see below). 

A Spec type defines two things: 

A set of values; we say that a value has the type if it’s in the set. The sets are not disjoint. 

A set of functions called the methods of the type. There is convenient syntax v.m for 
invoking method m on a value v of the type. A method m of type T is lifted to functions U->T, 
sets of T’s, and relations from U to T in the obvious way, unless overridden by a different m in 
the definition of the higher type. 

Spec is strongly typed. This means that you are supposed to declare the types of your variables, 
just as you do in Pascal or CLU. In return the language defines a type for every expression3 and 
ensures that the value of the expression always has that type. In particular, the value of a variable 
always has the declared type. You should think of a type declaration as a stylized comment that 
has a precise meaning and could be checked mechanically.  

                                                 
3 Note that a value may have many types, but a variable or an expression has exactly one type: for a variable, it’s the 
declared type, and for a complex expression it’s the result type of the top-level function in the expression. 
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If Foo is a type, you can omit it in a declaration of the identifiers foo, foo1, foo' etc. Thus  
VAR int1, bool2, char'' | ... 

is short for  
VAR int1: Int, bool2: Bool, char'': Char | ... 

Spec has the usual types: Int, Nat (non-negative Int), Bool, functions, sets, records, tuples, and 
variable-length arrays called sequences. A sequence is a function whose domain is {0, 1, ..., 
n-1} for some n. In addition to the usual functions like "+" and "\/", Spec also has some less 
usual operations on these types, which are valuable when you want to suppress code detail: 
constructors and combinations. 

You can make a type with fewer values using SUCHTHAT. For example,  
TYPE T = Int SUCHTHAT (\ i: Int | 0 <= i /\ i <= 4)  

has the value set {0, 1, 2, 3, 4}. Here the (\ ...) is a lambda expression (with \ for λ) that 
defines a function from Int to Bool, and a value has type T if it’s an Int and the function maps it 
to true. 

Section 5 of the reference manual describes expressions and lists all the built-in operators. You 
should read the list, which also gives their precedence and has pointers to explanations of their 
meaning. Section 4 describes the types. Section 9 defines the built-in methods for sequences, 
sets, and functions; you should read it over so that you know the vocabulary. 

Constructors 

Constructors for functions, sets, and sequences make it easy to toss large values around. For 
instance, you can describe a database as a function db from names to data records with two 
fields: 

TYPE DB = (String -> Entry) 
TYPE Entry = [salary: Int, birthdate: Int] 
VAR db := DB{} 

Here db is initialized using a function constructor whose value is a function undefined 
everywhere. The type can be omitted in a variable declaration when the variable is initialized; it 
is taken to be the type of the initializing expression. The type can also be omitted when it is the 
upper case version of the variable name, DB in this example.  

Now you can make an entry with 
db := db{ "Smith" -> Entry{salary := 23000, birthdate := 1955} } 

using another function constructor. The value of the constructor is a function that is the same as 
db except at the argument "Smith", where it has the value Entry{...}, which is a record 
constructor. The assignment could also be written 

db("Smith") := Entry{salary := 23000, birthdate := 1955} 

which changes the value of the db function at "Smith" without changing it anywhere else. This 
is actually a shorthand for the previous assignment. You can omit the field names if you like, so 
that 

db("Smith") := Entry{23000, 1955} 

has the same meaning as the previous assignment. Obviously this shorthand is less readable and 
more error-prone, so use it with discretion. Another way to write this assignment is 

db("Smith").salary := 23000; db("Smith").birthdate := 1955 
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The set of names in the database can be expressed by a set constructor. It is just 
{n: String | db!n}, 

in other words, the set of all the strings for which the db function is defined (‘!’ is the ‘is-
defined’ operator; that is, f!x is true iff f is defined at x). Read this “the set of strings n such that 
db!n”. You can also write it as db.dom, the domain of db; section 9 of the reference manual 
defines lots of useful built in methods for functions, sets, and sequences. It’s important to realize 
that you can freely use large (possibly infinite) values such as the db function. You are writing a 
spec, and you don’t need to worry about whether the compiler is clever enough to turn an 
expensive-looking manipulation of a large object into a cheap incremental update. That’s the 
implementer’s problem (so you may have to worry about whether she is clever enough). 

If we wanted the set of lengths of the names, we would write 
{n: String | db!n | n.size} 

This three part set constructor contains i if and only if there exists an n such that db!n and 
i = n.size. So {n: String | db!n} is short for {n: String | db!n | n}. You can 
introduce more than one name, in which case the third part defaults to the last name. For 
example, if we represent a directed graph by a function on pairs of nodes that returns true when 
there’s an edge from the first to the second, then 

{n1: Node, n2: Node | graph(n1, n2) | n2} 

is the set of nodes that are the target of an edge, and the “| n2” could be omitted. This is just the 
range graph.rng of the relation graph on nodes. 

Following standard mathematical notation, you can also write 
{f :IN openFiles | f.modified} 

to get the set of all open, modified files. This is equivalent to 
{f: File | f IN openFiles /\ f.modified} 

because if s is a SET T, then IN s is a type whose values are the T’s in s; in fact, it’s the type 
T SUCHTHAT (\ t | t IN s). This form also works for sequences, where the second operand 
of :IN provides the ordering. So if s is a sequence of integers, {x :IN s | x > 0} is the 
positive ones, {x :IN s | x > 0 | x * x} is the squares of the positive ones, and {x :IN s 
| | x * x} is the squares of all the integers, because an omitted predicate defaults to true.4  

To get sequences that are more complicated you can use sequence generators with BY and WHILE.  
{i := 1 BY i + 1 WHILE i <= 5 | true | i} 

is {1, 2, 3, 4, 5}; the second and third parts could be omitted. This is just like the “for” 
construction in C. An omitted WHILE defaults to true, and an omitted := defaults to an arbitrary 
choice for the initial value. If you write several generators, each variable gets a new value for 
each value produced, but the second and later variables are initialized first. So to get the sums of 
successive pairs of elements of s, write 

{x := s BY x.tail WHILE x.size > 1 | | x(0) + x(1)} 

To get the sequence of partial sums of s, write (eliding | | sum at the end) 
{x :IN s, sum := 0 BY sum + x} 

Taking last of this would give the sum of the elements of s. To get a sequence whose elements 
are reversed from those of s, write 

                                                 
4 In the sequence form, IN s is not a set type but a special construct; treating it as a set type would throw away the 
essential ordering information. 
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{x :IN s, rev := {} BY {x} + rev}.last 

To get the sequence {e, f(e), f2(e), ..., fn(e)}, write 
{i :IN 1 .. n, iter := e BY f(iter)} 

This uses the .. operator; i .. j is the sequence {i, i+1, ..., j-1, j}. It’s the empty 
sequence if i > j. 

Combinations 

A combination is a way to combine the elements of a sequence or set into a single value using an 
infix operator, which must be associative, must have an identity, and must be commutative if it is 
applied to a set. You write “operator : sequence or set”. Thus  

+ : (SEQ String){"He", "l", "lo"} = "He" + "l" + "lo" = "Hello" 

because + on sequences is concatenation, and  
+ : {i :IN 1 .. 4 | | i**2} = 1 + 4 + 9 + 16 = 30 

Existential and universal quantifiers make it easy to describe properties without explaining how 
to test for them in a practical way. For instance, a predicate that is true iff the sequence s is 
sorted is 

(ALL i :IN 1 .. s.size-1   | s(i-1) <= s(i)) 

This is a common idiom; read it as 
“for all i in 1 .. s.size-1, s(i-1) <= s(i)”.  

This could also be written 
(ALL i :IN (s.dom - {0}) | s(i-1) <= s(i)) 

since s.dom is the domain of the function s, which is the non-negative integers < s.size. Or it 
could be written 

(ALL i :IN s.dom | i > 0 ==> s(i-1) <= s(i)) 

Because a universal quantification is just the conjunction of its predicate for all the values of the 
bound variables, it is simply a combination using /\ as the operator: 

(ALL    i | Predicate(i)) = /\ : {i | Predicate(i)} 

Similarly, an existential quantification is just a similar disjunction, hence a combination using \/ 
as the operator: 

(EXISTS i | Predicate(i)) = \/ : {i | Predicate(i)} 

Spec has the redundant ALL and EXISTS notations because they are familiar. 

If you want to get your hands on a value that satisfies an existential quantifier, you can construct 
the set of such values and use the choose method to pick out one of them:  

{i | Predicate(i)}.choose 

This is deterministic: choose always returns the same value given the same set (a necessary 
property for it to be a function). It is undefined if the set is empty, which is the case in the 
example if no i satisfies Predicate. 

The VAR command described in the next section on commands is another form of existential 
quantification that lets you get your hands on the value, but it is non-deterministic. 

Methods 

Methods are a convenient way of packaging up some functions with a type so that the functions 
can be applied to values of that type concisely and without mentioning the type itself. Look at the 
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definitions in section 9 of the Spec Reference Manual, which give methods for the built-in types 
SEQ T, SET T, and T->U. If s is a SEQ T, s.head is Sequence[T].Head(s), which is just s(0) 
(which is undefined if s is empty). You can see that it’s shorter to write s.head.5 

You can define your own methods by using WITH. For instance, consider 
TYPE Complex = [re: Real, im: Real] WITH {"+":=Add, mag:=Mag} 

Add and Mag are ordinary Spec functions that you must define, but you can now invoke them on a 
c which is Complex by writing c + c' and c.mag, which mean Add(c, c') and Mag(c). You 
can use existing operator symbols or make up your own; see section 3 of the reference manual 
for lexical rules. You can also write Complex."+" and Complex.mag to denote the functions Add 
and Mag; this may be convenient if Complex was declared in a different module. Using Add as a 
method does not make it private, hidden, static, local, or anything funny like that. 

When you nest WITH the methods pile up in the obvious way. Thus 
TYPE MoreComplex = Complex WITH {"-":=Sub, mag:=Mag2} 

has an additional method "-", the same "+" as Complex, and a different mag. Many people call 
this ‘inheritance’ and ‘overriding’. 

Functions 

A function is a set of ordered pairs; the first element of each pair comes from the functions 
domain, and the second from its range. A function produces at most one value for an argument; 
that is, two pairs can’t have the same first element. A function may be partial, that is, undefined 
at some elements of its domain. The expression f!x is true if f is defined at x, false otherwise. 
Like everything (except types), functions are ordinary values in Spec. 

Given a function, you can use a function constructor to make another one that is the same except 
at a particular argument, as in the DB example above. Another example is f{x -> 0}, which is 
the same as f except that it is 0 at x. If you have never seen a construction like this one, think 
about it for a minute. Suppose you had to implement it. If f is represented as a table of 
(argument, result) pairs, the code will be easy. If f is represented by code that computes the 
result, the code for the constructor is less obvious, but you can make a new piece of code that 
says 

(\ y: Int | ( (y = x) => 0 [*] f(y) )) 

Here ‘\’ is ‘lambda’, and the subexpression ( (y = x) => 0 [*] f(y) ) is a conditional, 
modeled on the conditional commands we saw in the first section; its value is 0 if y = x and 
f(y) otherwise, so we have changed f just at 0, as desired. If the else clause [*] f(y) is 
omitted, the condition is undefined if y # x. Of course in a running program you probably 
wouldn’t want to construct new functions very often, so a piece of Spec that is intended to be 
close to practical code must use function constructors carefully. 

Functions can return functions as results. Thus T->U->V is the type of a function that takes a T 
and returns a function of type U->V, which in turn takes a U and returns a V. If f has this type, 
then f(t) has type U->V, and f(t)(u) has type V. Compare this with (T, U)->V, the type of a 
function which takes a T and a U and returns a V. If g has this type, g(t) doesn’t type-check, and 
g(t, u) has type V. Obviously f and g are closely related, but they are not the same. 

                                                 
5 Of course, s(0) is shorter still, but that’s an accident; there is no similar alternative for s.tail. 
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You can define your own functions either by lambda expressions like the one above, or more 
generally by function declarations like this one 

FUNC NewF(y: Int) -> Int = RET ( (y = x) => 0 [*] f(y) ) 

The value of this NewF is the same as the value of the lambda expression. To avoid some 
redundancy in the language, the meaning of the function is defined by a command in which RET 
sub-commands specify the value of the function. The command might be syntactically non-
deterministic (for instance, it might contain VAR or []), but it must specify at most one result 
value for any argument value; if it specifies no result values for an argument or more than one 
value, the function is undefined there. If you need a full-blown command in a function 
constructor, you can write it with LAMBDA instead of \: 

(LAMBDA (y: Int) -> Int = RET ( (y = x) => 0 [*] f(y) )) 

You can compose two functions with the * operator, writing f * g. This means to apply f first 
and then g, so you read it “f then g”. It is often useful when f is a sequence (remember that a SEQ 
T is a function from {0, 1, ..., size-1} to T), since the result is a sequence with every 
element of f mapped by g. This is Lisp’s or Scheme’s “map”. So: 

(0 .. 4) * {\ i: Int | i*i} = (SEQ Int){0, 1, 4, 9, 16} 

since 0 .. 4 = {0, 1, 2, 3, 4} because Int has a method .. with the obvious meaning: 
i .. j =  {i, i+1, ..., j-1, j}. In the section on constructors we saw another way to 
write  

(0 .. 4) * {\ i: Int | i*i},  

as  
{i :IN 0 .. 4 | | i*i}.  

This is more convenient when the mapping function is defined by an expression, as it is here, but 
it’s less convenient if the mapping function already has a name. Then it’s shorter and clearer to 
write 

(0 .. 4) * factorial 

rather than 
{i :IN 0 .. 4 | | factorial(i)}. 

A function f has methods f.dom and f.rng that yield its domain and range sets, f.inv that 
yields its inverse (which is undefined at y if f maps zero or more than one argument to y), and 
f.rel that turns it into a relation (see below). f.restrict(s) is the same as f on elements of s 
and undefined elsewhere. The overlay operator combines two functions, giving preference to the 
second: (f1 + f2)(x) is f2(x) if that is defined and f1(x) otherwise. So f{3 -> 24} = f + 
{3 -> 24}. 

If type U has method m, then the function type V = T->U has a “lifted” method m that composes 
U.m with v, unless V already has a m method. V. m is defined by  

(\ v | (\ t | v(t).m)) 

so that v.m = v * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a 
second argument of type W, then V.m takes a second argument of type VV = T->W and is defined 
pairwise on the intersection of the domains, so if Q = SEQ Int, Q{1, 2, 3} + Q{10, 20} = 
Q{11, 22}. 
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Relations 

A relation r is a generalization of a function: an arbitrary set of ordered pairs, defined by a total 
function from pairs to Bool. Thus r can relate an element of its domain to any number of 
elements of its range (including none). Like a function, r has dom, rng, and inv methods (the 
inverse is obtained just by flipping the ordered pairs), and you can compose relations with *. The 
advantage of relations is simplicity and generality; for example, there’s no notion of “undefined” 
for relations. The drawback is that you can’t write r(x) (although you can write {x} ** r for 
the set of values related to x by r; see below). 

A relation r has methods 

r.func to turn it into a function: r.func(x) is undefined unless r relates x to exactly one 
value.  

r.setF to turn it into a set function: r.setF(x) is the set of elements that r relates to x. This 
is total. The inverse of setF is the setRel method for a function whose values are sets: 
r.setF.setRel = r, and f.setRel.setF = f if f yields sets.  

If s is a set, s.rel is a relation that relates nil to each member of the set. The relation’s rng 
method inverts this. You can extend composition to sets in two ways:  

s * f is the set that results from applying f to every member of s, just like q * f for a 
sequence; it’s undefined if f is undefined on any member of s. 

s ** r takes the view of s as a relation more seriously; it is the set of all values that are 
related to a member of s by r: (s.rel * r).rng, which is also \/ : (s * r.setF). This is 
never undefined. 

A method m of U is lifted to SET U and to relations to U just as it is to functions to U. If m takes a 
second argument, R.m works on all pairs of related values, so that r.m(rr) relates t to u.m(w) 
whenever r relates t to u and rr relates t to w. Thus if S = SET Int, S{1, 2} + S{10, 20} = 
S{11, 12, 21, 22}. 

 If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines 
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, r1 – r2 
the difference, and ~r the complement. 

Commands 

Commands are for changing the state. Spec has a few simple commands, and seven operators for 
combining commands into bigger ones. The main simple commands are assignment and routine 
invocation. There are also simple commands to raise an exception, to return a function result, and 
to SKIP, that is, do nothing. If a simple command evaluates an undefined expression, it fails (see 
below). 

You can write i + := 3 instead of i := i + 3, and similarly with any other binary operator. 

The operators on commands are: 
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•  A conditional operator: predicate => command, read “if predicate then command”. The 
predicate is called a guard. 

•  Choice operators: c1 [] c2 and c1 [*] c2, read ‘or’ and ‘else’.  

•  Sequencing operators: c1 ; c2 and c1 EXCEPT handler. The handler is a special form of 
conditional command: exception => command. 

•  Variable introduction: VAR id: T | command, read “choose id of type T such that command 
doesn’t fail”. 

•  Loops: DO command OD. 

Section 6 of the reference manual describes commands. Atomic Semantics of Spec gives a precise 
account of their semantics. It explains that the meaning of a command is a relation between a 
state and an outcome (a state plus an optional exception), that is, a set of possible state-to-
outcome transitions. 

Conditionals and choice 

The figure below (copied from Nelson’s paper) illustrates conditionals and choice with some 
very simple examples. Here is how they work: 

The command  
p => c 

means to do c if p is true. If p is false this command fails; in other words, it has no outcome. 
More precisely, if s is a state in which p is false or undefined, this command does not relate s to 
any outcome. 

What good is such a command? One possibility is that p will be true some time in the future, and 
then the command will have an outcome and allow a transition. Of course this can only happen 
in a concurrent program, where there is something else going on that can make p true. Even if 
there’s no concurrency, there might be an alternative to this command. For instance, it might 
appear in the larger command 

 p  => c 
[] p' => c' 

in which you read [] as ‘or’. This fails only if each of p and p' is false or undefined. If both are 
true (as in the 00 state in the south-west corner of the figure), it means to do either c or c'; the 
choice is non-deterministic. If p' is  ~p then they are never both false, and if p is defined this 
command is equivalent to 

 p => c 
[*] c' 

in which you read [*] as ‘else’. On the other hand, if p is undefined the two commands differ, 
because the first one fails (since neither guard can be evaluated), while the second does c'.  

Both c1 [] c2 and c1 [*] c2 fail only if both c1 and c2 fail. If you think of a Spec program 
operationally (that is, as executing one command after another), this means that if the execution 
makes some choice that leads to failure later on, it must ‘back-track’ and try the other 
alternatives until it finds a set of choices that succeed. For instance, no matter what x is, after 
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 y = 0 => x := x - 1; x < y => x := 1  
[] y > 0 => x := 3    ; x < y => x := 2 
[*] SKIP 

if y = 0 initially, x = 1 afterwards, if y > 3 initially, x = 2 afterwards, and otherwise x is 
unchanged. If you think of it relationally, c1 [] c2 has all the transitions of c1 (there are none if 
c1 fails, several if it is non-deterministic) as well as all the transitions of c2. Both failure and 
non-determinism can arise from deep inside a complex command, not just from a top-level [] or 
VAR. 
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(partial)

y = 0 => y := 1

(partial)

   SKIP

[] y = 0 => y := 1
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  x = 0 => SKIP
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(partial, non-deterministic)

SKIP

y := 1

 

Combining commands 
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The precedence rules for commands are  
EXCEPT binds tightest 
; next 
=> |  next (for the right operand; the left side is an expression or delimited by VAR) 
[] [*] bind least tightly. 

These rules minimize the need for parentheses, which are written around commands in the ugly 
form BEGIN ... END or the slightly prettier form IF ... FI; the two forms have the same 
meaning, but as a matter of style, the latter should only be used around guarded commands. So, 
for example,  

p => c1; c2 

is the same as 
p => BEGIN c1; c2 END 

and means to do c1 followed by c2 if p is true. To guard only c1 with p you must write 
IF p => c1 [*] SKIP FI; c2  

which means to do c1 if p is true, and then to do c2. The [*] SKIP ensures that the command 
before the ";" does not fail, which would prevent c2 from getting done. Without the [*] SKIP, 
that is in 

IF p => c1 FI; c2  

if p is false the IF ... FI fails, so there is no possible outcome from which c2 can be done and 
the whole thing fails. Thus IF p => c1 FI; c2 has the same meaning as p => BEGIN c1; c2 
END, which is a bit surprising. 

Sequencing 

A c1 ; c2 command means just what you think it does: first c1, then c2. The command 
c1 ; c2 gets you from state s1 to state s2 if there is an intermediate state s such that c1 gets you 
from s1 to s and c2 gets you from s to s2. In other words, its relation is the composition of the 
relations for c1 and c2; sometimes ‘;’ is called ‘sequential composition’. If c1 produces an 
exception, the composite command ignores c2 and produces that exception. 

A c1 EXCEPT  ex => c2 command is just like c1 ; c2 except that it treats the exception ex the 
other way around: if c1 produces the exception ex then it goes on to c2, but if c1 produces a 
normal outcome (or any other exception), the composite command ignores c2 and produces that 
outcome. 

Variable introduction 

VAR gives you more dramatic non-determinism than []. The most common use is in the idiom 
VAR x: T | P(x) => c 

which is read “choose some x of type T such that P(x), and do c”. It fails if there is no x for 
which P(x) is true and c succeeds. If you just write  

VAR x: T | c 

then VAR acts like ordinary variable declaration, giving an arbitrary initial value to x. 

Variable introduction is an alternative to existential quantification that lets you get your hands on 
the bound variable. For instance, you can write 
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IF VAR n: Int, x: Int, y: Int, z: Int |  
    (n > 2 /\ x**n + y**n = z**n) => out := n  
[*] out := 0 
FI 

which is read: choose integers n, x, y, z such that n > 2 and xn + yn = zn, and assign n to 
out; if there are no such integers, assign 0 to out.6 The command before the [*] succeeds iff 

(EXISTS n: Int, x: Int, y: Int, z: Int | n > 2 /\ x**n + y**n = z**n), 

but if we wrote that in a guard there would be no way to set out to one of the n’s that exist. We 
could also write 

VAR s := { n: Int, x: Int, y: Int, z: Int  
         | n > 2 /\ x**n + y**n = z**n  
         | (n, x, y, z)} 

to construct the set of all solutions to the equation. Then if s # {}, s.choose yields a tuple 
(n, x, y, z) with the desired property. 

You can use VAR to describe all the transitions to a state that has an arbitrary relation R to the 
current state: VAR s' | R(s, s') => s := s' if there is only one state variable s. 

The precedence of | is higher than [], which means that you can string together different VAR 
commands with [] or [*], but if you want several alternatives within a VAR you have to use 
BEGIN ... END or IF ... FI. Thus 

 VAR x: T | P(x) => c1 
[] q => c2 

is parsed the way it is indented and is the same as 
 BEGIN VAR x: T | P(x) => c1 END 
[] BEGIN q => c2 END 

but you must write the brackets in 
VAR x: T |  

IF P(x) => c1 
[] Q(x) => c2 
FI 

which might be formatted more concisely as 
VAR x: T |  

IF P(x) => c1 
[] R(x) => c2 FI 

or even 
VAR x: T | IF P(x) => c1 [] R(x) => c2 FI 

You are supposed to indent your programs to make it clear how they are parsed. 

Loops 

You can always write a recursive routine, but often a loop is clearer . In Spec you use DO ... OD 
for this. These are brackets, and the command inside is repeated as long as it succeeds. When it 
fails, the repetition is over and the DO ... OD is complete. The most common form is 

DO P => c OD 

                                                 
6 A correctness proof for an implementation of this spec defied the best efforts of mathematicians between Fermat’s 
time and 1993. 
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which is read “while P is true do c”. After this command, P must be false. If the command inside 
the DO ... OD succeeds forever, the outcome is a looping exception that cannot be handled. 
Note that this is not the same as a failure, which simply means no outcome at all. 

For example, you can zero all the elements of a sequence s with 
VAR i := 0 | DO i < s.size => s(i) := 0; i - := 1 OD 

or the simpler form (which also avoids fixing the order of the assignments) 
DO VAR i | s(i) # 0 => s(i) := 0 OD 

This is another common idiom: keep choosing an i as long as you can find one that satisfies 
some predicate. Since s is only defined for i between 0 and s.size-1, the guarded command 
fails for any other choice of i. The loop terminates, since the s(i) := 0 definitely reduces the 
number of i’s for which the guard is true. But although this is a good example of a loop, it is bad 
style; you should have used a sequence method or function composition: 

s := S.fill(0, s.size) 

or 
s := {x :IN s | | 0} 

(a sequence just like s except that every element is mapped to 0), remembering that Spec makes 
it easy to throw around big things. Don’t write a loop when a constructor will do, because the 
loop is more complicated to think about. Even if you are writing code, you still shouldn’t use a 
loop here, because it’s quite clear how to write C code for the constructor. 

To zero all the elements of s that satisfy some predicate P you can write 
DO VAR i: Int | (s(i) # 0 /\ P(s(i))) => s(i) := 0 OD 

Again, you can avoid the loop by using a sequence constructor and a conditional expression 
s := {x :IN s | | (P(x) => 0 [*] x) } 

Atomicity 

Each <<...>> command is atomic. It defines a single transition, which includes moving the 
program counter (which is part of the state) from before to after the command. If a command is 
not inside <<...>>, it is atomic only if there’s no reasonable way to split it up: SKIP, HAVOC, RET, 
RAISE. Here are the reasonable ways to split up the other commands: 

•  An assignment has one internal program counter value, between evaluating the right hand 
side expression and changing the left hand side variable.  

•  A guarded command likewise has one, between evaluating the predicate and the rest of the 
command.  

•  An invocation has one after evaluating the arguments and before the body of the routine, and 
another after the body of the routine and before the next transition of the invoking command.  

Note that evaluating an expression is always atomic. 
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Modules and names 

Spec’s modules are very conventional. Mostly they are for organizing the name space of a large 
program into a two-level hierarchy: module.id. It’s good practice to declare everything except a 
few names of global significance inside a module. You can also declare CONST’s, just like VAR’s. 

MODULE foo EXPORT i, j, Fact = 

CONST c := 1 

VAR i := 0 
    j := 1 

FUNC Fact(n: Int) -> Int =  
IF n <= 1 => RET 1 
[*] RET n * Fact(n - 1) 
FI 

END foo 

You can declare an identifier id outside of a module, in which case you can refer to it as id 
everywhere; this is short for Global.id, so Global behaves much like an extra module. If you 
declare id at the top level in module m, id is short for m.id inside of m. If you include it in m’s 
EXPORT clause, you can refer to it as m.id everywhere. All these names are in the global state 
and are shared among all the atomic actions of the program. By contrast, names introduced by a 
declaration inside a routine are in the local state and are accessible only within their scope. 

The purpose of the EXPORT clause is to define the external interface of a module. This is 
important because module T implements module S iff T’s behavior at its external interface is a 
subset of S’s behavior at its external interface. 

The other feature of modules is that they can be parameterized by types in the same style as CLU 
clusters. The memory systems modules in handout 5 are examples of this. 

You can also declare a class, which is a module that can be instantiated many times. The Obj 
class produces a global Obj type that has as its methods the exported identifiers of the class plus 
a new procedure that returns a new, initialized instance of the class. It also produces a ObjMod 
module that contains the declaration of the Obj type, the code for the methods, and a state 
variable indexed by Obj that holds the state records of the objects. For example: 

CLASS Stat EXPORT add, mean, variance, reset = 

VAR n : Int := 0 
 sum : Int := 0 
 sumsq : Int := 0 

PROC add(i: Int) = n + := 1; sum + := i; sumsq + := i**2 
FUNC mean() -> Int = RET sum/n 
FUNC variance() -> Int = RET sumsq/n – self.mean**2 
PROC reset() = n := 0; sum := 0; sumsq := 0 

END Stat 

Then you can write  
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VAR s: Stat | s := s.new(); s.add(x); s.add(y); print(s.variance) 

In abstraction functions and invariants we also write obj.n for field n in obj’s state. 

Section 7 of the reference manual deals with modules. Section 8 summarizes all the uses of 
names and the scope rules. Section 9 gives several modules used to define the methods of the 
built-in data types such as functions, sets, and sequences. 

This completes the language summary; for more details and greater precision consult the 
reference manual. The rest of this handout consists of three extended examples of specs and code 
written in Spec: topological sort, editor buffers, and a simple window system. 

Example: Topological sort 

Suppose we have a directed graph whose n+1 vertexes are labeled by the integers 0 .. n, 
represented in the standard way by a relation g; g(v1, v2) is true if v2 is a successor of v1, that 
is, if there is an edge from v1 to v2. We want a topological sort of the vertexes, that is, a 
sequence that is a permutation of 0 .. n in which v2 follows v1 whenever v2 is a successor of 
v1. Of course this possible only if the graph is acyclic. 

MODULE TopologicalSort EXPORT V, G, Q, TopSort = 

TYPE V = IN 0 .. n  % Vertex 
G = (V, V) -> Bool % Graph 
Q = SEQ V 

PROC TopSort(g) -> Q RAISES {cyclic} = 
IF VAR q | q IN (0 .. n).perms /\ IsTSorted(q, g)  => RET q 
[*] RAISE cyclic % g must be cyclic 
FI 

FUNC IsTSorted(q, g) -> Bool = 
% Not tsorted if v2 precedes v1 in q but is also a child 

RET ~ (EXISTS v1 :IN q.dom, v2 :IN q.dom | v2 < v1 /\ g(q(v1), q(v2))  

END TopologicalSort 

Note that this solution checks for a cyclic graph. It allows any topologically sorted result that is a 
permutation of the vertexes, because the VAR q in TopSort allows any q that satisfies the two 
conditions. The perms method on sets and sequences is defined in section 9 of the reference 
manual; the dom method gives the domain of a function. TopSort is a procedure, not a function, 
because its result is non-deterministic; we discussed this point earlier when studying 
SquareRoot. Like that one, this spec has no internal state, since the module has no VAR. It 
doesn’t need one, because it does all its work on the input argument.  

The following code is from Cormen, Leiserson, and Rivest. It adds vertexes to the front of the 
output sequence as depth-first search returns from visiting them. Thus, a child is added before its 
parents and therefore appears after them in the result. Unvisited vertexes are white, nodes being 
visited are grey, and fully visited nodes are black. Note that all the descendants of a black node 
must be black. The grey state is used to detect cycles: visiting a grey node means that there is a 
cycle containing that node. 
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This module has state, but you can see that it’s just for convenience in programming, since it is 
reset each time TopSort is called. 

MODULE TopSortImpl EXPORT V, G, Q, TopSort = % implements TopSort 

TYPE Color = ENUM[white, grey, black] % plus the spec’s types 

VAR out  : Q  
color: V -> Color % every vertex starts white 

PROC TopSort(g) -> Q RAISES {cyclic} = VAR i := 0 | 
out := {}; color := {* -> white} 
DO VAR v | color(v) = white => Visit(v, g) OD; % visit every unvisited vertex 
RET out 

PROC Visit(v, g) RAISES {cyclic} = 
color(v) := grey; 
DO VAR v' | g(v, v') /\ color(v') # black =>  % pick an successor not done 

IF color(v') = white => Visit(v', g) 
[*] RAISE cyclic % grey — partly visited 
FI 

OD; 
color(v) := black; out := {v} + out % add v to front of out 

The code is as non-deterministic as the spec: depending on the order in which TopSort chooses v 
and Visit chooses v', any topologically sorted sequence can result. We could get deterministic 
code in many ways, for example by taking the smallest node in each case (the min method on 
sets is defined in section 9 of the reference manual): 

VAR v  := {v0 | color(v0) = white}.min  in TopSort 
VAR v' := {v0 | g(v, v0) /\ color(v') # black }.min in Visit 

Code in C would do something like this; the details would depend on the representation of G. 

Example: Editor buffers 

A text editor usually has a buffer abstraction. A buffer is a mutable sequence of C’s. To get 
started, suppose that C = Char and a buffer has two operations,  

Get(i) to get character i  

Replace to replace a subsequence of the buffer by a subsequence of an argument of type SEQ 
C, where the subsequences are defined by starting position and size. 

We can make this spec precise as a Spec class.  
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CLASS Buffer EXPORT B, C, X, Get, Replace = 

TYPE X = Nat   % indeX in buffer 
C = Char 
B = SEQ C   % Buffer contents 

VAR b : B := {}   % Note: initially empty 

FUNC Get(x) -> C = RET b(x) % Note: defined iff 0<=x<b.size 

PROC Replace(from: X, size: X, b': B, from': X, size': X) =  
% Note: fails if it touches C’s that aren’t there. 

VAR b1, b2, b3 | b = b1 + b2 + b3 /\ b1.size = from /\ b2.size = size => 
  b := b1 + b'.seg(from', size') + b3 

END Buffer 

We can implement a buffer as a sorted array of pieces called a ‘piece table’. Each piece contains 
a SEQ C, and the whole buffer is the concatenation of all the pieces. We use binary search to find 
a piece, so the cost of Get is at most logarithmic in the number of pieces. Replace may require 
inserting a piece in the piece table, so its cost is at most linear in the number of pieces.7 In 
particular, neither depends on the number of C’s. Also, each Replace increases the size of the 
array of pieces by at most two.  

A piece is a B (in C it would be a pointer to a B) together with the sum of the length of all the 
previous pieces, that is, the index in Buffer.b of the first C that it represents; the index is there 
so that the binary search can work. There are internal routines Locate(x), which uses binary 
search to find the piece containing x,  and Split(x), which returns the index of a piece that 
starts at x, if necessary creating it by splitting an existing piece. Replace calls Split twice to 
isolate the substring being removed, and then replaces it with a single piece. The time for 
Replace is linear in pt.size because on the average half of pt is moved when Split or 
Replace inserts a piece, and in half of pt, p.x is adjusted if size' # size. 

                                                 
7 By using a tree of pieces rather than an array, we could make the cost of Replace logarithmic as well, but to 
keep things simple we won’t do that. See FSImpl in handout 7 for more on this point. 
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CLASS BufImpl EXPORT B,C,X, Get, Replace = % implements Buffer 

TYPE    % Types as in Buffer, plus 
N   = X   % iNdex in piece table 
P   = [b, x]  % Piece: x is pos in Buffer.b 
PT  = SEQ P   % Piece Table 

VAR pt  := PT{}   

ABSTRACTION FUNCTION buffer.b = + : {p :IN pt | | p.b} 
% buffer.b is the concatenation of the contents of the pieces in pt 

INVARIANT (ALL n :IN pt.dom |  pt(n).b # {}  
                            /\ pt(n).x = + :{i :IN 0 .. n-1 | | pt(i).b.size}) 
% no pieces are empty, and x is the position of the piece in Buffer.b, as promised. 

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.b(x - p.x) 

PROC Replace(from: X, size: X, b': B, from': X, size': X) =  
VAR n1 := Split(from); n2 := Split(from + size), 
    new := P{b := b'.seg(from', size'), x := from} | 

pt :=  pt.sub(0, n1 - 1)  
     + NonNull(new) 
     + pt.sub(n2, pt.size - 1) * AdjustX(size' - size ) 

PROC Split(x) -> N =  
% Make pt(n) start at x, so pt(Split(x)).x = x. Fails if x > b.size. 
% If pt=abcd|efg|hi, then Split(4) is RET 1 and Split(5) is pt:=abcd|e|fg|hi; RET 2  

IF pt = {} /\ x = 0 => RET 0 
[*] VAR n := Locate(x), p := pt(n), b1, b2 |  

p.b = b1 + b2 /\ p.x + b1.size = x =>  
VAR frag1 := p{b := b1}, frag2 := p{b := b2, x := x} |  

pt :=  pt.sub(0, n - 1)  
     + NonNull(frag1) + NonNull(frag2)  
     + pt.sub(n + 1, pt.size - 1); 
RET (b1 = {} => n [*] n + 1) 

FI 

FUNC Locate(x) -> N = VAR n1 := 0, n2 := pt.size - 1 | 
% Use binary search to find the piece containing x. Yields 0 if pt={},  
% pt.size-1 if pt#{} /\ x>=b.size; never fails.  The loop invariant is  
%  pt={} \/ n2 >= n1 /\ pt(n1).x <= x /\ ( x < pt(n2).x \/ x >= pt.last.x ) 
% The loop terminates because n2 - n1 > 1 ==> n1 < n < n2, so n2 – n1 decreases. 

DO n2 - n1 > 1 =>  
VAR n := (n1 + n2)/2 | IF pt(n).x <= x => n1 := n [*] n2 := n FI  

OD; RET (x < pt(n2).x => n1 [*] n2) 

FUNC NonNull(p) -> PT = RET (p.b # {} => PT{p} [*] {}) 

FUNC AdjustX(dx: Int) -> (P -> P) = RET (\ p | p{x + := dx}) 

END BufImpl 

If subsequences were represented by their starting and ending positions, there would be lots of 
extreme cases to worry about. 
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Suppose we now want each C in the buffer to have not only a character code but also some 
additional properties, for instance the font, size, underlining, etc. Get and Replace remain the 
same. In addition, we need a third exported method Apply that applies to each character in a 
subsequence of the buffer a map function C -> C. Such a function might make all the C’s italic, 
for example, or increase the font size by 10%.  

PROC Apply(map: C->C, from: X, size: X) = 
b :=   b.sub(0, from-1)  
    +  b.seg(from, size) * map  
    +  b.sub(from + size, b.size-1) 

Here is code for Apply that takes time linear in the number of pieces. It works by changing the 
representation to add a map function to each piece, and in Apply composing the map argument 
with the map of each affected piece. We need a new version of Get that applies the proper map 
function, to go with the new representation. 

TYPE P   = [b, x, map: C->C] % x is pos in Buffer.b 

ABSTRACTION FUNCTION buffer.b = + :{p :IN pt | | p.b * p.map} 
% buffer.b is the concatenation of the pieces in p with their map's applied. 
% This is the same AF we had before, except for the addition of * p.map. 

FUNC Get(x) -> C = VAR p := pt(Locate(x)) | RET p.map(p.b(x - p.x)) 

PROC Apply(map: C->C, from: X, size: X) =  
  VAR n1 := Split(from), n2 := Split(from + size) | 

pt :=  pt.sub(0 , n1 - 1)  
     + pt.sub(n1, n2 - 1) * (\ p | p{map := p.map * map}) 
     + pt.sub(n2, pt.size - 1) 

Note that we wrote Split so that it keeps the same map in both parts of a split piece. We also 
need to add map := (\ c | c) to the constructor for new in Replace. 

This code was used in the Bravo editor for the Alto, the first what-you-see-is-what-you-get 
editor. It is still used in Microsoft Word. 

Example: Windows 

A window (the kind on your computer screen, not the kind in your house) is a map from points to 
colors. There can be lots of windows on the screen; they are ordered, and closer ones block the 
view of more distant ones. Each window has its own coordinate system; when they are arranged 
on the screen, an offset says where each window’s origin falls in screen coordinates. 

MODULE Window EXPORT Get, Paint = 

TYPE I         = Int 
Coord     = Nat 
Intensity = IN (0 .. 255).rng 
P         = [x: Coord, y: Coord] WITH {"-":=PSub}  % Point 
C         = [r: Intensity, g: Intensity, b: Intensity] % Color 
W         = P -> C  % Window 

FUNC PSub(p1, p2) -> P = RET P{x := p1.x - p2.x, y := p1.y - p2.y} 
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The shape of the window is determined by the points where it is defined; obviously it need not be 
rectangular in this very general system. We have given a point a “-” method that computes the 
vector distance between two points; we somewhat confusingly represent the vector as a point. 

A ‘window system’ consists of a sequence of [w, offset: P] pairs; we call a pair a V. The 
sequence defines the ordering of the windows (closer windows come first in the sequence); it is 
indexed by ‘window number’ WN. The offset gives the screen coordinate of the window’s 
(0, 0) point, which we think of as its upper left corner. There are two main operations: 
Paint(wn, p, c) to set the value of P in window wn, and Get(p) to read the value of p in the 
topmost window where it is defined (that is, the first one in the sequence). The idea is that what 
you see (the result of Get) is the result of painting the windows from last to first, offsetting each 
one by its offset component and using the color that is painted later to completely overwrite 
one painted earlier. Of course real window systems have other operations to change the shape of 
windows, add, delete, and move them, change their order, and so forth, as well as ways for the 
window system to suggest that newly exposed parts of windows be repainted, but we won’t 
consider any of these complications. 

First we give the spec for a window system initialized with n empty windows. It is customary to 
call the coordinate system used by Get the screen coordinates. The v.offset field gives the 
screen coordinate that corresponds to {0, 0} in v.w. The v.c(p) method below gives the value 
of v’s window at the point corresponding to p after adjusting by v’s offset. The state ws is just the 
sequence of V’s. For simplicity we initialize them all with the same offset {10, 5}, which is not 
too realistic. 

Get finds the smallest WN that is defined at p and uses that window’s color at p. This corresponds 
to painting the windows from last (biggest WN) to first with opaque paint, which is what we 
wanted. Paint uses window rather than screen coordinates. 

The state (the VAR) is a single sequence of windows. 

TYPE WN = IN 0 .. n-1  % Window Number 
V = [w, offset: P]   % window on the screen 
  WITH {c:=(\ v, p | v.w(p - v.offset))} % C of a screen point p 

VAR ws := {i :IN 0..n-1 | | V{{}, P{10,5}}}  % the Window System 

FUNC Get(p) -> C = VAR wn := {wn' | V.c!(ws(wn'), p)}.min | RET ws(wn).c(p) 

PROC Paint(wn, p, c) = ws(wn).w(p) := c 

END Window 

Now we give code that only keeps track of the visible color of each point (that is, it just keeps 
the pixels on the screen, not all the pixels in windows that are covered up by other windows). We 
only keep enough state to handle Get and Paint. 

The state is one W that represents the screen, plus an exposed variable that keeps track of which 
window is exposed at each point, and the offsets of the windows. This is sufficient to implement 
Get and Paint; to deal with erasing points from windows we would need to keep more 
information about what other windows are defined at each point, so that exposed would have a 
type P -> SET WN. Alternatively, we could keep track for each window of where it is defined. 
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Real window systems usually do this, and represent exposed as a set of visible regions of the 
various windows. They also usually have a ‘background’ window that covers the whole screen, 
so that every point on the screen has some color defined; we have omitted this detail from the 
spec and the code. 

We need a history variable wH that contains the w part of all the windows. The abstraction 
function just combines wH and offset to make ws. The important properties of the code are 
contained in the invariant, from which it’s clear that Get returns the answer specified by 
Window.Get. Another way to do it is to have a history variable wsH that is equal to ws. This 
makes the abstraction function very simple, but then we need an invariant that says offset(wn) 
= wsH(n).offset. This is perfectly correct, but it’s usually better to put as little stuff in history 
variables as possible. 

MODULE WinImpl EXPORT Get, Paint = 

VAR w       := W{} % no points defined 
 exposed : P -> WN := {} % which wn shows at p 
 offset  := {i :IN 0..n-1 | | P(5, 10)} %  
 wH      := {i :IN 0..n-1 | | W{}} % history variable 

ABSTRACTION FUNCTION ws = (\ wn | V{w := wH(wn), offset := offset(wn)}) 

INVARIANT  
(ALL p |    w!p = exposed!p  
        /\ (w!p ==>    {wn | V.c!(ws(wn), p)}.min = exposed(p)  
                    /\ w(p) = ws(exposed(p)).c(p) ) ) 

The invariant says that each visible point comes from some window, exposed tells the topmost 
window that defines it, and its color is the color of the point in that window. Note that for 
convenience the invariant uses the abstraction function; of course we could have avoided this by 
expanding it in line, but there is no reason to do so, since the abstraction function is a perfectly 
good function. 

FUNC Get(p) -> C = RET w(p) 

PROC Paint(wn, p, c) =  
VAR p0 | p = p0 - offset(wn) => % the screen coordinate 
  IF wn <= exposed(p0) => w(p0) := c; exposed(p0) := wn [*] SKIP FI; 
  wH(wn)(p) := c % update the history var 

END WinImpl
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Expression forms (§ 5) 
f(e) e func function invocation 
op : sqe set/seq sq(0) op sq(1) … 
(ALL    x | pred) e Boole pred(x1) ∧  … ∧  pred(xn)

(EXISTS x | pred) e Boole pred(x1) ∨  … ∨  pred(xn)

(pred => e1 [*] e2) e Anye e1 if pred else e2 

Modules (§ 7) 
MODULE/CLASS Me 
  [T1 WITH {m1: T11->T12,…},…] 
  EXPORT n1, … =  

TYPE T1 = SET T2e 
     T3 = ENUM[n1,…] 
CONST n: T := e 
VAR   n: T := ee 
EXCEPTION ex = {ex11,…} + ex2 + …e
FUNC f(n1: T1,…) ->  T = ce 
APROC, PROC, THREAD similarlye 

END M 

Commands (§ 6)   Pr 

SKIP, HAVOC,  simple 
 RET e, RAISE exe   
p(e) e  invocation 
x := e,  x := p(e),   assignment 
 (x1, ...) := ee   
c1 EXCEPT ex=>c2e 3 handle ex 
c1 ; c2e 2 sequential 
VAR n: T | ce 1 new var n 
pred => ce 1 if (guarded cmd) 
c1 []  c2e 0 or (ND choice) 
c1 [*] c2e 0 else 
<< c >>e  atomic c 
BEGIN c ENDe  brackets 
IF c FIe   
DO c ODe  loop until fail

Command operators associate to the left, 
but EXCEPT associates to the right. 

Spec Summary 

Operators (§ 5, § 9) 
Op Pr Type x op y  is 

. e 9 Anye x’s y field/method 
ISe 8 Anye does x have type y? 
ASe 8 Anye x with type y 
**e 8 Inte xye 

  set compose with relation
*e 7 Inte x × y 
  func composition 
  relation composition 
  set, seq compose with function
/e 7 Inte x/y rounded to 0 
//e 7 Inte mod: x – (x/y)*y 
+e 6 Inte x + ye 
  func overlay 
  seq concatenation 
-e 6 Inte x – ye 
  set set difference 
  seq multiset diff 
! e 6 func x defined at y 
!! e 6 func x!y ∧  x(y) not ex 
.. e 5 Inte seq {x, x+1,..., y} 
=e 4 Anye x = ye 
#e 4 Anye x ≠ y 
== e 4 seq x = y as multisets 
<=e 4 Inte x ≤ y 
  set x ⊆  y (subset) 
  seq x a prefix of y 
<<=e 4 seq x a sub-seq of y 
INE 4 set/seq x ∈  y (member) 
~e 3 Boole not x (unary) 
/\e 2 Boole x ∧  y (and) 
  set x ∩ y (intersection) 
\/e 1 Boole x ∨  y (or) 
  set x ∪  y (union) 
==>e 0 Boole x implies y 
Operators associate to the left. 

Methods (§ 9) 
set Ops: * /\ \/ - <= IN, op: e 
 sizee number of members 
 choosee some member of s 
 seqe s as some sequence 
 rel s as relation from nil
 prede s.pred(x) = (x ∈  s) 
 (f)max/min a max/min by f1/<= 
set/seq permse set of all perms of sq 
 fsorte sq sorted (q stably) by f1 
 sorte sq sorted (q stably) by <= 
func Ops: * + ! !! e 
 dom, rnge domain, range 
 inve inverse 
 restricte domain to set s1 
 rele r(x,y) = (f(x)=y) 
 predicateesete s = {x | pred(x)} 
 relation Ops: * and func + 
 dom, rnge domain, range 
 inve inverse 

 setFe f(x) = {y | r(x,y)} 
 func f(x) = setF(x).choosee 
 graph isPathe is q1 a path in g? 
 closuree transitive closure of g
seq Ops: + - .. <= <<= IN, op:, func * !e

sizee number of elements 
heade q(0) e 

also see 
set/seq and 
func above 

taile {q(1),…,q(q.size-1)}
 remhe remove head = tail 
 laste q(q.size-1) e 
 remle {q(0),…,q(q.size-2)} 

 sube {q(i1),…,q(i2)} 
 sege {q(i1),…}, i2 elements 
 fille i2 copies of x1 
 lexLEe q lexically <= q1 by f2?
 fsortere perm sorts q stably by f1 
 counte number of x1’s in q 
 tuplee tuple with q’s values 
tuple seqe seq with tu’s values 
 

Types (§ 4) 
Any, Null, Bool, Int, 
Nat, Char, String 

basic  

SET T,  IN se set 
T1 -> T2e function 
APROC T1 -> T2 e 
PROC  T1 -> T2 

procedures 

SEQ Te sequence 
(T1,...,Tn) e tuple 
[f1: T1,…,fn: Tn] e record 
(T1 + … + Tn) e union 
T WITH {m1:=f1,…} e add methods
T SUCHTHAT prede limit values 

Constructors (§ 5) 
{e1,…,en}e set with these members 
{i:Nat | i<3 |ei**2}  of i2’s where i<3 
f{e1 -> e2}e func f except = e2 at arg e1 
 {*  -> e}e  = e at every arg 
(\i:Int | i<3) e  lambda  (also LAMBDA) 
{e1,…,en}e seq of e’s in this order 
{i :IN 0 .. 5 ||ei**2}  {0,1,4,9,16,25} e
{i:=0 BY i+1eWHILE i<6||i**2} same 
(e1,…,en) e tuple of e’s in this order 
r{f1:=e1,…,fn:=en} e record r except f1 = e1 ... 
 

Naming conventions (except in ‘Operators’) 
ce command ope operator 
ee expression pe proccedure 
exe exception Pr precedence 
fe function, field qe sequence 
ge graph re record, relation 
ie Inte se set 
me method Te type 
ne name xe Anye 

zie
v 

ith extra argument of a method, or 
one of several like non-terminals in a rule 

§ a section of the Spec reference manual 
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How to Write a Spec 
Figure out what the state is. 

Choose the state to make the spec simple and clear, not to match the code. 

Describe the actions. 

What they do to the state. 

What they return. 

Helpful hints 

Notation is important, because it helps you to think about what’s going on. 

Invent a suitable vocabulary. 

Less is more. Less state is better. Fewer actions are better. 

More non-determinism is better, because it allows more implementations. 

In distributed systems, replace the separate nodes with non-determinism in the spec. 

Pass the coffee-stain test: people should want to read the spec. 

I’m sorry I wrote you such a long letter; I didn’t have time to write a short one. — Pascal 
 

How to Design an Implementation 

Write the spec first. 

Dream up the idea of the implementation. 

Embody the key idea in the abstraction function. 

Check that each implementation action simulates some spec actions. 

Add invariants to make this easier. Each action must maintain them. 

Change the implementation (or the spec, or the abstraction function) until this works. 

Make the implementation correct first, then efficient. 

More efficiency means more complicated invariants. 

You might need to change the spec to get an efficient implementation. 

Measure first before making anything faster. 

An efficient program is an exercise in logical brinkmanship. — Dijkstra 
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4.  Spec Reference Manual 

Spec is a language for writing specifications and the first few stages of successive refinement 
towards practical code. As a specification language it includes constructs (quantifiers, 
backtracking or non-determinism, some uses of atomic brackets) which are impractical in final 
code; they are there because they make it easier to write clear, unambiguous and suitably general 
specs. If you want to write a practical program, avoid them.  

This document defines the syntax of the language precisely and the semantics informally. You 
should read the Introduction to Spec (handout 3) before trying to read this manual. In fact, 
this manual is intended mainly for reference; rather than reading it carefully, skim through it, and 
then use the index to find what you need. For a precise definition of the atomic semantics read 
Atomic Semantics of Spec. (handout 9). Handout 17 on Formal Concurrency gives the non-
atomic semantics semi-formally.   

1. Overview 

Spec is a notation for writing specs for a discrete system. What do we mean by a spec? It is the 
allowed sequences of transitions of a state machine. So Spec is a notation for describing 
sequences of transitions of a state machine.  

Expressions and commands 

The Spec language has two essential parts:  

An expression describes how to compute a value as a function of other values, either 
constants or the current values of state variables. 

A command describes possible transitions, or changes in the values of the state variables.  

Both are based on the state, which in Spec is a mapping from names to values. The names are 
called state variables or simply variables: in the examples below they are i and j.  

There are two kinds of commands: 

An atomic command describes a set of possible transitions. For instance, the command 
<< i := i + 1 >> describes the transitions i=1→i=2, i=2→i=3, etc. (Actually, many 
transitions are summarized by i=1→i=2, for instance, (i=1, j=1)→(i=2, j=1) and  (i=1, 
j=15)→(i=2, j=15)). If a command allows more than one transition from a given state we 
say it is non-deterministic. For instance, the command, << i := 1 [] i := i + 1 >> 
allows the transitions i=2→i=1 and i=2→i=3. More on this in Atomic Semantics of Spec. 

A non-atomic command describes a set of sequences of states. More on this in Formal 
Concurrency. 

A sequential program, in which we are only interested in the initial and final states, can be 
described by an atomic command.  
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Spec’s notation for commands, that is, for changing the state, is derived from Edsger Dijkstra’s 
guarded commands (E. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976) as extended 
by Greg Nelson (G. Nelson, A generalization of Dijkstra’s calculus, ACM TOPLAS 11, 4, Oct. 
1989, pp 517-561). The notation for expressions is derived from mathematics. 

Organizing a program 

In addition to the expressions and commands that are the core of the language, Spec has four 
other mechanisms that are useful for organizing your program and making it easier to 
understand. 

A routine is a named computation with parameters (passed by value). There are four kinds:  

A function is an abstraction of an expression. 

An atomic procedure is an abstraction of an atomic command. 

A general procedure is an abstraction of a non-atomic command. 

A thread is the way to introduce concurrency. 

A type is a stylized assertion about the set of values that a name can assume. A type is also an 
easy way to group and name a collection of routines, called its methods, that operate on 
values in that set. 

An exception is a way to report an unusual outcome. 

A module is a way to structure the name space into a two-level hierarchy. An identifier i 
declared in a module m is known as i in m and as m.i throughout the program. A class is a 
module that can be instantiated many times to create many objects. 

A Spec program is some global declarations of variables, routines, types, and exceptions, plus a 
set of modules each of which declares some variables, routines, types, and exceptions. 

Outline 

This manual describes the language bottom-up: 
Lexical rules 
Types 
Expressions 
Commands 
Modules 

At the end there are two sections with additional information: 
Scope rules 
Built-in methods for set, sequence, and routine types. 

There is also an index. The Introduction to Spec has a one-page language summary. 
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2. Grammar rules  

Nonterminal symbols are in lower case; terminal symbols are punctuation other than ::=, or are 
quoted, or are in upper case. 

Alternative choices for a  nonterminal are on separate lines. 

symbol* denotes zero of more occurrences of symbol. 

The symbol empty denotes the empty string. 

If x is a nonterminal, the nonterminal xList is defined by 

xList ::= x 
x , xList 

A comment in the grammar runs from % to the end of the line; this is just like Spec itself. 

A [n] in a comment means that there is an explanation in a note labeled [n] that follows this chunk 
of grammar. 

3. Lexical rules 

The symbols of the language are literals, identifiers, keywords, operators, and the punctuation 
( ) [ ] { } , ; : . | <<  >> := => -> [] [*]. Symbols must not have embedded white 
space. They are always taken to be as long as possible. 

A literal is a decimal number such as 3765, a quoted character such as 'x', or a double-quoted 
string such as "Hello\n". 

An identifier (id) is a letter followed by any number of letters, underscores, and digits followed 
by any number of  ' characters. Case is significant in identifiers. By convention type and 
procedure identifiers begin with a capital letter. An identifier may not be the same as a keyword. 
The predefined identifiers Any, Bool, Char, Int, Nat, Null, String, true, false, and 
nil are declared in every program. The meaning of an identifier is established by a declaration; 
see section 8 on scope for details. Identifiers cannot be redeclared. 

By convention keywords are written in upper case, but you can write them in lower case if you 
like; the same strings with mixed case are not keywords, however. The keywords are 

ALL APROC AS BEGIN BY CLASS  

CONST DO  END  ENUM EXCEPT EXCEPTION  

EXISTS EXPORT  FI FUNC HAVOC IF   

IN IS  LAMBDA MODULE OD PROC   

RAISE RAISES  RET SEQ SET SKIP  

SUCHTHAT THREAD  TYPE  VAR WHILE WITH 

An operator is any sequence of the characters !@#$^&*-+=:.<>?/\|~ except the sequences 
: . | << >> := => ->  (these are punctuation), or one of the keyword operators AS, IN, and IS. 

A comment in a Spec program runs from a % outside of quotes to the end of the line. It does not 
change the meaning of the program. 
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4. Types 

A type defines a set of values; we say that a value v has type T if v is in T’s set. The sets are not 
disjoint, so a value can belong to more than one set and therefore can have more than one type. 
In addition to its value set, a type also defines a set of routines (functions or procedures) called 
its methods; a method normally takes a value of the type as its first argument. 

An expression has exactly one type, determined by the rules in section 5; the result of the 
expression has this type unless it is an exception.  

The picky definitions given on the rest of this page are the basis for Spec’s type-checking. You 
can skip them on first reading, or if you don’t care about type-checking. 

About unions: If the expression e has type T we say that e has a routine type W if T is a routine 
type W or if T is a union type and exactly one type W in the union is a routine type. Under 
corresponding conditions we say that e has a sequence or set type, or a record type with a field f. 

Two types are equal if their definitions are the same (that is, have the same parse trees) after all 
type names have been replaced by their definitions and all WITH clauses have been discarded. 
Recursion is allowed; thus the expanded definitions might be infinite. Equal types define the 
same value set. Ideally the reverse would also be true, but type equality is meant to be decided by 
a type checker, whereas the set equality is intractable. 

A type T fits a type U if the type-checker thinks they may have some values in common. This can 
only happen if they have the same structure, and each part of T fits the corresponding part of U. 
‘Fits’ is an equivalence relation. Precisely, T fits U if: 

T = U. 

T is T' SUCHTHAT F or (... + T' + ...) and T' fits U, or vice versa. There may be no 
values in common, but the type-checker can’t analyze the SUCHTHAT clauses to find out. 

T and U are tuples of the same length and each component of T fits the corresponding 
component of U. 

T and U are record types, and for every decl id: T' in T there is a corresponding decl id: 
U' in U such that T' fits U', or vice versa. 

T=T1->T2 RAISES EXt and U=U1->U2 RAISES EXu, or one or both RAISES are missing, and 
T1 fits U1 and T2 fits U2. Similar rules apply for PROC and APROC types. 

T=SET T' and U=SET U' and T' fits U'. 

T = Int->T' or SEQ T' and U = SEQ U' and T' fits U'. 

T includes U if the same conditions apply with “fits” replaced by “includes”, all the “vice versa” 
clauses dropped, and in the -> rule “T1 fits U1” replaced by “U1 includes T1 and EXt is a superset 
of EXu”. If T includes U then T’s value set includes U’s value set; again, the reverse is intractable. 

An expression e fits a type U in state s if e’s type fits U and the result of e in state s has type U or 
is an exception; in general this can only be checked at runtime unless U includes e’s type. The 
check that e fits T is required for assignment and routine invocation; together with a few other 
checks it is called type-checking. The rules for type-checking are given in sections 5 and 6. 
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type ::= name % name of a type 
"Any" % every value has this type 
"Null" % with value set {nil} 
"Bool" % with value set {true, false} 
"Char" % like an enumeration 
"String" % = SEQ Char 
"Int" % integers 
"Nat" % naturals: non-negative integers 
SEQ type % sequence [1] 
SET type % set 
( typeList ) % tuple; (T) is the same as T 
[ declList ] % record with declared fields 
( union ) % union of the types 
aType -> type raises % function [2] 
APROC aType returns raises % atomic procedure 
PROC  aType returns raises % non-atomic procedure 
type WITH { methodDefList } % attach methods to a type [3] 
type SUCHTHAT primary % restrict the value set [4] 
IN exp % = T SUCHTHAT (\ t: T | t IN exp) 
 % where exp’s type has an IN method 
id [ typeList ] . id % type from a module [5] 

name ::= id . id % the first id denotes a module 
id % short for m.id if id is declared  
 % in the current module m, and for  
 % Global.id if id is declared globally 
type . id % the id method of type 

decl ::= id : type % id has this type 
id % short for id: Id [6] 

union ::= type  + type 
union + type 

aType ::= () 
type 

returns ::= empty % only for procedures 
-> type 

raises ::= empty 
RAISES exceptionSet % the exceptions it can return 

exceptionSet ::= { exceptionList } % a set of exceptions 
name % declared as an exception set  
exceptionSet \/ exceptionSet % set union  
exceptionSet - exceptionSet % set difference 

exception ::= id % means "id" 

method ::= id             
stringLiteral % the string must be an operator 
 % other than "=" or "#" (see section 3) 

methodDef ::= method := name % name is a routine 
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The ambiguity of the type grammar is resolved by taking -> to be right associative and giving 
WITH and RAISES higher precedence than ->. 

[1] A SEQ T is just a function from {0, 1, ..., size-1} to T. That is, it is short for  
(Int->T) SUCHTHAT (\ f: Int->T | (EXISTS size: Int |  
                                    (ALL i: Int | f!i = (i IN 0 .. size-1))) 

         WITH { see section 9 }. 
This means that invocation, !, and * work for a sequence just as they do for any function. In 
addition, there are many other useful operators on sequences; see section 9. The String type is 
just SEQ Char; there are String literals, defined in section 5.  

[2] A T->U value is a partial function from a state and a value of type T to a value of type U. A 
T->U RAISES xs value is the same except that the function may raise the exceptions in xs. 

[3] We say m is a method of T defined by f, and denote f by T.m, if  

T = T' WITH {..., m := f, ...} and m is an identifier or is "op" where op is an operator 
(the construct in braces is a methodDefList), or 

T = T' WITH { methodDefList }, m is not defined in methodDefList, and m is a method 
of T' defined by f, or 

T = (... + T' + ...), m is a method of T' defined by f, and there is no other type in the 
union with a method m. 

There are two special forms for invoking methods: e1 infixOp e2 or prefixOp e, and 
e1.id(e2) or e.id or e.id(). They are explained in notes [1] and [3] to the expression grammar 
in the next section. This notation may be familiar from object-oriented languages. Unlike many 
such languages, Spec makes no provision for varying the method in each object, though it does 
allow inheritance and overriding. 

A method doesn’t have to be a routine, though the special forms won’t type-check unless the 
method is a routine. Any method m of T can be referred to by T.m. 

If type U has method m, then the function type V = T->U has a lifted method m that composes U.m 
with v, unless V already has a m method. V. m is defined by  

(\ v | (\ t | v(t).m)) 

so that v.m = v * U.m. For example, {"a", "ab", "b"}.size = {1, 2, 1}. If m takes a 
second argument of type W, then V.m takes a second argument of type VV = T->W and is defined 
on the intersection of the domains by applying m to the two results. Thus in this case V.m is 

(\ v, vv | (\ t :IN v.dom /\ vv.dom | v(t).m(vv(t)))) 

Lifting also works for relations to U, and therefore also for SET U. Thus if R = (T,U)->Bool and 
m returns type X, R.m is defined by 

(\ r | (\ t, x | x IN {u | r(t, u) | u.m})) 

so that r.m = r * U.m.rel. If m takes a second argument, then R.m takes a second argument of 
type RR = T->W, and r.m(rr) relates t to u.m(w) whenever r relates t to u and rr relates t to w. 
In other words, R.m is defined by 

(\ r, rr | (\ t, x | x IN {u, w | r(t, u) /\ rr(t, w) | u.m(w)})) 

If U doesn’t have a method m but Bool does, then the lifting is done on the function that defines 
the relation, so that r1 \/ r2 is the union of the relations, r1 /\ r2 the intersection, r1 – r2 
the difference, and ~r the complement. 
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 [4] In T SUCHTHAT f, f is a predicate on T's, that is, a function (T -> Bool). The type 
T SUCHTHAT f has the same methods as T, and its value set is the values of T for which f is true. 
See section 5 for primary. 

[5] If a type is defined by m[typeList].id and m is a parameterized module, the meaning is 
m'.id where m' is defined by MODULE m' = m[typeList] END m'. See section 7 for a full 
discussion of this kind of type. 

[6] Id is the id of a type, obtained from id by dropping trailing ' characters and digits, and 
capitalizing the first letter or all the letters (it’s an error if these capitalizations yield different 
identifiers that are both known at this point). 
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5. Expressions 

An expression is a partial function from states to results; results are values or exceptions. That is, 
an expression computes a result for a given state. The state is a function from names to values. 
This state is supplied by the command containing the expression in a way explained later. The 
meaning of an expression (that is, the function it denotes) is defined informally in this section. 
The meanings of invocations and lambda function constructors are somewhat tricky, and the 
informal explanation here is supplemented by a formal account in Atomic Semantics of Spec. 
Because expressions don’t have side effects, the order of evaluation of operands is irrelevant (but 
see [5] and [13]). 

Every expression has a type. The result of the expression is a member of this type if it is not an 
exception. This property is guaranteed by the type-checking rules, which require an expression 
used as an argument, the right hand side of an assignment, or a routine result to fit the type of the 
formal, left hand side, or routine range (see section 4 for the definition of ‘fit’). In addition, 
expressions appearing in certain contexts must have suitable types: in e1(e2), e1 must have a 
routine type; in e1+e2, e1 must have a type with a "+" method, etc. These rules are given in 
detail in the rest of this section. A union type is suitable if exactly one of the members is suitable. 
Also, if T is suitable in some context, so are T WITH {... } and T SUCHTHAT f.  

An expression can be a literal, a variable known in the scope that contains the expression, or a 
function invocation. The form of an expression determines both its type and its result in a state: 

literal has the type and value of the literal.  

name has the declared type of name and its value in the current state, state("name"). The 
form T.m (where T denotes a type) is also a name; it denotes the m method of T. Note that if 
name is id and id is declared in the current module m, then it is short for m.id. 

invocation f(e): f must have a function (not procedure) type U->T RAISES EX or U->T (note 
that a sequence is a function), and e must fit U; then f(e) has type T. In more detail, if f has 
result rf and e has type U' and result re, then U' must fit U (checked statically) and re must 
have type U (checked dynamically if U' involves a union or SUCHTHAT; if the dynamic check 
fails the result is a fatal error). Then f(e) has type T.  

If either rf or re is undefined, so is f(e). Otherwise, if either is an exception, that exception 
is the result of f(e); if both are, rf is the result.  

If both rf and re are normal, the result of rf at re can be: 

A normal value, which becomes the result of f(e). 

An exception, which becomes the result of f(e). If rf is defined by a function body that 
loops, the result is a special looping exception that you cannot handle.  

Undefined, in which case f(e) is undefined and the command containing it fails (has no 
outcome) — failure is explained in section 6.  

A function invocation in an expression never affects the state. If the result is an exception, 
the containing command has an exceptional outcome; for details see section 6. 

The other forms of expressions (e.id, constructors, prefix and infix operators, combinations, 
and quantifications) are all syntactic sugar for function invocations, and their results are obtained 
by the rule used for invocations. There is a small exception for conditionals [5] and for the 
conditional logical operators /\,\/, and ==> that are defined in terms of conditionals [13].  
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exp ::= primary 
prefixOp exp % [1] 
exp infixOp exp % [1] 
infixOp : exp % exp’s elements combined by op [2] 
exp IS type % (EXISTS x: type | exp = x) 
exp AS type % error unless (exp IS type) [14] 

primary ::= literal 
name 
primary . id % method invocation [3] or record field 
primary arguments % function invocation 
constructor 
( exp ) 
( quantif declList | pred ) % /\:{d | p} for ALL, \/ for EXISTS [4] 
( pred => exp1 [*] exp2 ) % if pred then exp1 else exp2 [5] 
( pred => exp1 ) % undefined if pred is false 

literal ::= intLiteral % sequence of decimal digits 
charLiteral % 'x', x a printing character 
stringLiteral % "xxx", with \ escapes as in C 

arguments ::= ( expList ) % the arg is the tuple (expList) 
( ) 

constructor ::= { } % empty function/sequence/set [6] 
{ expList } % sequence/set constructor [6] 
( expList ) % tuple constructor 
name    { } % name denotes a func/seq/set type [6] 
name    { expList } % name denotes a seq/set/record type [6] 
primary { fieldDefList  } % record constructor [7] 
primary { exp -> result } % function or sequence constructor [8] 
primary { *   -> result } % function constructor [8] 
( LAMBDA signature = cmd ) % function with the local state [9] 
( \ declList | exp ) % short for (LAMBDA(d)->T=RET exp) [9] 
{ declList   | pred | exp } % set constructor [10] 
{ seqGenList | pred | exp } % sequence constructor [11] 

fieldDef ::= id := exp 

result ::= empty % the function is undefined 
exp % the function yields exp 
RAISE exception % the function yields exception 

seqGen ::= id := exp BY exp WHILE exp % sequence generator [11] 
id :IN exp   

pred ::= exp % predicate, of type Bool 
quantif ::= ALL  

EXISTS  
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    (precedence) argument/result types  operation 

infixOp ::= ** % (8) (Int, Int)->Int  exponentiate 
* % (7) (Int, Int)->Int  multiply 
 %  (T->U, U->V)->(T->V) [12] function composition 
/ % (7) (Int, Int)->Int  divide 
// % (7) (Int, Int)->Int  remainder 
+ % (6) (Int, Int)->Int  add 
 %  (SEQ T, SEQ T)->SEQ T [12] concatenation 
 % (T->U, T->U)->(T->U)  [12] function overlay 
- % (6) (Int, Int)->Int  subtract 
 %  (SET T, SET T)->SET T [12] set difference; 
 %  (SEQ T, SEQ T)->SEQ T [12] multiset difference 
!     % (6) (T->U, T)->Bool [12] function is defined 
!! % (6) (T->U, T)->Bool [12] func has normal value 
.. % (5) (Int, Int)->SEQ Int [12] subrange  
<= % (4) (Int, Int)->Bool  less than or equal 
 %  (SET T, SET T)->Bool [12] subset 
 %  (SEQ T, SEQ T)->Bool [12] prefix 
< % (4) (T, T)->Bool, T with <= less than 
 %   e1<e2 = (e1<=e2 /\ e1#e2) 
> % (4)  (T, T)->Bool, T with <= greater than 
 %   e1>e2 = e2<e1 
>= % (4) (T, T)->Bool, T with <= greater or equal 
 %   e1>=e2 = e2<=e1 
= % (4) (Any, Any)->Bool [1] equal 
# % (4) (Any, Any)->Bool   not equal 
 %     e1#e2 = ~ (e1=e2) 
<<= % (4) (SEQ T, SEQ T)->Bool [12] non-contiguous sub-seq  
IN % (4) (T, SET T)->Bool [12] membership 
/\ % (2) (Bool, Bool)->Bool [13] conditional and 
 %  (SET T, SET T)->SET T [12] intersection 
\/ % (1) (Bool, Bool)->Bool [13] conditional or 
 %  (SET T, SET T)->SET T [12] union 
==> % (0) (Bool, Bool)->Bool [13] conditional implies 
op % (5) not one of the above [1] 

prefixOp ::= - % (6) Int->Int  negation 
~ % (3) Bool->Bool  complement 
op % (5) not one of the above [1] 
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The ambiguity of the expression grammar is resolved by taking the infixOps to be left 
associative and using the indicated precedences for the prefixOps and infixOps (with 8 for IS 
and AS and 5 for : or any operator not listed); higher numbers correspond to tighter binding. The 
precedence is determined by the operator symbol and doesn’t depend on the operand types. 

[1] The meaning of prefixOp e is T."prefixOp"(e), where T is e’s type, and of 
e1 infixOp e2 is T1."infixOp"(e1, e2), where T1 is e1’s type. The built-in types Int (and 
Nat with the same operations), Bool, sequences, sets, and functions have the operations given 
in the grammar. Section 9 on built-in methods specifies the operators for built-in types other than 
Int and Bool. Special case: e1 IN e2 means T2."IN"(e1, e2), where T2 is e2’s type. 

Note that the = operator does not require that the types of its arguments agree, since both are Any. 
Also, = and # cannot be overridden by WITH. To define your own abstract equality, use a different 
operator such as "==". 

[2] The exp must have type SEQ T or SET T. The value is the elements of exp combined into a 
single value by infixOp, which must be associative and have an identity, and must also be 
commutative if exp is a set.  Thus  
 + : {i: Int | 0<i /\ i<5 | i**2} = 1 + 4 + 9 + 16 = 30, 
and if s is a sequence of strings, + : s is the concatenation of the strings. For another example, 
see the definition of quantifications in [4]. Note that the entire set is evaluated; see [10]. 

[3] Methods can be invoked by dot notation.  
 The meaning of e.id or e.id() is T.id(e), where T is e’s type.  
 The meaning of e1.id(e2) is T.id(e1, e2), where T is e1’s type.  
Section 9 on built-in methods gives the methods for built-in types other than Int and Bool.  

[4] A quantification is a conjunction (if the quantifier is ALL) or disjunction (if it is EXISTS) of 
the pred with the id’s in the declList bound to every possible value (that is, every value in 
their types); see section 4 for decl. Precisely, (ALL d | p) = /\ : {d | p} and 
(EXISTS d | p) = \/ : {d | p}. All the expressions in these expansions are evaluated, 
unlike e2 in the expressions e1 /\ e2 and e1 \/ e2 (see [10] and [13]). 

[5] A conditional (pred => e1 [*] e2) is not exactly an invocation. If pred is true, the result 
is the result of e1 even if e2 is undefined or exceptional; if pred is false, the result is the result of 
e2 even if e1 is undefined or exceptional. If pred is undefined, so is the result; if pred raises an 
exception, that is the result. If [*] e2 is omitted and pred is false, the result is undefined. 

[6] In a constructor {expList} each exp must have the same type T, the type of the 
constructor is (SEQ T + SET T), and its value is the sequence containing the values of the 
exps in the given order, which can also be viewed as the set containing these values.  

If expList is empty the type is the union of all function, sequence and set types, and the value is 
the empty sequence or set, or a function undefined everywhere. If desired, these constructors can 
be prefixed by a name denoting a suitable set or sequence type. 

A constructor T{e1, ..., en}, where T is a record type [f1: T1, ..., fn: Tn], is short for 
a record constructor (see [7]) T{f1:=e1, ..., fn:=en}. 

[7] The primary must have a record type, and the constructor has the same type as its primary 
and denotes the same value except that the fields named in the fieldDefList have the given 
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values. Each value must fit the type declared for its id in the record type.  The primary may also 
denote a record type, in which case any fields missing from the fieldDefList are given 
arbitrary (but deterministic) values. Thus if R=[a: Int, b: Int], R{a := 3, b := 4} is a 
record of type R with a=3 and b=4, and R{a := 3, b := 4}{a := 5} is a record of type R with 
a=5 and b=4. If the record type is qualified by a SUCHTHAT, the fields get values that satisfy it, 
and the constructor is undefined if that’s not possible. 

[8] The primary must have a function or sequence type, and the constructor has the same type as 
its primary and denotes a value equal to the value denoted by the primary except that it maps 
the argument value given by exp (which must fit the domain type of the function or sequence) to 
result (which must fit the range type if it is an exp). For a function, if result is empty the 
constructed function is undefined at exp, and if result is RAISE exception, then exception 
must be in the RAISES set of primary’s type. For a sequence result must not be empty or 
RAISE, and exp must be in primary.dom or the constructor expression is undefined.  

In the * form the primary must be a function type or a function, and the value of the constructor 
is a function whose result is result at every value of the function’s domain type (the type on the 
left of the ->). Thus if F=(Int->Int) and f=F{*->0}, then f is zero everywhere and f{4->1} is 
zero except at 4, where it is 1. If this value doesn’t have the function type, the constructor is 
undefined; this can happen if the type has a SUCHTHAT clause. For example, the type can’t be a 
sequence. 

[9] A LAMBDA constructor is a statically scoped function definition. When it is invoked, the 
meaning of the body is determined by the local state when the LAMBDA was evaluated and the 
global state when it is invoked; this is ad-hoc but convenient. See section 7 for signature and 
section 6 for cmd. The returns in the signature may not be empty. Note that a function can’t 
have side effects. 

The form (\ declList | exp) is short for (LAMBDA (declList) -> T = RET exp), where T 
is the type of exp. See section 4 for decl. 

[10] A set constructor { declList | pred | exp } has type SET T, where exp has type T 
in the current state augmented by declList; see section 4 for decl. Its value is a set that 
contains x iff (EXISTS declList | pred /\ x = exp). Thus 

{i: Int | 0<i /\ i<5 | i**2} = {1, 4, 9, 16} 

and both have type SET Int. If pred is omitted it defaults to true. If   | exp is omitted it 
defaults to the last id declared: 

{i: Int | 0<i /\ i<5} = {1, 2, 3, 4 } 

Note that if s is a set or sequence, IN s is a type (see section 4), so you can write a constructor 
like {i :IN s | i > 4} for the elements of s greater than 4. This is shorter and clearer than  

{i | i IN s /\ i > 4} 

If there are any values of the declared id’s for which pred is undefined, or pred is true and exp 
is undefined, then the result is undefined. If nothing is undefined, the same holds for exceptions; 
if more than one exception is raised, the result exception is an arbitrary choice among them. 

[11] A sequence constructor { seqGenList | pred | exp } has type SEQ T, where exp has 
type T in the current state augmented by seqGenList, as follows. The value of 

{x1 := e01 BY e1 WHILE p1, ... , xn := e0n BY en WHILE pn | pred | exp} 
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is the sequence which is the value of result produced by the following program. Here exp has 
type T and result is a fresh identifier (that is, one that doesn’t appear elsewhere in the program). 
There’s an informal explanation after the program. 

VAR x2 := e02, ..., xn := e0n, result := T{}, x1 := e01 | 
DO p1 => x2 := e2; p2 => ... => xn := en; pn =>  
    IF pred => result := result + {exp} [*] SKIP FI;  
    x1 := e1  
OD 

However, e0i and ei are not allowed to refer to xj if j > i. Thus the n sequences are unrolled 
in parallel until one of them ends, as follows. All but the first are initialized; then the first is 
initialized and all the others computed, then all are computed repeatedly. In each iteration, once 
all the xi have been set, if pred is true the value of exp is appended to the result sequence; thus 
pred serves to filter the result. As with set constructors, an omitted pred defaults to true, and an 
omitted | exp defaults to | xn. An omitted WHILE pi defaults to WHILE true. An omitted 
:= e0i defaults to  

:= {x: Ti | true}.choose  

where Ti is the type of ei; that is, it defaults to an arbitrary value of the right type. 

The generator xi :IN ei generates the elements of the sequence ei in order. It is short for 
j := 0 BY j + 1 WHILE j < ei.size, xi BY ei(j) 

where j is a fresh identifier. Note that if the :IN isn’t the first generator then the first element of 
ei is skipped, which is probably not what you want. Note that :IN in a sequence constructor 
overrides the normal use of IN s as a type (see [10]).  

Undefined and exceptional results are handled the same way as in set constructors. 

Examples 
{i := 0 BY i+1 WHILE i <= n} = 0..n = {0, 1, ..., n} 
(r := head BY r.next WHILE r # nil | | r.val} the val fields of a list starting at head 
{x :IN s, sum := 0 BY sum + x} partial sums of s 
{x :IN s, sum := 0 BY sum + x}.last + : s, the last partial sum 
{x :IN s, rev := {} BY {x} + rev}.last reverse of s 
{x :IN s | | f(x)} s * f 
{i :IN 1..n | i // 2 # 0 | i * i} squares of odd numbers <= n 
{i :IN 1..n, iter := e BY f(iter)} {f(e), f2(e), ..., fn(e)} 

[12] These operations are defined in section 9. 

[13] The conditional logical operators are defined in terms of conditionals: 
e1 \/  e2 = (  e1 => true  [*] e2 ) 
e1 /\  e2 = ( ~e1 => false [*] e2 ) 
e1 ==> e2 = ( ~e1 => true  [*] e2 ) 

Thus the second operand is not evaluated if the value of the first one determines the result. 

[14] AS changes only the type of the expression, not its value. Thus if (exp IS type) the value 
of (exp AS type) is the value of exp, but its type is type rather than the type of exp. 
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6. Commands 

A command changes the state (or does nothing). Recall that the state is a mapping from names to 
values; we denote it by state. Commands are non-deterministic. An atomic command is one 
that is inside <<...>> brackets. 

The meaning of an atomic command is a set of possible transitions (that is, a relation) between a 
state and an outcome (a state plus an optional exception); there can be any number of outcomes 
from a given state. One possibility is a looping exceptional outcome. Another is no outcomes. In 
this case we say that the atomic command fails; this happens because all possible choices within 
it encounter a false guard or an undefined invocation.  

If a subcommand fails, an atomic command containing it may still succeed. This can happen 
because it’s one operand of [] or [*] and the other operand succeeds. If can also happen because 
a non-deterministic construct in the language that might make a different choice. Leaving 
exceptions aside, the commands with this property are []and VAR (because it chooses arbitrary 
values for the new variables). If we gave an operational semantics for atomic commands, this 
situation would correspond to backtracking. In the relational semantics that we actually give (in 
Atomic Semantics of Spec), it corresponds to the fact that the predicate defining the relation is the 
“or” of predicates for the subcommands. Look there for more discussion of this point. 

A non-atomic command defines a collection of possible transitions, roughly one for each 
<<...>> command that is part of it. If it has simple commands not in atomic brackets, each one 
also defines a possible transition, except for assignments and invocations. An assignment 
defines two transitions, one to evaluate the right hand side, and the other to change the value of 
the left hand side. An invocation defines a transition for evaluating the arguments and doing 
the call and one for evaluating the result and doing the return, plus all the transitions of the body. 
These rules are somewhat arbitrary and their details are not very important, since you can always 
write separate commands to express more transitions, or atomic brackets to express fewer 
transitions. The motivation for the rules is to have as many transitions as possible, consistent 
with the idea that an expression is evaluated atomically.  

A complete collection of possible transitions defines the possible sequences of states or histories; 
there can be any number of histories from a given state. A non-atomic command still makes 
choices, but it does not backtrack and therefore can have histories in which it gets stuck, even 
though in other histories a different choice allows it to run to completion. For the details, see 
handout 17 on formal concurrency. 
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cmd ::= SKIP % [1] 
HAVOC % [1] 
RET % [2] 
RET exp % [2] 
RAISE exception % [9] 
CRASH % [10] 
invocation % [3] 
assignment % [4] 

   cmd              []  cmd % or [5] 
cmd              [*] cmd % else [5] 
pred             =>  cmd % guarded cmd: if pred then cmd [5] 
VAR declInitList  |  cmd % variable introduction [6] 
cmd               ;  cmd % sequential composition 
cmd EXCEPT handler % handle exception [9] 

   << cmd >> % atomic brackets [7] 
BEGIN cmd END % just brackets 
IF cmd FI % just brackets [5] 
DO cmd OD % repeat until cmd fails [8] 

invocation ::= primary arguments % primary has a routine type [3]  

assignment ::= lhs         := exp % state := state{name -> exp} [4] 
lhs infixOp := exp % short for lhs := lhs infixOp exp 
lhs         := invocation % of a PROC or APROC 
( lhsList ) := exp % exp a tuple that fits lhsList 
( lhsList ) := invocation 

lhs ::= name % defined in section 4  
lhs . id % record field [4] 
lhs arguments % function  [4] 

declInit ::= decl % initially any value of the type [6] 
id : type := exp % initially exp, which must fit type [6] 
id        := exp % short for id: T := exp, where 
 %   T is the type of exp 

handler ::= exceptionSet => cmd % [9]. See section 4 for exceptionSet 

The ambiguity of the command grammar is resolved by taking the command composition opera-
tions ;, [], and [*] to be left-associative and EXCEPT to be right associative, and giving [] and 
[*] lowest precedence, => and | next (to the right only, since their left operand is an exp), ; 
next, and EXCEPT highest precedence. 

[1] The empty command and SKIP make no change in the state. HAVOC produces an arbitrary 
outcome from any state; if you want to specify undefined behavior when a precondition is not 
satisfied, write ~precondition => HAVOC. 

[2] A RET may only appear in a routine body, and the exp must fit the result type of the routine. 
The exp is omitted iff the returns of the routine’s signature is empty. 

[3] For arguments see section 5. The argument are passed by value, that is, assigned to the 
formals of the procedure A function body cannot invoke a PROC or APROC; together with the rule 
for assignments (see [7]) this ensures that it can’t affect the state. An atomic command can 
invoke an APROC but not a PROC. A command is atomic iff it is << cmd >>, a subcommand of an 
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atomic command, or one of the simple commands SKIP, HAVOC, RET, or RAISE. The type-
checking rule for invocations is the same as for function invocations in expressions. 

[4] You can only assign to a name declared with VAR or in a signature. In an assignment the 
exp must fit the type of the lhs, or there is a fatal error. In a function body assignments must be 
to names declared in the signature or the body, to ensure that the function can’t have side effects.  

An assignment to a left hand side that is not a name is short for assigning a constructor to a 
name. In particular,  

lhs(arguments) := exp is short for lhs := lhs{arguments->exp}, and 
lhs . id  := exp is short for lhs := lhs{id := exp}.  

These abbreviations are expanded repeatedly until lhs is a name. 

In an assignment the right hand side may be an invocation (of a procedure) as well as an 
ordinary expression (which can only invoke a function). The meaning of lhs := exp or 
lhs := invocation is to first evaluate the exp or do the invocation and assign the result to a 
temporary variable v, and then do lhs := v. Thus the assignment command is not atomic unless 
it is inside <<...>>.  

If the left hand side of an assignment is a (lhsList), the exp must be a tuple of the same 
length, and each component must fit the type of the corresponding lhs. Note that you cannot 
write a tuple constructor that contains procedure invocations. 

[5] A guarded command fails if the result of pred is undefined or false. It is equivalent to cmd if 
the result of pred is true. A pred is just a Boolean exp; see section 4. 

S1 [] S2 chooses one of the Si to execute. It chooses one that doesn’t fail. Usually S1 and S2 
will be guarded. For example, 
x=1 => y:=0 [] x> 1 => y:=1 sets y to 0 if x=1, to 1 if x>1, and has no outcome if x<1. But 
x=1 => y:=0 [] x>=1 => y:=1 might set y to 0 or 1 if x=1. 

S1 [*] S2 is the same as S1 unless S1 fails, in which case it’s the same as S2. 

IF ... FI are just command brackets, but it often makes the program clearer to put them 
around a sequence of guarded commands, thus: 

IF x < 0 => y := 3 
[] x = 0 => y := 4 
[*]          y := 5 
FI 

[6] In a VAR the unadorned form of declInit initializes a new variable to an arbitrary value of 
the declared type. The := form initializes a new variable to exp. Precisely,  

VAR id: T := exp | c 

is equivalent to  
VAR id: T | id := exp; c  

The exp could also be a procedure invocation, as in an assignment. 

Several declInits after VAR is short for nested VARs. Precisely,  
VAR declInit ,     declInitList  | cmd 

is short for  
VAR declInit | VAR declInitList | cmd  

This is unlike a module, where all the names are introduced in parallel. 

[7] In an atomic command the atomic brackets can be used for grouping instead of BEGIN ... 
END; since the command can’t be any more atomic, they have no other meaning in this context. 
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[8] Execute cmd repeatedly until it fails. If cmd never fails, the result is a looping exception that 
doesn’t have a name and therefore can’t be handled. Note that this is not the same as failure. 

[9] Exception handling is as in Clu, but a bit simplified. Exceptions are named by literal strings 
(which are written without the enclosing quotes). A module can also declare an identifier that 
denotes a set of exceptions. A command can have an attached exception handler, which gets to 
look at any exceptions produced in the command (by RAISE or by an invocation) and not handled 
closer to the point of origin. If an exception is not handled in the body of a routine, it is raised by 
the routine’s invocation. 

An exception ex must be in the RAISES set of a routine r if either RAISE ex or an invocation of a 
routine with ex in its RAISES set occurs in the body of r outside the scope of a handler for ex. 

[10] CRASH stops the execution of any current invocations in the module other than the one that 
executes the CRASH, and discards their local state. The same thing happens to any invocations 
outside the module from within it. After CRASH, no procedure in the module can be invoked from 
outside until the routine that invokes it returns. CRASH is meant to be invoked from within a 
special Crash procedure in the module that models the effects of a failure. 

7. Modules 

A program is some global declarations plus a set of modules. Each module contains variable, 
routine, exception, and type declarations.  

Module definitions can be parameterized with mformals after the module id, and a 
parameterized module can be instantiated. Instantiation is like macro expansion: the formal 
parameters are replaced by the arguments throughout the body to yield the expanded body. The 
parameters must be types, and the body must type-check without any assumptions about the 
argument that replaces a formal other than the presence of a WITH clause that contains all the 
methods mentioned in the formal parameter list (that is, formals are treated as distinct from all 
other types). 

Each module is a separate scope, and there is also a Global scope for the identifiers declared at 
the top level of the program. An identifier id declared at the top level of a non-parameterized 
module m is short for m.id when it occurs in m. If it appears in the exports, it can be denoted by 
m.id anywhere. When an identifier id that is declared globally occurs anywhere, it is short for 
Global.id. Global cannot be used as a module id. 

An exported id must be declared in the module. If an exported id has a WITH clause, it must be 
declared in the module as a type with at least those methods, and only those methods are 
accessible outside the module; if there is no WITH clause, all its methods and constructors are 
accessible. This is Spec’s version of data abstraction. 

6.826—Principles of Computer Systems  2002 

Handout 4.  Spec Reference Manual 18 

program ::= toplevel* module* END 

module ::= modclass id mformals exports = body END id 

modclass ::= MODULE 
CLASS % [4] 

exports ::= EXPORT exportList 
export ::= id 

id WITH {methodList} % see section 4 for method  

mformals ::= empty 
[ mfpList ] 

mfp ::= id % module formal parameter 
id WITH { declList } % see section 4 for decl 

body ::= toplevel* % id must be the module id 
id [ typeList ] % instance of parameterized module 

toplevel ::= VAR declInit* % declares the decl ids [1] 
CONST declInit* % declares the decl ids as constant 
routineDecl % declares the routine id 
EXCEPTION exSetDecl* % declares the exception set ids 
TYPE typeDecl* % declares the type ids and any  
 % ids in ENUMs 

routineDecl ::= FUNC   id signature =  cmd % function 
APROC  id signature =<<cmd>> % atomic procedure 
PROC   id signature =  cmd % non-atomic procedure 
THREAD id signature =  cmd % one thread for each possible  
 % invocation of the routine [2] 

signature ::= ( declList ) returns raises % see section 4 for returns 
( )          returns raises %   and raises 

exSetDecl ::= id = exceptionSet % see section 4 for exceptionSet 

typeDecl ::= id = type % see section 4 for type 
id = ENUM [ idList ] % a value is one of the id’s [3] 

[1] The “:= exp” in a declInit (defined in section 6) specifies an initial value for the variable. 
The exp is evaluated in a state in which each variable used during the evaluation has been 
initialized, and the result must be a normal value, not an exception. The exp sees all the names 
known in the scope, not just the ones that textually precede it, but the relation “used during 
evaluation of initial values” on the variables must be a partial order so that initialization makes 
sense. As in an assignment, the exp may be a procedure invocation as well as an ordinary 
expression. It’s a fatal error if the exp is undefined or the invocation fails. 

[2] Instead of being invoked by the client of the module or by another procedure, a thread is 
automatically invoked in parallel once for every possible value of its arguments. The thread is 
named by the id in the declaration together with the argument values. So 

VAR sum := 0, count := 0 
THREAD P(i: Int) = i IN 0 .. 9 =>  
  VAR t | t := F(i); <<sum := sum + t>>; <<count := count + 1>> 
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adds up the values of F(0) ... F(9) in parallel. It creates a thread P(i) for every integer i; the 
threads P(0), ..., P(9) for which the guard is true invoke F(0), ..., F(9) in parallel and 
total the results in sum. When count = 10 the total is complete. 

A thread is the only way to get an entire program to do anything (except evaluate initializing 
expressions, which could have side effects), since transitions only happen as part of some thread. 

[3] The id’s in the list are declared in the module; their type is the ENUM type. There are no 
operations on enumeration values except the ones that apply to all types: equality, assignment, 
and routine argument and result communication. 

[4] A class is shorthand for a module that declares a convenient object type. The next few 
paragraphs specify the shorthand, and the last one explains the intended usage.  

If the class id is Obj, the module id is ObjMod. Each variable declared in a top level VAR in the 
class becomes a field of the ObjRec record type in the module. The module exports only a type 
Obj that is also declared globally. Obj indexes a collection of state records of type ObjRec stored 
in the module’s objs variable, which is a function Obj->ObjRec. Obj’s methods are all the 
names declared at top level in the class except the variables, plus the new method described 
below; the exported Obj’s methods are all the ones that the class exports plus new.  

To make a class routine suitable as a method, it needs access to an ObjRec that holds the state of 
the object. It gets this access through a self parameter of type Obj, which it uses to refer to the 
object state objs(self). To carry out this scheme, each routine in the module, unless it appears 
in a WITH clause in the class, is ‘objectified’ by giving it an extra self parameter of type Obj. In 
addition, in a routine body every occurrence of a variable v declared at top level in the class is 
replaced by objs(self).v in the module, and every invocation of an objectified class routine 
gets self as an extra first parameter. 

The module also gets a synthesized and objectified StdNew procedure that adds a state record to 
objs, initializes it from the class’s variable initializations (rewritten like the routine bodies), and 
returns its Obj index; this procedure becomes the new method of Obj unless the class already has 
a new routine.  

A class cannot declare a THREAD. 

The effect of this transformation is that a variable obj of type Obj behaves like an object. The 
state of the object is objs(obj). The invocation obj.m or obj.m(x) is short for ObjMod.m(obj) 
or ObjMod.m(obj, x) by the usual rule for methods, and it thus invokes the method m; in m’s 
body each occurrence of a class variable refers to the corresponding field in obj’s state. 
obj.new() returns a new and initialized Obj object. The following example shows how a class is 
transformed into a module. 
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CLASS Obj EXPORT T1, f, p, … = MODULE ObjMod EXPORT Obj WITH {T1, f, p, new } = 

TYPE T1 = … WITH {add:=AddT} TYPE T1 = … WITH {add:=AddT} 
CONST c := …   CONST c := … 

VAR v1:T1:=ei, v2:T2:=pi(v1), … TYPE ObjRec = [v1: T1, v2: T2, …] 
         Obj = Int WITH {T1, c, f:=f, p:=p, 
                         AddT:=AddT, …, new:=StdNew} 
    VAR  objs: Obj -> ObjRec := {} 

FUNC f(p1: RT1, …) = … v1 …  FUNC f(self: Obj, p1: RT1, …) = … objs(self).v1 … 
PROC p(p2: RT2, …) = … v2 … PROC p(self: Obj, p2: RT2, …) = … objs(self).v2 … 
FUNC AddT(t1, t2) = … FUNC AddT(t1, t2) = … % in T1’s WITH, so not objectifie
…  … 
  PROC StdNew(self: Obj) -> Obj =  
    VAR obj: Obj | ~ obj IN objs.dom =>  
      objs(obj)    := ObjRec{};  
      objs(obj).v1 := ei;  
      objs(obj).v2 := pi(objs(obj).v1); 
      …; 
      RET obj 

END Obj   END ObjMod 

    TYPE Obj = ObjMod.Obj 

In abstraction functions and invariants we also write obj.n for field n in obj’s state, that is, for 
ObjMod.objs(obj).n. 

8. Scope 
The declaration of an identifier is known throughout the smallest scope in which the declaration 
appears (redeclaration is not allowed). This section summarizes how scopes work in Spec; terms 
defined before section 7 have pointers to their definitions. A scope is one of 

the whole program, in which just the predefined (section 3), module, and globally declared 
identifiers are declared; 

a module; 

the part of a routineDecl or LAMBDA expression (section 5) after the =; 

the part of a VAR declInit | cmd command after the | (section 6); 

the part of a constructor or quantification after the first | (section 5). 

a record type or methodDefList (section 4); 

An identifier is declared by 

a module id, mfp, or toplevel (for types, exception sets, ENUM elements, and named 
routines), 

a decl in a record type (section 4), | constructor or quantification (section 5), declInit 
(section 6), routine signature, or WITH clause of a mfp, or 

a methodDef in the WITH clause of a type (section 4). 
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An identifier may not be declared in a scope where it is already known. An occurrence of an 
identifier id always refers to the declaration of id which is known at that point, except when id 
is being declared (precedes a :, the = of a toplevel, the := of a record constructor, or the := or 
BY in a seqGen), or follows a dot. There are four cases for dot: 

moduleId . id — the id must be exported from the basic module moduleId, and this 
expression denotes the meaning of id in that module. 

record . id — the id must be declared as a field of the record type, and this expression 
denotes that field of record. In an assignment’s lhs see [7]  in section 6 for the meaning. 

typeId . id — the typeId denotes a type, id must be a method of this type, and this 
expression denotes that method. 

primary . id — the id must be a method of primary’s type, and this expression, together 
with any following arguments, denotes an invocation of that method; see [2] in section 5 on 
expressions. 

If id refers to an identifier declared by a toplevel in the current module m, it is short for m.id. 
If it refers to an identifier declared by a toplevel in the program, it is short for Global.id. 
Once these abbreviations have been expanded, every name in the state is either global (contains a 
dot and is declared in a toplevel), or local (does not contain a dot and is declared in some other 
way). 

Exceptions look like identifiers, but they are actually string literals, written without the enclosing 
quotes for convenience. Therefore they do not have scope. 

9. Built-in methods 

Some of the type constructors have built-in methods, among them the operators defined in the 
expression grammar. The built-in methods for types other than Int and Bool are defined below. 
Note that these are not complete definitions of the types; they do not include the constructors. 

Sets 

A set has methods for 

computing union, intersection, and set difference (lifted from Bool; see note 3 in section 4), 
and adding or removing an element, testing for membership and subset; 

choosing (deterministically) a single element from a set, or a sequence with the same 
members, or a maximum or minimum element, and turning a set into its characteristic 
predicate (the inverse is the predicate’s set method); 

composing a set with a function or relation, and converting a set into a relation from nil to 
the members of the set (the inverse of this is just the range of the relation).  

We define these operations with a module that represents a set by its characteristic predicate. 
Precisely, SET T behaves as though it were Set[T].S, where 
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MODULE Set[T] EXPORT S = 

TYPE S = Any->Bool SUCHTHAT (\ s | (ALL any | s(any) ==> (any IS T))) 
% Defined everywhere so that type inclusion will work; see section 4. 
                   WITH {"\/":=Union, "/\":=Intersection, "-":=Difference,  
                         "IN":=In, "<=":=Subset, choose:=Choose, seq:=Seq,  
         pred:=Pred, perms:=Perms, fsort:=FSort, sort:=Sort, 
         fmax:=FMax, fmin:=FMin, max:=Max, min:=Min 
         "*":=ComposeF, rel:=Rel, "**":=ComposeR } 

FUNC Union(s1, s2)->S        = RET (\ t | s1(t) \/  s2(t)) % s1 \/ s2 
FUNC Intersection(s1, s2)->S = RET (\ t | s1(t) /\  s2(t)) % s1 /\ s2 
FUNC Difference(s1, s2)->S   = RET (\ t | s1(t) /\ ~s2(t)) % s1 - s2 
FUNC In(s, t)->Bool          = RET s(t)  % t IN s 
FUNC Subset(s1, s2)->Bool    = RET (ALL t| s1(t) ==> s2(t)) % s1 <= s2 
FUNC Size(s)->Int            =   % s.size 

VAR t | s(t) => RET Size(s-{t}) + 1 [*] RET 0 
FUNC Choose(s)->T            = VAR t | s(t) => RET t   % s.choose   
% Not really, since VAR makes a non-deterministic choice,  
% but choose makes a deterministic one. It is undefined if s is empty. 
FUNC Seq(s)->SEQ T           =   % s.seq 
% Defined only for finite sets. Note that Seq chooses a sequence deterministically. 

RET {q: SEQ T | q.rng = s /\ q.size = s.size}.choose  
FUNC Pred(s)->(T->Bool)      = RET s  % s.pred 
% s.pred is just s. We define pred for symmetry with seq, set, etc.  

FUNC Perms(s)->SET SEQ T         = RET s.seq.perms  % s.perms 
FUNC FSort(s, f: (T,T)->Bool)->S = RET s.seq.fsort(f)  % s.fsort(f); f is compare 
FUNC Sort(s)->S                  = RET s.seq.sort  % s.sort; only if T has <= 
FUNC FMax(s, f: (T,T)->Bool)->T  = RET s.fsort(f).last % s.fmax(f); a max under f 
FUNC FMin(s, f: (T,T)->Bool)->T  = RET s.fsort(f).head % s.fmin(f); a min under f 
FUNC Max(s)->T                   = RET s.fmax(T."<=")  % s.max; only if T has <= 
FUNC Min(s)->T                   = RET s.fmin(T."<=")  % s.min; only if T has <= 
% Note that these functions are undefined if s is empty. If there are extremal 
% elements not distinguished by f or "<=", they make an arbitrary deterministic choice. 
FUNC ComposeF(s, f: T->U)->SET U  = RET {t :IN s | | f(t)} % s * f; image of s under f 
% ComposeF by analogy with sequences, where ordinary function composition applies pointwise to the elements.  
FUNC Rel(s) -> ((Null, T)->Bool) = RET (\ null, t | t IN s) 
% s.rel relates nil to every element of s 
FUNC ComposeR(s, r: (T, U)->Bool)->SET U = RET(s.rel*r).rng % s ** r; image of s under r 
% ComposeR is relational composition: anything you can get to by r, starting with a member of s. We could have written 
explicitly: {t :IN s, u | r(t, u) | u}, or as \/ : (s * r.setF), or as (s.rel * r).rng 

END Set 

There are constructors {} for the empty set, {e1, e2, ...} for a set with specific elements, and 
{declList | pred | exp} for a set whose elements satisfy a predicate. These constructors are 
described in [6] and [10] of section 5. Note that {t | p}.pred = (\ t | p), and similarly (\ t 
| p).set = {t | p}.  A method on T is lifted to a method on S, unless the name conflicts with 
one of S’s methods, exactly like lifting on S.rel; see note 3 in section 4.  

Functions 

The function types T->U and T->U RAISES XS have methods for  

composition, overlay, inverse, and restriction; 
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testing whether a function is defined at an argument and whether it produces a normal (non-
exceptional) result at an argument, and for the domain and range; 

converting a function to a relation (the inverse is the relation’s func method) or a function 
that produces a set to a relation with each element of the set (setRel; the inverse is the 
relation’s setF method). 

In other words, they behave as though they were Function[T, U].F, where (making allowances 
for the fact that XS and V are pulled out of thin air): 

MODULE Function[T, U] EXPORT F = 

TYPE F = T->U RAISES XS WITH {"*":=Compose, "+":=Overlay,  
                              inv:=Inverse, restrict:=Restrict, 
                              "!":=Defined, "!!":=Normal,  
                              dom:=Domain, rng:=Range, rel:=Rel, setRel:=SetRel} 
     R = (T, U) -> Bool 

FUNC Compose(f, g: U -> V) -> (T -> V) = RET (\ t | g(f(t))) 
% Note that the order of the arguments is reversed from the usual mathematical convention. 

FUNC Overlay(f1, f2) -> F = RET (\ t | (f2!t => f2(t) [*] f1(t))) 
% (f1 + f2) is f2(x) if that is defined, otherwise f1(x) 

FUNC Inverse(f) -> (U -> T) = RET f.rel.inv.func 
FUNC Restrict(f, s: SET T) -> F = RET (\ t | (t IN s => f(t))) 

FUNC Defined(f, t)->Bool = 
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET true 

FUNC Normal(f, t)->Bool = 
IF f(t)=f(t) => RET true [*] RET false FI EXCEPT XS => RET false 

FUNC Domain(f) -> SET T = RET {t | f!t} 
FUNC Range (f) -> SET U = RET {t | f!!t | f(t)} 

FUNC Rel(f) -> R = RET (\ t, u | f(t) = u) 
FUNC SetRel(f) -> ((T, V)->Bool) = RET (\ t, v | (f!t ==> v IN f(t) [*] false) )  
% if U = SET V, f.setRel relates each t in f.dom to each element of f(t). 

END Function 

Note that there are constructors {} for the function undefined everywhere, T{* -> result} for 
a function of type T whose value is result everywhere, and f{exp -> result} for a function 
which is the same as f except at exp, where its value is result. These constructors are described 
in [6] and [8] of section 5. There are also lambda constructors for defining a function by a 
computation, described in [9] of section 5. A method on U is lifted to a method on F, unless the 
name conflicts with a method of F; see note 3 in section 4. 

A total function T->Bool is a predicate and has an additional method to compute the set of T’s 
that satisfy the predicate (the inverse is the set’s pred method). In other words, a predicate 
behaves as though it were Predicate[T].P, where 

MODULE Predicate[T] EXPORT P = 

TYPE P = T -> Bool WITH {set:=Set} 
FUNC Set(p) -> SET T = RET {t | p(t)} 
END Predicate 
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A predicate with T = (U, V) is a relation and has additional methods to turn it into a function U 
-> V or a function U -> SET V, and to get its domain and range, invert it or compose it 
(overriding the methods for a function). In other words, it behaves as though it were 
Relation[U, V].R, where (allowing for the fact that W is pulled out of thin air in Compose): 

MODULE Relation[U, V] EXPORT R = 

TYPE R = (U, V) -> Bool WITH {func:=Func, setF:=SetFunc, dom:=Domain, rng :=Range, 
                          inv:=Inverse, "*":=Compose} 

FUNC Func(r) -> (U -> V) = 
% Func(r) is defined at u iff r relates u to a single v. 

RET (\ u | (r.setF(u).size = 1 => r.setF(u).choose)) 
FUNC SetFunc(r) -> (U -> SET V) = RET (\ u | {v | r(u, v)})  
% SetFunc(r) is defined everywhere, returning the set of V’s related to u. 

FUNC Domain(r) -> SET U = RET {u, v | r(u, v) | u} 
FUNC Range (r) -> SET V = RET {u, v | r(u, v) | v} 

FUNC Inverse(r) -> ((V, U) -> Bool) = RET (\ v, u | r(u, v)) 

FUNC Compose(r: R, s: (V, W)->Bool) -> (U, W)->Bool =  
RET (\ u, w | (EXISTS v | r(u, v) /\ s(v, w)) ) 

END Relation 

A method on V is lifted to a method on R, unless there’s a name conflict; see note 3 in section 4. 

A relation with U = V is a graph and has additional methods to yield the sequences of U’s that are 
paths in the graph and to compute the transitive closure. In other words, it behaves as though it 
were Graph[U].G, where 

MODULE Graph[T] EXPORT G = 

TYPE G = (T, T) -> Bool WITH {paths:=Paths, closure:=TransitiveClosure } 
     P = SEQ T 

FUNC Paths(g) -> SET P = RET {p | (ALL i :IN p.dom - {0} | g(p(i-1), p(i)))} 
% Any p of size <= 1 is a path by this definition. 
FUNC TransitiveClosure(g) -> G = RET (\ t1, t2 |   

(EXISTS p | p.size > 1 /\ p.head = t1 /\ p.last = t2 /\ p IN g.paths )) 

END Graph 

Sequences 

A function is called a sequence if its domain is a finite set of consecutive Int’s starting at 0, that 
is, if it has type  

Q = Int -> T SUCHTHAT (\ q | (EXISTS size: Int | q.dom = (0 .. size-1).rng)) 

We denote this type (with the methods defined below) by SEQ T. A sequence inherits the 
methods of the function (though it overrides +), and it also has methods for  

detaching or attaching the first or last element,  
extracting a segment of a sequence, concatenating two sequences, or finding the size, 
making a sequence with all elements the same  
making a sequence into a tuple (rng makes it into a set),  
testing for prefix or sub-sequence (not necessarily contiguous), 
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composing with a relation (SEQ T inherits composing with a function), 
lexical comparison, permuting, and sorting, 
 treating a sequence as a multiset with operations to: 

count the number of times an element appears, test membership and multiset equality, 
take differences, and remove an element ("+" or "\/" is union and addl adds an 
element). 

All these operations are undefined if they use out-of-range subscripts, except that a sub-sequence 
is always defined regardless of the subscripts, by taking the largest number of elements allowed 
by the size of the sequence. 

We define the sequence methods with a module. Precisely, SEQ T is Sequence[T].Q, where: 

MODULE Sequence[T] EXPORTS Q = 

TYPE I = Int  
Q = (I -> T)  
  SUCHTHAT (\ q | (ALL i | q!i = (0 <= i /\ i < q.size))) 
  WITH { size:=Size, seg:=Seg, sub:=Sub, "+":=Concatenate, 
         head:=Head, tail:=Tail, addh:=AddHead, remh:=Tail,  
         last:=Last, reml:=RemoveLast, addl:=AddLast,  
                fill:=Fill, tuple:=Tuple, 
         "<=":=Prefix, "<<=":=SubSeq, 
         "**":=ComposeR, lexLE:=LexLE, perms:=Perms, 
         fsorter:=FSorter, fsort:=FSort, sort:=Sort, 
 
  % These methods treat a sequence as a multiset (or bag). 
         count:=Count, "IN":=In, "==":=EqElem,  
         "\/":=Concatenate, "-":=Diff, set:=Q.rng } 

FUNC Size(q)-> Int  = RET q.dom.size 

FUNC Sub(q, i1, i2) -> Q =  
% q.sub(i1, i2); yields {q(i1),...,q(i2)}, or a shorter sequence if i1 < 0 or i2 >= q.size 

RET ({0, i1}.max .. {i2, q.size-1}.min) * q 

FUNC Seg(q, i, n: I) -> Q = RET q.sub(i, i+n-1) % q.seg(i,n); n T’s from q(i) 

FUNC Concatenate(q1, q2) -> Q = VAR q | % q1 + q2 
q.sub(0, q1.size-1) = q1 /\ q.sub(q1.size, q.size-1) = q2 => RET q 

FUNC Head(q) -> T = RET q(0) % q.head; first element 
FUNC Tail(q) -> Q =  % q.tail; all but first 

q.size > 0 => RET q.sub(1, q.size-1) 
FUNC AddHead(q, t) -> Q = RET {t} + q % q.addh(t) 

FUNC Last(q) -> T = RET q(q.size-1) % q.last; last element 
FUNC RemoveLast(q) -> Q =  % q.reml; all but last 

q # {} => RET q.sub(0, q.size-2) 
FUNC AddLast(q, t) -> Q = RET q + {t} % q.addl(t) 

FUNC Fill(t, n: I) -> Q = RET {i :IN 0 .. n-1 | | t} % yields i copies of t 

FUNC Prefix(q1, q2) -> Bool =  % q1 <= q2 
RET (EXISTS q | q1 + q = q2) 

FUNC SubSeq(q1, q2) -> Bool = % q1 <<= q2 
% Are q1’s elements in q2 in the same order, not necessarily contiguously. 
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RET (EXISTS p: SET Int | p <= q2.dom /\ q1 = p.seq.sort * q2) 

FUNC ComposeR(q, r: (T, U)->Bool) -> SEQ U = % q ** r 
% Elements related to nothing are dropped. If an element is related to several things, they appear in arbitrary order. 

RET + : (q * r.setF * (\s: SET U | s.seq)) 

FUNC LexLE(q1, q2, f: (T,T)->Bool) -> Bool =  % q1.lexLE(q2, f); f is <= 
% Is q1 lexically less than or equal to q2. True if q1 is a prefix of q2,  
% or the first element in which q1 differs from q2 is less. 

RET    q1 <= q2  
    \/ (EXISTS i :IN q1.dom /\ q2.dom |   q1.sub(0, i-1) = q2.sub(0, i-1)  
                                      /\ q1(i) # q2(i)) /\ f(q1(i), q2(i)) 

FUNC Perms(q)->SET Q = % q.perms 
RET {q' | (ALL t | q.count(t) = q'.count(t))} 

FUNC FSorter(q, f: (T,T)->Bool)->SEQ Int = % q.fsorter(f); f is <= 
% The permutation that sorts q stably. Note: can’t use min to define this, since min is defined using sort. 

VAR ps := {p :IN q.dom.perms  % all perms that sort q 
          | (ALL i :IN (q.dom - {0}) | f((p*q)(i-1), (p*q)(i))) } | 
  VAR p0 :IN ps |  % the one that reorders the least 

(ALL p :IN ps | p0.lexLE(p, Int."<=")) => RET p0  

FUNC FSort(q, f: (T,T)->Bool) -> Q = % q.fsort(f); f is <= for the sort 
RET q.fsorter(f) * q 

FUNC Sort(q)->Q = RET q.fsort(T.”<=”) % q.sort; only if T has <= 

FUNC Count(q, t)->Int = RET {t' :IN q | t' = t}.size % q.count(t) 
  

FUNC In(t, q)->Bool = RET (q.count(t) # 0) % t IN q 
FUNC EqElem(q1, q2) -> Bool = RET q1 IN q2.perms % q1 == q2; equal as multisets 

FUNC Diff(q1, q2) -> Q =   % q1 - q2 
RET {q | (ALL t | q.count(t) = {q1.count(t) - q2.count(t), 0}.max)}.choose  

END Sequence 

We can’t program Tuple in Spec, but it is defined as follows. If q: SEQ T, then q.tuple is a 
tuple of q.size T’s, the first equal to q(0), the second equal to q(1), and so forth. For the 
inverse, if u is a tuple of T’s, then u.seq is a SEQ T such that u.seq.tuple = u. If u is a tuple in 
which not all the elements have the same declared type, then u.seq is a SEQ Any such that 
u.seq.tuple = u. 

Int has a method .. for making sequences: i .. j = {i, i+1, ..., j-1, j}. If j < i, 
i .. j = {}.  You can also write i .. j as {k := i BY k + 1 WHILE k <= j}; see [11] in 
section 5. Int also has a seq method: i.seq = 0 .. i-1.  

There is a constructor {e1, e2, ...} for a sequence with specific elements and a constructor 
{} for the empty sequence. There is also a constructor q{e1 -> e2}, which is equal to q except 
at e1 (and undefined if e1 is out of range). For the constructors see [6] and [8] of section 5. To 
generate a sequence there are constructors {x :IN q | pred | exp} and {x := e1 BY e2 
WHILE pred1 | pred2 | exp}. For these see [11] of section 5. 

To map each element t of q to f(t) use function composition q * f. Thus if q: SEQ Int, 
q * (\ i: Int | i*i) yields a sequence of squares. You can also write this 
{i :IN q | | i*i}. 
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5.  Examples of Specs and Code 

This handout is a supplement for the first two lectures. It contains several example specs and 
code, all written using Spec. 

Section 1 contains a spec for sorting a sequence. Section 2 contains two specs and one code for 
searching for an element in a sequence. Section 3 contains specs for a read/write memory. 
Sections 4 and 5 contain code for a read/write memory based on caching and hashing, 
respectively. Finally, Section 6 contains code based on replicated copies. 

1. Sorting 

The following spec describes the behavior required of a program that sorts sets of some type T 
with a "<=" comparison method. We do not assume that "<=" is antisymmetric; in other words, 
we can have t1 <= t2 and t2 <= t1 without having t1 = t2, so that "<=" is not enough to 
distinguish values of T. For instance, T might be the record type [name:String, salary: Int] 
with "<=" comparison of the salary field. Several T’s can have different names but the same 
salary. 

APROC Sort(s: SET T) -> SEQ T = << 
VAR q: SEQ T | (ALL i: T | s.count(i) = q.count(i)) /\ Sorted(b) => RET b >>  

This spec uses the auxiliary function Sorted, defined as follows. 

FUNC Sorted(q: SEQ T) -> Bool = RET (ALL i :IN q.dom – {0} |  q(i-1) <= q(i)) 

If we made Sort a FUNC rather than a PROC, what would be wrong?1 What could we change to 
make it a FUNC? 

We could have written this more concisely as 

APROC Sort(s: SET T) -> SEQ T =  
<< VAR q :IN a.perms | Sorted(q) => RET q >>  

using the perms method for sets that returns a set of sequences that contains all the possible 
permutations of the set. 

2. Searching 

Search spec 

We begin with a spec for a procedure to search an array for a given element. Again, this is an 
APROC rather than a FUNC because there can be several allowable results for the same inputs. 

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} = 
<< IF  VAR i: Int | (0 <= i /\ i < q.size /\ q(i) = x) => RET i 

                                                 
1 Hint: a FUNC can’t have side effects and must be deterministic (return the same value for the same arguments). 
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   [*] RAISE NotFound  
   FI >> 

Or, equivalently but slightly more concisely: 

APROC Search(q: SEQ T, x: T) -> Int RAISES {NotFound} = 
<< IF VAR i :IN q.dom | q(i) = x => RET i [*] RAISE NotFound FI >> 

Sequential search code 

Here is code for the Search spec given above. It uses sequential search, starting at the first 
element of the input sequence. 

APROC SeqSearch(q: SEQ T, x: T) -> Int RAISES {NotFound} = << VAR i := 0 | 
DO i < q.size => IF q(i) = x => RET i [*] i + := 1 FI OD; RAISE NotFound >> 

Alternative search spec 

Some searching algorithms, for example, binary search, assume that the input argument sequence 
is sorted. Such algorithms require a different spec, one that expresses this requirement. 

APROC Search1(q: SEQ T, x: T) -> Int RAISES {NotFound} = <<  
IF  ~Sorted(q) => HAVOC 
[*] VAR i :IN q.dom | q(i) = x => RET i 
[*] RAISE NotFound  
FI >> 

You might consider writing the spec to raise an exception when the array is not sorted: 

APROC Search2(q: SEQ T, x: T) -> Int RAISES {NotFound, NotSorted} = <<  
IF  ~Sorted(q) => RAISE NotSorted 
... 

This is not a good idea. The whole point of binary search is to obtain O(log n) time performance 
(for a sorted input sequence). But any code for the Search2 spec requires an O(n) check, even 
for a sorted input sequence, in order to verify that the input sequence is in fact sorted. 

This is a simple but instructive example of the difference between defensive programming and 
efficiency. If Search were part of an operating system interface, it would be intolerable to have 
HAVOC as a possible transition, because the operating system is not supposed to go off the deep 
end no matter how it is called (though it might be OK to return the wrong answer if the input 
isn’t sorted; what would that spec be?). On the other hand, the efficiency of a program often 
depends on assumptions that one part of it makes about another, and it’s appropriate to express 
such an assumption in a spec by saying that you get HAVOC if it is violated. We don’t care to be 
more specific about what happens because we intend to ensure that it doesn’t happen. Obviously 
a program written in this style will be more prone to undetected or obscure errors than one that 
checks the assumptions, as well as more efficient. 
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3. Read/write memory 

The simplest form of read/write memory is a single read/write register, say of type V (for value), 
with arbitrary initial value. The following Spec module describes this: 

MODULE Register [V] EXPORT Read, Write = 

VAR x: V    % arbitrary initial value 

APROC Read() -> V = << RET x  >> 
APROC Write(v)    = << x := v >> 

END Register 

Now we give a spec for a simple addressable memory with elements of type V. This is like a 
collection of read/write registers, one for each address in a set A. In other words, it’s a function 
from addresses to data values. For variety, we include new Reset and Swap operations in 
addition to Read and Write. 

MODULE Memory [A, V] EXPORT Read, Write, Reset, Swap = 

TYPE M =  A -> V 
VAR m := Init() 

APROC Init() -> M  = << VAR m' | (ALL a | m'!a) => RET m' >> 
% Choose an arbitrary function that is defined everywhere. 

FUNC  Read(a) -> V = << RET m(a)  >> 
APROC Write(a, v)  = << m(a) := v >> 

APROC Reset(v)     = << m := M{* -> v} >> 
% Set all memory locations to v. 

APROC Swap(a, v) -> V = << VAR v' := m(a) | m(a) := v; RET v' >> 
% Set location a to the input value and return the previous value. 

END Memory 

The next three sections describe code for Memory. 
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4. Write-back cache code 

Our first code is based on two memory mappings, a main memory m and a write-back cache c. 
The code maintains the invariant that the number of addresses at which c is defined is constant. 
A real cache would probably maintain a weaker invariant, perhaps bounding the number of 
addresses at which c is defined. 

MODULE WBCache [A, V] EXPORT Read, Write, Reset, Swap = 
% implements Memory 

TYPE M = A -> V 
C = A -> V 

CONST Csize : Int := ...     % cache size 

VAR m := InitM() 
c := InitC() 

APROC InitM() -> M = << VAR m' | (ALL a | m'!a)      => RET m' >> 
% Returns a M with arbitrary values. 

APROC InitC() -> C = << VAR c' | c'.dom.size = CSize => RET c' >> 
% Returns a C that has exactly CSize entries defined, with arbitrary values. 

APROC Read(a) -> V = << Load(a); RET c(a) >> 
APROC Write(a, v) = << IF ~c!a => FlushOne() [*] SKIP FI; c(a) := v >> 
% Makes room in the cache if necessary, then writes to the cache. 

APROC Reset(v) = <<...>>   % exercise for the reader 

APROC Swap(a, v) -> V = << VAR v' | Load(a); v' := c(a); c(a) := v; RET v' >> 

% Internal procedures. 

APROC Load(a) = << IF ~c!a => FlushOne(); c(a) := m(a) [*] SKIP FI >>  
% Ensures that address a appears in the cache. 

APROC FlushOne() =    
% Removes one (arbitrary) address from the cache, writing the data value back to main memory if necessary. 

<< VAR a | c!a => IF Dirty(a) => m(a) := c(a) [*] SKIP FI; c := c{a -> } >> 

FUNC Dirty(a) -> Bool = RET c!a /\ c(a) # m(a) 
% Returns true if the cache is more up-to-date than the main memory. 

END WBCache 

The following Spec function is an abstraction function mapping a state of the WBCache module to 
a state of the Memory module. It’s written to live inside the module. It says that the contents of 
location a is c(a) if a is in the cache, and m(a) otherwise. 

FUNC AF() -> M = RET (\ a | c!a => c(a) [*] m(a) ) 
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5. Hash table code 

Our second code for Memory uses a hash table for the representation. 

MODULE HashMemory [A WITH {hf: A->Int}, V] EXPORT Read, Write, Reset, Swap = 
% Implements Memory. 
% The module expects that the hash function A.hf is total and that its range is 0 .. n for some n.  

TYPE Pair = [a, v] 
B = SEQ Pair % Bucket in hash table 
HashT = SEQ B 

VAR nb := NumB() % Number of Buckets 
m := HashT.fill(B{}, nb) % Memory hash table; initially empty 
default : V                    % arbitrary default value 

APROC Read(a) -> V = << VAR b := m(a.hf), i: Int | 
i := FindEntry(a, b) EXCEPT NotFound => RET default ; RET b(i).v >> 

APROC Write(a, v) = << VAR b := DeleteEntry(a, m(a.hf)) | 
m(a.hf) := b + {Pair{a, v}} >> 

APROC Reset(v) = << m := HashT.fill(B{}, nb); default := v >> 

APROC Swap(a, v) -> V = << VAR v' | v' := Read(a); Write(a, v); RET v' >> 

% Internal procedures. 

FUNC NumBs() -> Int = 
% Returns the number of buckets needed by the hash function; havoc if the hash function is not as expected. 

IF VAR n: Nat | A.hf.rng = (0 .. n).rng => RET n + 1 [*] HAVOC FI 

APROC FindEntry(a, b) -> Int RAISES (NotFound) = 
% If a appears in a pair in b, returns the index of some pair containing a; otherwise raises NotFound.  

<< VAR i :IN b.dom | b(i).a = a => RET i [*] RAISE NotFound >> 

APROC DeleteEntry(a, b) -> B << VAR i: Int | 
% Removes some pair with address a from b, if any exists. 

i := FindEntry(a, b) EXCEPT NotFound => RET b ; 
RET b.sub(0, i-1) + b.sub(i+1, b.size-1) >> 

END HashMemory 

Note that FindEntry and DeleteEntry are APROCs because they are not deterministic when 
given arbitrary b arguments. 

The following is a key invariant that holds between invocations of the operations of HashMemory: 

FUNC Inv() -> Bool = RET  
(  nb > 0  
/\ m.size = nb 
/\ (ALL a | a.hf IN m.dom)  
/\ (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i) 
/\ (ALL a | { j :IN m(a.hf).dom | m(a.hf)(j).a = a }.size <= 1) ) 

This says that the number of buckets is positive, that the hash function maps all addresses to 
actual buckets, that a pair containing address a appears only in the bucket at index a.hf in m, and 
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that at most one pair for an address appears in the bucket for that address. Note that these 
conditions imply that in any reachable state of HashMemory, each address appears in at most one 
pair in the entire memory. 

The following Spec function is an abstraction function between states of the HashMemory module 
and states of the Memory module: 

FUNC AF() -> M = RET  
(LAMBDA(a) -> V = 

IF VAR i :IN m.dom, p :IN m(i).rng | p.a = a => RET p.v  
[*] RET default  
FI) 

That is, the data value for address a is any value associated with address a in the hash table; if 
there is none, the data value is the default value. Spec says that a function is undefined at an 
argument if its body can yield more than one result value. The invariants given above ensure that 
the LAMBDA is actually single-valued for all the reachable states of HashMemory. 

Of course HashMemory is not fully detailed code. Its main deficiency is that it doesn’t explain 
how to maintain the variable-length bucket sequences, which is usually done with a linked list. 
However, the code does capture all the essential details. 

6. Replicated copies 

Our final code is based on some number k ≥ 1 of copies of each memory location. Initially, all 
copies have the same default value. A Write operation only modifies an arbitrary majority of the 
copies. A Read reads an arbitrary majority, and selects and returns the most recent of the values 
it sees. In order to allow the Read to determine which value is the most recent, each Write 
records not only its value, but also a sequence number. 

For simplicity, we just show the module for a single read/write register. The constant k 
determines the number of copies. 

MODULE MajorityRegister [V] = % implements Register 

CONST k = 5 

TYPE N = Nat 
Kint = IN 1 .. k % ints between 1 and k 
Maj = SET KInt % all majority subsets of Kint 
      SUCHTHAT (\m: Maj | m.size>k/2) 

TYPE P = [D, seqno: N] % Pair  
M = KInt -> P % Memory 
S = SET P 

VAR default : D 
m := M{* -> P{d := default, seqno := 0}} 

APROC Read() -> D = << RET ReadPair().d >> 

APROC Write(d) = << VAR i: Int, maj | 
% Determines the highest sequence number i, then writes d paired with i+1 to some majority maj of the copies.  
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i := ReadPair().seqno; 
DO VAR j :IN maj | m(j).seqno # i+1 => m(j) := P{d := d, seqno := i+1} OD >> 

% Internal procedures. 

APROC ReadPair() -> P = << VAR s := ReadMaj () | 
% Returns a pair with the largest sequence number from some majority of the copies. 

VAR p :IN s | p.seqno = {p' :IN s | | p'.seqno}.max => RET p >> 

APROC ReadMaj () -> S = << VAR maj | RET { i :IN maj | | m(i) } >> 
% Returns the set of pairs belonging to some majority of the copies. 

END MajorityRegister 

We could have written the body of ReadPair as 
<< VAR s := ReadMaj() | RET s.fmax((\ p1, p2 | p1.seqno <= p2.seqno)) >> 

except that fmax always returns the same maximal p from the same s, whereas the VAR in 
ReadPair chooses one non-deterministically. 

The following is a key invariant for MajorityRegister. 

FUNC Inv(m: M) -> Bool = RET 
   (ALL p :IN m.rng, p' :IN m.rng | p.seqno = p'.seqno ==> p.v = p'.v) 
/\ (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).seqno >= p.seqno))) 

The first conjunct says that any two pairs having the same sequence number also have the same 
data. The second conjunct says that the highest sequence number appears in some majority of the 
copies. 

The following Spec function is an abstraction function between states of the MajorityRegister 
module and states of the Register module.  

FUNC AF() -> V = RET m.rng.fmax((\ p1, p2 | p1.seqno <= p2.seqno)).v 

That is, the abstract register data value is the data component of a copy with the highest sequence 
number. Again, because of the invariants, there is only one p.v that will be returned. 
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6.  Abstraction Functions and Invariants 

This handout describes the main techniques used to prove correctness of state machines: 
abstraction functions and invariant assertions. We demonstrate the use of these techniques for 
some of the Memory examples from handout 5.  

Throughout this handout, we consider modules all of whose externally invocable procedures are 
APROCs. We assume that the body of each such procedure is executed all at once. Also, we do not 
consider procedures that modify global variables declared outside the module under 
consideration. 

Modules as state machines 

Our methods apply to an arbitrary state machine or automaton. In this course, however, we use a 
Spec module to define a state machine. Each state of the automaton designates values for all the 
variables declared in the module. The initial states of the automaton consist of initial values 
assigned to all the module’s variables by the Spec code. The transitions of the automaton 
correspond to the invocations of APROCs together with their result values.  

An execution fragment of a state machine is a sequence of the form s0, π1, s1, π2, …, where each 
s is a state, each π is a label for a transition  (an invocation of a procedure), and each consecutive 
(si, πi+1, si+1) triple follows the rules specified by the Spec code. (We do not define these rules 
here—wait for the lecture on atomic semantics.) An execution is an execution fragment that 
begins in an initial state. 

The πi are labels for the transitions; we often call them actions. When the state machine is 
written in Spec, each transition is generated by some atomic command, and we can use some 
unambiguous identification of the command for the action. At the moment we are studying 
sequential Spec, in which every transition is the invocation of an exported  atomic procedure. We 
use the name of the procedure, the arguments, and the results as the label. 

Figure 1 shows some of the states and transitions of the state machine for the Memory module 
with A = IN 1 .. 4, and Figure 2 does likewise for the WBCache module with Csize = 2. The 
arrow for each transition is labeled by its πi, that is, by the procedure name, arguments, and 
result. 
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 Figure 1: Part of the Memory state machine 
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External behavior 

Usually, a client of a module is not interested in all aspects of its execution, but only in some 
kind of external behavior. Here, we formalize the external behavior as a set of traces. That is, 
from an execution (or execution fragment) of a module, we discard both the states and the 
internal actions, and extract the trace. This is the sequence of labels πi for external actions (that 
is, invocations of exported routines) that occur in the execution (or fragment). Then the external 
behavior of the module is the set of traces that are obtained from all of its executions. 

It’s important to realize that in going from the execution to the trace we are discarding a great 
deal of information. First, we discard all the states, keeping only the actions or labels. Second, 
we discard all the internal actions, keeping only the external ones. Thus the only information we 
keep in the trace is the behavior of the state machine at its external interface. This is appropriate, 
since we want to study state machines that have the same behavior at the external interface; we 
shall see shortly exactly what we main by ‘the same’ here. Two machines can have the same 
traces even though they have very different state spaces. 

In the sequential Spec that we are studying now, a module only makes a transition when an 
exported routine is invoked, so all the transitions appear in the trace. Later, however, we will 
introduce modules with internal transitions, and then the distinction between the executions and 
the external behavior will be important.  

For example, the set of traces generated by the Memory module includes the following trace:  
(Reset(v),) 
(Read(a1),v) 
(Write(a2,v')) 
(Read(a2),v') 

However, the following trace is not included if v # v':  
(Reset(v)) 
(Read(a1),v')  should have returned v 
(Write(a2,v')) 
(Read(a2),v) should have returned v' 

In general, a trace is included in the external behavior of Memory if every Read(a) or Swap(a, 
v) operation returns the last value written to a by a Write, Reset or Swap operation, or returned 
by a Read operation; if there is no such previous operation, then Read(a) or Swap(a, v) returns 
an arbitrary value. 

Implements relation  

In order to understand what it means for one state machine to implement another one, it is 
helpful to begin by considering what it means for one atomic procedure to implement another. 
The meaning of an atomic procedure is a relation between an initial state just before the 
procedure starts (sometimes called a ‘pre-state’) and a final state just after the procedure has 
finished (sometimes called a ‘post-state’). This is often called an ‘input-output relation’. For 
example, the relation defined by a square-root procedure is that the post-state is the same as the 
pre-state, except that the square of the procedure result is close enough to the argument. This 
meaning makes sense for an arbitrary atomic procedure, not just for one in a trace. 
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We say that procedure P implements spec S if the relation defined by P (considered as a set of 
ordered pairs of states) is a subset of the relation defined by S. This means that P never does 
anything that S couldn’t do. However, P doesn’t have to do everything that S can do. Code for 
square root is probably deterministic and always returns the same result for a given argument. 
Even though the spec allows several results (all the ones that are within the specified tolerance), 
we don’t require code for to be able to produce all of them; instead we are satisfied with one. 

Actually this is not enough. The definition we have given allows P’s relation to be empty, that is, 
it allows P not to terminate. This is usually called ‘partial correctness’. In addition, we usually 
want to require that P’s relation be total on the domain of S; that is, P must produce some result 
whenever S does. The combination of partial correctness and termination is usually called ‘total 
correctness’. 

If we are only interested in external behavior of a procedure that is part of a stateless module, the 
only state we care about is the arguments and results of the procedure. In this case, a transition is 
completely described by a single entry in a trace, such as (Read(a1),v). 

Now we are ready to consider modules with state. Our idea is to generalize what we did with 
pairs of states described by single trace entries to sequences of states described by longer traces. 
Suppose that T and S are any modules that have the same external interface (set of procedures 
that are exported and hence may be invoked externally). In this discussion, we will often refer to 
S as the spec module and T as the code. Then we say that T implements S if every trace of T is 
also a trace of S. That is, the set of traces generated by T is a subset of the set of traces generated 
by S. 

This says that any external behavior of the code T must also be an external behavior of the spec 
S. Another way of looking at this is that we shouldn’t be able to tell by looking at the code that 
we aren’t looking at the spec, so we have to be able to explain every behavior of T as a possible 
behavior of S. 

The reverse, however, is not true. We do not insist that the code must exhibit every behavior 
allowed by the spec. In the case of the simple memory the spec is completely deterministic, so 
the code cannot take advantage of this freedom. In general, however, the spec may allow lots of 
behaviors and the code choose just one. The spec for sorting, for instance, allows any sorted 
sequence as the result of Sort; there may be many such sequences if the ordering relation is not 
total. The code will usually be deterministic and return exactly one of them, so it doesn’t exhibit 
all the behavior allowed by the spec. 

Safety and liveness 

Just as with procedures, this subset requirement is not strong enough to satisfy our intuitive 
notion of code. In particular, it allows the set of traces generated by T to be empty; in other word, 
the code might do nothing at all, or it might do some things and then stop. As we saw, the analog 
of this for a simple sequential procedure is non-termination. Usually we want to say that the code 
of a procedure should terminate, and similarly we want to say that the code of a module should 
keep doing things. More generally, when we have concurrency we usually want the code to be 
fair, that is, to eventually service all its clients, and more generally to eventually make any 
transition that continues to be enabled. 
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It turns out that any external behavior (that is, any set of traces) can be described as the 
intersection of two sets of traces, one defined by a safety property and the other defined by a 
liveness property.1 A safety property says that in the trace nothing bad ever happens, or more 
precisely, that no bad transition occurs in the trace. It is analogous to partial correctness for a 
stateless procedure; a state machine that never makes a bad transition can define any safety 
property. If a trace doesn’t satisfy a safety property, you can always find this out by looking at a 
finite prefix of the trace, in particular, at a prefix that includes the first bad transition. 

A liveness property says that in the trace something good eventually happens. It is analogous to 
termination for a stateless procedure. You can never tell that a trace doesn’t have a liveness 
property by looking at a finite prefix, since the good thing might happen later. A liveness 
property cannot be defined by a state machine. It is usual to express liveness properties in terms 
of fairness, that is, in terms of a requirement that if some transition stays enabled continuously it 
eventually occurs (weak fairness), or that if some transition stays enabled intermittently it 
eventually occurs (strong fairness). 

With a few exceptions, we don’t deal with liveness in this course. There are two reasons for this. 
First, it is usually not what you want. Instead, you want a result within some time bound, which 
is a safety property, or you want a result with some probability, which is altogether outside the 
framework we have set up. Second, liveness proofs are usually hard.  

Abstraction functions and simulation 

The definition of ‘implements’ as inclusion of external behavior is a sound formalization of our 
intuition. It is difficult to work with directly, however, since it requires reasoning about infinite 
sets of infinite sequences of actions. We would like to have a way of proving that T implements 
S that allows us to deal with one of T’s actions at a time. Our method is based on abstraction 
functions.  

An abstraction function maps each state of the code T to a state of the spec S. For example, each 
state of the WBCache module gets mapped to a state of the Memory module. The abstraction 
function explains how to interpret each state of the code as a state of the spec. For example, 
Figure 3 depicts part of the abstraction function from WBCache to Memory. Here is its definition in 
Spec, copied from handout 5. 

FUNC AF() -> M = RET (\ a | c!a => c(a) [*] m(a) ) 

                                                 
1 B. Alpern and F. Schneider. Recognizing safety and liveness. Distributed Computing 2, 3 (1987), pp 117-126. 
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You might think that an abstraction function should map the other way, from states of the spec to 
states of the code, explaining how to represent each state of the spec. This doesn’t work, 
however, because there is usually more than one way of representing each state of the spec. For 
example, in the WBCache code for Memory, if an address is in the cache, then the value stored for 
that address in memory does not matter. There are also choices about which addresses appear in 
the cache. Thus, many states of the code can represent the same state of the spec. In other words, 
the abstraction function is many-to-one. 

An abstraction function F is required to satisfy the following two conditions. 

1. If t is any initial state of T, then F(t) is an initial state of S. 

2. If t is a reachable state of T and (t, π, t') is a step of T, then there is a step of S from F(t) to 
F(t'), having the same trace. 

Condition 2 says that T simulates S; every step of T faithfully copies a step of S. It is stated in a 
particularly simple way, forcing the given step of T to simulate a single step of S. That is enough 
for the special case we are considering right now. Later, when we consider concurrent 
invocations for modules, we will generalize condition 2 to allow any number of steps of S rather 
than just a single step.  

The diagram in Figure 4 represents condition 2. The dashed arrows represent the abstraction 
function F, and the solid arrows represent the transitions; if the lower (double) solid arrow exists 
in the code, the upper (single) solid arrow must exist in the spec. The diagram is sometimes 
called a “commutative diagram” because if you start at the lower left and follow arrows, you will 
end up in the same state regardless of which way you go. 

 

π 

π 
F(t) F(t') 

t t' 

F F 

 

Figure 4: Commutative diagram for correctness 

An abstraction function is important because it can be used to show that one module implements 
another: 

Theorem 1: If there is an abstraction function from T to S, then T implements S, i.e., every trace 
of T is a trace of S. 

Note that this theorem applies to both finite and infinite traces. 

Proof: (Sketch) Let β be any trace of T, and let α be any execution of T that generates trace β. 
Use Conditions 1 and 2 above to construct an execution α' of S with the same trace. That is, if t is 
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the initial state of α, then let F(t) be the initial state of α'. For each step of α in turn, use 
Condition 2 to add a corresponding step to α'. 

More formally, this proof is an induction on the length of the execution. Condition 1 gives the 
basis: any initial state of T maps to an initial state of S. Condition 2 gives the inductive step: if 
we have an execution of T of length n that simulates an execution of S, any next step by T 
simulates a next step by S, so any execution of T of length n+1 simulates an execution of S. 

We would like to have an inverse of Theorem 1: if every trace of T is a trace of S, then there is an 
abstraction function that shows it. This is not true for the simple abstraction functions and 
simulations we have defined here. Later on, in handout 8, we will generalize them to a 
simulation method that is strong enough to prove that T implements S whenever that is true. 

Invariants 

An invariant of a module is any property that is true of all reachable states of the module, i.e., all 
states that can be reached in executions of the module (starting from initial states). Invariants are 
important because condition 2 for an abstraction function requires us to show that the code 
simulates the spec from every reachable state, and the invariants characterize the reachable 
states. It usually isn’t true that the code simulates the spec from every state. 

Here are examples of invariants for the HashMemory and MajorityRegister modules, written in 
Spec and copied from handout 5.  

FUNC HashMemory.Inv(nb: Int, m: HashT, default: V) -> Bool = RET  
(  nb > 0  
/\ m.size = nb 
/\ (ALL a | a.hf IN m.dom)  
/\ (ALL i :IN m.dom, p :IN m(i).rng | p.a.hf = i) 
/\ (ALL a | { j :IN m(a.hf) | m(a.hf)(j).a = a }.size <= 1) ) 

FUNC MajorityRegister.Inv(m: M) -> Bool = RET 
   (ALL p :IN m.rng, p' :IN m.rng | p.seqno = p'.seqno ==> p.v = p'.v) 
/\ (EXISTS maj | (ALL i :IN maj, p :IN m.rng | m(i).seqno >= p.seqno))) 

For example, for the HashMemory module, the invariant says (among other things) that a pair 
containing address a appears only in the appropriate bucket a.hf, and that at most one pair for an 
address appears in the bucket for that address. 

The usual way to prove that a property P is an invariant is by induction on the length of finite 
executions leading to the states in question. That is, we must show the following: 

(Basis, length = 0) P is true in every initial state. 

(Inductive step) If (t, π, t') is a transition and P is true in t, then P is also true in t'. 

Not all invariants are proved directly by induction, however. It is often better to prove invariants 
in groups, starting with the simplest invariants. Then the proofs of the invariants in the later 
groups can assume the invariants in the earlier groups.  

Example: We sketch a proof that the property MajorityRegister.Inv is in fact an invariant. 
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Basis: In any initial state, a single (arbitrarily chosen) default value d appears in all the copies, 
along with the seqno 0. This immediately implies both parts of the invariant.  

Inductive step: Suppose that (t, π, t') is a transition and Inv is true in t.  We consider cases based 
on π. If π is an invocation or response, or the body of a Read procedure, then the step does not 
affect the truth of Inv. So it remains to consider the case where π is a Write, say Write(v). 

In this case, the second part of the invariant for t (i.e., the fact that the highest seqno appears in 
more than half the copies), together with the fact that the Write reads a majority of the copies, 
imply that the Write obtains the highest seqno, say i. Then the new seqno that the Write 
chooses must be the new highest seqno. Since the Write writes i+1 to a majority of the copies, it 
ensures the second part of the invariant. Also, since it associates the same v with the seqno i+1 
everywhere it writes, it preserves the first part of the invariant. 

Proofs using abstraction functions 

Example: We sketch a proof that the function WBCache.AF given above is an abstraction 
function from WBCache to Memory. In this proof, we get by without any invariants. 

For Condition 1, suppose that t is any initial state of WBCache. Then AF(t) is some (memory) state 
of Memory. But all memory states are allowable in initial states of Memory. Thus, AF(t) is an initial 
state of Memory, as needed. For Condition 2, suppose that t and AF(t) are states of WBCache and 
Memory, respectively, and suppose that (t, π, t') is a step of WBCache. We consider cases, based on 
π. 

For example, suppose π is Read(a). Then the step of WBCache may change the cache and 
memory by writing a value back to memory. However, these changes don’t change the 
corresponding abstract memory. Therefore, the memory correspondence given by AF holds after 
the step. It remains to show that both Reads give the same result. This follows because: 

The Read(a) in WBCache returns the value t.c(a) if it is defined, otherwise t.m(a). 

The Read(a) in Memory returns the value of AF(t).m(a). 

The value of AF(t).m(a) is equal to t.c(a) if it is defined, otherwise t.m(a). This is by the 
definition of AF. 

For another example, suppose π is Write(a,v). Then the step of WBCache writes value v to 
location a in the cache. It may also write some other value back to memory. Since writing a 
value back does not change the corresponding abstract state, the only change to the abstract state 
is that the value in location a is changed to v. On the other hand, the effect of Write(a,v) in 
Memory is to change the value in location a to v. It follows that the memory correspondence, 
given by AF, holds after the step. 

We leave the other cases, for the other types of operations, to the reader. It follows that AF is an 
abstraction function from WBCache to Memory. Then Theorem 1 implies that WBCache implements 
Memory, in the sense of trace set inclusion. 

Example: Here is a similar analysis for MajorityRegister, using MajorityRegister.AF as 
the abstraction function.  
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FUNC AF() -> V = RET m.rng.fmax((\ p1, p2 | p1.seqno <= p2.seqno)).v 

This time we depend on the invariant MajorityRegister.Inv. Suppose π is Read(a). No state 
changes occur in either module, so the only thing to show is that the return values are the same in 
both modules. In MajorityRegister, the Read collects a majority of values and returns a value 
associated with the highest seqno from among that majority. By the invariant that says that the 
highest seqno appears in a majority of the copies, it must be that the Read in fact obtains the 
highest seqno that is present in the system. That is, the Read in MajorityRegister returns a 
value associated with the highest seqno that appears in state t. 

On the other hand, the Read in Register just returns the value of the single variable x in state s. 
Since AF(t) = s, it must be that s.x is a value associated with the highest seqno in t. But the 
uniqueness invariant says that there is only one such value, so this is the same as the value 
returned by the Read in MajorityRegister. 

Now suppose π is Write(v). Then the key thing to show is that AF(t') = s'. The majority invariant 
implies that the Write in MajorityRegister sees the highest seqno i and thus i+1 is the new 
highest seqno. It writes (i+1, v) to a majority of the copies. On the other hand, the Write in 
Register just sets x to v. But clearly v is a value associated with the largest seqno after the 
step, so AF(t') = s' as required. 

It follows that AF is an abstraction function from MajorityRegister to Register. Then 
Theorem 1 implies that MajorityRegister implements Register. 


