6.826—Principles of Computer Systems 2002

12. Naming

Any problem in computing can be solved by another level of indirection.
David Whedler

Introduction

This handout is about orderly ways of naming complicated collections of objects in acomputer
system. A basic technique for understanding a big systemisto describeit as a collection of
simple parts. Being able to name these parts is a necessary aspect of such a description, and often
the most important aspect.

The basic idea can be expressed in two ways that are more or |ess equivalent:

Identify values by variable length names called path names that are sequences of simple
names that are strings. Think of all the names with the same prefix (for instance,
/udir/1anpson and/ udi r/ 1 ynch) as being grouped together. This grouping induces atree
structure on the names. Non-leaf nodesin the tree are directories.

Make atree of nodes with simple names on the arcs. The leaf nodes are values and the
internal nodes are directories. A node is named by a path through the tree from the root; such
anameis called a path name.

Thus/ udi r/ 1 anpson/ pocs/ handout s/ 12 is a path name for a value (perhaps the text of this
handout), and / udi r/ | anpson/ pocs/ handout s isa path name for a directory (other words for
directory are folder, context, closure, environment, binding, and dictionary). The collection of all
the path names that make sense in some situation is called a name space. Viewing a name space
as atree gives us the standard terminol ogy of parents, children, ancestors, and descendants.

Using path names to name values (or objects, if you prefer) is often called ‘hierarchical naming’
or ‘tree-structured naming'. There are alot of other namesfor it that are used in special
situations: mounting, search paths, multiplexing, device addressing, network references. An
important reason for studying naming in general isthat you don’'t have to start from scratch in
understanding all those other things.

Path names are good because:

* The name space can grow indefinitely, and the growth can be managed in a decentralized
way. That is, the authority to create namesin one part of the space can be delegated, and
thereafter thereis no need for synchronization. Names that start / udi r /1 anpson are
independent of namesthat start / udi r/ri nard.

* Many kinds of data can be encapsulated under this interface, with a common set of
operations. Arbitrary operations can be encoded as reads and writes of suitably chosen
names.

Handout 12. Naming 1

6.826—Principles of Computer Systems 2002

Aswe have seen, a path name is a sequence of simple names. We use thetypesN = String for
asimplenameand PN = SEQ Nfor apath name. It is often convenient to write a path name as a
string. The syntax of these stringsis not important; it is just a convention for encoding the path
names. Here are some examples:
[ udi r/ | anpson/ pocs/ handout s/ 12
| ampson@redi aone. net

Unix path name
Internet mail address. The path nameis
{"net","medi aone","| anpson"}

16.23.5.193 IP network address (fixed length)

Wewill normally write path names as Unix file names, rather than as the sequence constructors
that would be correct Spec. Thusa/ b/ ¢/ 1026 instead of PN{"a", "b", "c", " 1026"}.

Peopl e often try to distinguish a name (what something is) from an address (whereit is) or a
route (how to find it). Thisisamatter of levels of abstraction and must not be taken as absol ute.
At agiven level of abstraction we tend to identify objects at that level by names, the lower-level
objects that code them by addresses, and paths at lower levels by routes. Examples:

m crosoft.com -> 207.46.130. 149 -> SEQ [router output port, LAN address]
al/ b/ c/ 1026 -> | Node/ 1026 -> DA/2 -> [cylinder, head, sector, byte 2]

Sometimes people talk about “ descriptive names’, which are queries in a database. We will see
that these are readily encompassed within the framework of path names. That is aformal
relationship, however. There is an important practical difference between a designator for a
single entity, such as| anpson@redi aone. net , and a description or query such as* everyone at
MIT’s LCS whose research involves parallel computing”. The differenceisilluminated by the
comparison between the name eecsf acul t y@ecs. mi t . edu and the query “the faculty members
in MIT’s EECS department”. The former name is probably maintained with some care; it's
anyone' s guess how reliable the answer to the query is. When using a name, it is wise to consider
whether it is adesignator or adescription.

Thisis not to say that descriptions or queries are bad. On the contrary, they are very valuable, as
any one knows who has ever used aweb search engine. However, they usually work well only
when a person examines the results with some care.

In the remainder of this handout we examine the specs for the two ways of describing a name
space that we introduced earlier: as amemory addressed by path names, and as atree (or more
generally a graph) of directories. The two ways are closdly related, but they giveriseto
somewhat different specs. Then we study the recursive structure of name spaces and various
ways of inducing a name space on a collection of values. Thisleads to a more abstract analysis
of how the spec for a name space can vary, depending on the properties of the underlying values.
We conclude our general treatment by examining how to name a name space. Finally, we givea
large number of examples of name spaces; you might want to look at thesefirst to get some more
context.

Name space as memory

We can view aname space as an example of the memory abstraction we studied earlier. Recall
that amemory isapartial mapM = A -> V. Herewetake A = PNand replace Mwith D (for

Handout 12. Naming 2



6.826—Principles of Computer Systems 2002 6.826—Principles of Computer Systems 2002

directory). Thiskind of memory differs from the byte-addressable physical memory of a about what form these operations should take, represented by the functions Enumand Next ; only
computer in several wayst: one of theseis needed.
e Themapispartial. Enumreturns all the simple names that can lead to a value starting from pn; another way of

saying thisisthat it returns al the names bound in the directory named pn. By recursively

*  Thedomainischanging. applying Enumtopn + n for each simple namen that Enumreturns, you can explore the

+ Thecurrent value of the domain (that is, which names are defined) is interesting. entiretree.
«  PN'swith the same prefix are related (though not as much as in the second view of name On the other hand, if you keep feeding Next its own output, starting with {}, it walks the tree
spaces). of defined names depth-first, returning in turn each PN that is bound to a V. It finishes with
{}.

Here are some examples of name spaces that can naturally be viewed as memories: ) ) ) )
Note that what Next does is not the same as returning the results of Enumone at atime, since

Next exploresthe entire tree, not just one directory. Thus Enumtakes the organization of the
name space into directories more seriously than does Next .

The Simple Network Management Protocol (SNMP) is used to manage components of the
Internet. It uses path names (rooted in IP addresses) to name values, and the basic
operations are to read and write a single named value.

Several file systems use a single large table to map the path name of a file to the extents FUNC Enun(pn) -> SET N = RET {pnl | d!(pn + pnl) | pnl.head}

that represent it. FUNC Next (pn) -> PN = VAR later := {pn' | dlpn" /\ pn <= pn'} |
RET later.fmn(PN "<<=") [*] RET {} %{} ifl at er isempty
MODULE MemNanesO[ V] EXPORT Read, Wite, Renove, Enum Next, Renane =
A separate issue is arranging to get a reasonable number of results from one of these procedures.

TYPEN = String % Name If the directory islarge, Enumas defined here may return an inconveniently large set, and we may
- [Ty 0, . . . . i !
PN = SEQN WTH {"<<=":=PNLE} % Path Name haveto call Next inconveniently many times. In real lifewe would make either routine return a
D = PN->V % Directory

sequence of N'sor PN's, usually called a‘buffer’. Thisis a standard use of batching to reduce the
VAR d c= D} % the state overhead of invoking an operation, without allowing the batches to get too large. We won't add

this complication to our specs.
FUNC PNLE(pnl1, pn2) -> Bool = pnl.LexLE(pn2, N. "<=") %pnl <<= pn2

Finaly, thereis aRename procedure that takes directories quite serioudly. It reflects the idea that
all the names which start the same way are related, by changing all the names that start with
fromso that they start with t o. Because directories are not very real in the representation, this
procedure has to do alot of work. It erases everything that starts with either argument, and then
copies everything in the original d that starts with f r omto the corresponding path name that
startswithto. Read x <= y as“x isaprefix of y”.

Here arethe familiar Read and Wi t e procedures; Read raiseserror if d isundefined at pn, for
consistency with later specs. In this basic spec none of the other procedures raiseser r or ; this
innocence will not persist when things get more complicated. I1t's common to also have a Renove
procedure for making a PN undefined; note that unlike afile system, this Renove does not erase
the values of longer names that start with PN. Thisis because, unlike a file system, this spec does
not ensure that every prefix of adefined PNis defined.

APRCC Renane(from PN, to: PN) RAISES {error} = << VAR dO :=d |

FUNCRead(pn) -> V RAISES {error} = RET d(pn) [*] RAISE error IF from<=to => RAISE error % can’'t rename to a descendant

i - .- R [*] DOVAR pn :INd.dom| (to <= pn \/ from<=pn) =>d := d{pn ->} OO
APROC Wi te(pn. V) << di=dipn-> v} >> DO VAR pn | d(to + pn ) # dO(from+ pn) => d(to + pn) := dO(from+ pn) OD
APROC Renove( pn) =<<d:=d{pn -> } > Fl >>

Thebody of Wi t e isusualy written d(pn) : = v. END MemanmesO

Hereisadifferent version of Renane that makes explicit the relation between theinitial stated

It'si tant that th i tial, and that the d in ch Thi that eed . . .
S fmportan € Map IS parid’, an ©domaln changes. 1 is means wen and thefinal stated' . Readx >= y as“x isasuffix of y”.

operations to find out what the domain is. Simply returning the entire domain is not practical,

since it may betoo big, and usually only part of it is of interest. There are two schools of thought APROC Renane(from PN, to: PN) RAISES {error} = <<
IF VAR d' |
(ALL x: PN, y: PN | ( x >= from = ~ d'Ix
*] x =to+y /\ di(from+y) =>d (x) = d(from+ vy)
1 1t differs much less from the virtual memory, in which the map may be partial and the domain may change as new [:] - é ’>= to /\ dix => d' (x) = d(x)
virtual memory is assigned or files are mapped. Actually these things can happen to physical memory aswell, (1 - 'x )

especidly in the part of it implemented by 1/0 devices.

Handout 12. Naming 3 Handout 12. Naming 4



6.826—Principles of Computer Systems 2002

=d:=d
[*] RAISE error FI >>

Thereis often arule that aname can be bound to adirectory or to a value, but not both. For this
we need adlightly different spec that marks a name as bound to a directory by giving it the
special valuei sD, with a separate procedure for making an empty directory. To enforce the new
rule every routine can now raiseer r or, and Renove erases the whole sub-tree. As usual,
mark the changes from MenNaneso.

MODULE MermNanes[ V] EXPORT Read, Wite, MakeD, Renove, Enum Renane =

TYPED r = ENUMisDirJ]
D = PN-> (V[ Dr) [SUCHTHAT (\d] d({}) IS Dir)] %rootabir
VAR d := D{f} ->isDir}

Qo TNVARIANT (ALL pn, pn' [ dfpn" /\ pn' > pn => d(pn) = isDir]

FUNC Read(pn) -> V RAISES {error} = |d(pn) ISV => RET d(pn) [*] RAISE error

FUNC Enun{pn) -> SET N RAISES {error} =
d(pn) IS Dr => RET {pnl | d!(pn + pnl) | pnl. head} [*] RAISE error

APRCC Wite(pn, v) RAISES {error} << [Set (pn, v)| >>
[APROC MakeDir(pn) RAISES {error} << Set(pn, isDir) >y

APRCC Renove(pn) = % Erase everything with pn prefix.
<< DO VAR pn' :INd.dom][ (pn <= pn') =>d :=d{pn" ->} >>

APROC Renane(from PN, to: PN) RAISES {error} = << VAR dO :=d |
IF from<=to => RAISE error % can’t rename to a descendant
[*] DO VAR pn :INd.dom| (to <= pn \/ from<=pn) =>d := d{pn ->} OO
DO VAR pn | d(to + pn ) # dO(from + pn) =>
d(to + pn) := dOo(from+ pn) OD
Fl >>

APROC Set (pn, y: (V + D) RAISES {error} =
<< pn # {} /\ d(pn.rem) ISD=>d(pn) :=y [*] RAISE error >>

END MenmNanes

A file system usually forbids overwriting a file with adirectory (for no obvious reason) or
overwriting a non-empty directory with anything (because a directory is precious and should not
be clobbered wantonly), but these rules are rather arbitrary, and we omit them here.

Exercise: write aversion of Renane that makes explicit the relation between theinitial stated and
thefinal stated' , in the style of the second Renane of MemNareso0.

The MenNanes spec is basically the same as the simple Menor y spec. Complications arise because
the domain can change, and because of the distinction between directories and values. The specs
in the next section take this distinction much more serioudly.

Handout 12. Naming 5

6.826—Principles of Computer Systems 2002

Name space as graph of directory objects

These specs are reasonably simple, but they are clumsy for operations on directories such as
Rename. More fundamentally, they don’t handl e aliasing, where the same object has more than
one name. The other (and more usual) way to ook at a hierarchical name spaceisto think of
each directory as a function that maps a simple name (not a path name) to a value or another
directory, rather than thinking of the entiretreeasasingle PN - > v map. Thistree (or general
graph) structure maps a PN by mapping each N in turn, traversing a path through the graph of
directories; hence the term ‘ path name'. We continue to use the type D for a directory.

Our eventual goal is a spec for a name space as graph that is ‘ object-oriented’ in the sense that
you can supply different code for each directory in the name space. We will begin, however,
with asimpler spec that is equivalent to MenNanes, evolve this to a more general spec that allows
aliases, and finally add the object orientation.

The obvious thing to do isto makeabbeafunctionN -> z, wherez = (D + V) asbefore, and
have a state variable d which is the root of the tree. Unfortunately this completely functional
structure doesn’t work smoothly, because there’ s no way to change the value of a/ b/ ¢/ d without
changing the value of a/ b/ ¢ so that it contains the new value of a/ b/ ¢/ d, and similarly for a/ b
and a aswell.2

-
o [ [T
~. |[files |35

We solve this problem in the usual way with another level of indirection, so that the value of a
directory nameisnotaN -> z but somekind of reference or pointer toaN -> z, asshownin
thefigure. Thisreferenceisan ‘internal name’ for adirectory. We use the name DD for the actual

2 The method of explicitly changing all the functions up to the root has some advantages. In particular, we can make
several changesto different parts of the name space appear atomically by waiting to rewrite the root until all the
changes are made. It is not very practical for afile system, though at least one has been built thisway: H.E. Sturgis,
A Post-Mortem for a Time-sharing System, PhD thesis, University of California, Berkeley, and Report CSL 74-1,
Xerox Research Center, Palo Alto, Jan 1974. It has al so been used in database systems to atomically change the
entire database state; in this context it is called ‘ shadowing’. See Gray and Reuter, pp 728-732.

Handout 12. Naming 6



6.826—Principles of Computer Systems 2002

functionN -> z and introduce a state variable s that holds al the DD values; itstypeis D- >DD. A
Disjust theinterna name of adirectory, that is, anindex intos. WetakeD = I nt for simplicity,
but any type with enough values would do; in Unix D = 1 No. You may find it helpful to think of
Dasapointer and s asamemory, or of D as an inode number and s as the inodes. Later sections

explore the meaning of aDin more detail, and in particular the meaning of r oot .

Once we have introduced this extra indirection the name space does not have to be atree, since
two PN's can have the same D value and hence refer to the same directory. In aUnix file system,
for example, every directory with the path name pn also has the path namespn/ ., pn/ ./ ., €etc.,
and if pn/ a isasubdirectory, then the parent also hasthe namespn/a/ .. ,pn/al../al .., €c.
Thus the name space is not atree or even a DAG, but a graph with cycles, though the cycles are
constrained to certain stylized formsinvolving ‘. " and ‘. . ’. Thismeans, of course, that there are
defined PN's of unbounded length; in real life thereis usually an arbitrary upper bound on the
length of a defined PN.

The spec below does not expose D' s to the client, but deals entirely in PN's. Real systems often
do expose the D pointers, usually as some kind of capability (for instancein afile system that
allows you to open adirectory and obtain afile descriptor for it), but sometimes just as a naked
pointer (for instance in many distributed name servers). The spec uses an internal function Get ,
defined near the end, that looks up aPNin adirectory; Get Disavariation that raiseserror if it
can't return ab.

MODULE Obj NanmesO[ V] EXPORT Read, Wite, MikeD, Renove, Enum Renane =

TYPED = Int % just an internal name
z = (V+ D % the value of aname
DD = N->2Z % a Directory

VAR root : D:=0
s 1= (D -> DD){}{root -> DD{}} % initially empty r oot

FUNC Read(pn) -> V RAISES {error} = VAR z := Get(root, pn) |
IFz 1SV =>RET z [*] RAISE error FI

FUNC Enun(pn) -> SET PN RAISES {error} = RET s(GetD(root, pn)).dom
% Raiseser ror if pnisn't adirectory, like MenmNanes.

A write operation on the name a/ b/ ¢ has to change the d component of the directory a/ b; it does
this through the procedure Set PN, which gets its hands on that directory by invoking
GetD(root, pn.rem).

APROC Wite(pn, v) RAISES {error} = << SetPN(pn, v) >>
APROC MakeD(pn) RAISES {error} = << VAR d := NewD() | SetPN(pn, d) >>

APRCC Renove( pn) RAI SES {error} =
<< VAR d := GetD(root, pn.rem) | >>

APRCC Renanme(from PN, to: PN) RAISES {error} = <<
IF (to ={}) \/ (from<=to) => RAISE error
[*] VAR fd := GetD(root, fromren),
td := CGetD(root, to .rem) |
s(fd)!(fromlast) =>

% can’t rename to a descendant
%knowfrom to # {}

Handout 12. Naming 7

6.826—Principles of Computer Systems 2002

s(td)

s(fd)
[*] RAISE error
Fl >>

s(td)(to .last -> s(fd)(fromlast));
s(fd){fromlast ->}

The remaining routines are internal. The main oneisGet (d, pn), which returns the result of
starting at d and following the path pn. Get Draiseserror if it doesn’t get adirectory. NewD
creates anew, empty directory.

FUNC Get (d, pn) -> Z RAISES {error} =
% Return the value of pn looked up starting at z.
IF pn={} => RET d
[*] VAR z :=s(d)(pn.head) | z IS D => RET Get(z, pn.tail)
[*] RAISE error
FI

FUNC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |
IFzI1SD=>RET z [*] RAISE error FI

APRCC Set PN(pn, z) RAISES {error} =
<< VAR d := GetD(root, pn.rem) | s(d)(pn.last) := 2z >>

APROC NewD() -> D= << VAR d | ~ s!d => s(d) := DD{}; RET d >>
END Obj NanmesO

Aswe did with the second version of MenNanmes0. Renane, we can give adefinition of Get in
terms of a predicate. It says that there's a sequence p of directories starting at d and ending at the
result of Get , such that the components of pn select the corresponding components of p; if
there's no such sequence, raiseerr or .

FUNCChi ld(z1, z2) -> Bool = z1 ISD/\ slzl1 /\ z2 INs(z1l).rng

FUNCGet (d, pn) -> Z RAISES {error} = <<
IF VAR p :IN Child.paths |

p.head = d /\ (ALL i :IN pn.dom| p(i+1l) = s(p(i)(pn(i))) => RET p.last
[*] RAISE error
Fl >>

bj Narres0 is equiva ent to MemNamres . The abstraction function from bj Nanes0 to MemNanes is
MemNanmes.d = (\ pn | Gpn) ISV => pn) [*] Gpn) IS D=>isD)

where we define afunction Gwhichislike Get onr oot except that it is undefined where Get
raiseserror:

FUNC G(pn) -> Z = RET Get(root, pn) EXCEPT error => |F false => SKIP FI
The EXCEPT turnstheer r or exception from Get into an undefined result for G.
Exercise: What is the abstraction function from MenNarres to Obj NanesO0.

Objects, aliases, and atomicity

This spec makes clear the basic idea of interpreting a path name as a path through a graph of
directories, but it isunrealistic in several ways:

Handout 12. Naming 8



6.826—Principles of Computer Systems 2002

The operations for changing the value of the DD functionsin s may be very different from the
Wi t e and MakeD operations of Obj Nanmes0. This happens when we impose the naming
abstraction on a data structure that changes according to its own rules. SNMP is agood
example; the values of names changes because of the operation of the network. Later in this
handout we will explore a number of these variations.

Thereis often an ‘aias’ or ‘symbolic link’ mechanism which allows the value of anamen in
context d tobealink (d', pn). Themeaningisthat d(n) isasynonym for Get (d', pn).

The operations are specified as atomic, but thisis often too strong.

Our next spec, oj Nanes, reflects all these considerations. It is rather complicated, but the
complexity istheresult of the many demands placed on it; ideas for simplifying it would be
gratefully received. bj Nanes isafairly realistic spec for a naming system that allows for both
symbolic links and extensible code for directories.

A oj Nanes. Dhasget and set methods to allow for different code, though for now we don't
take any advantage of this, but use the fixed code Get Fr ons and Set | nS. In the section on

obj ect-oriented directories below, we will see how to plug in other versions of D with different
get and set methods. The section on coherence below explains why get is a procedure rather
than a function. These methods map undefined valuesto ni | becauseit’s tricky to program with
undefined in this general setting; this meansthat z needs Nul | as an extra case.

Li nk isanother case of z (theinternal value of aname), and thereis codein Get to follow links;
therules for doing this are somewhat arbitrary, but follow the Unix conventions. Because of the
complications introduced by links, we usually use Get DN instead of Get to follow paths; this
procedure converts aPNrelativetor oot into adirectory d and anamen in that directory. Then
the external procedures read or write the value of that name.

Because Get isno longer atomic, it’s no longer possible to defineit in terms of a path through
the directories that exists at a single instant. The section on atomicity below discusses this point
in more detail.

MODULE Obj Nanes[V] EXPORT ... =

TYPE D = Int % Just an interna name
W TH {get: =Get Fron6, set:=SetlnS}| %get retunsni | if undefined
[Li nk = [d: (D + Null), pn]] %d=ni | for ‘relative : the containing D
z = (V+Dp Link + Null)) % ni | means undefined
DD = N->2Z
CONST r oot : D:=0
VAR s 1= (D -> DD){}{root -> DD{}} % initially empty root

APRCC Get FronS(d, n) -> Z =
<< RET s(d)(n) [*] RET nil >>

%d. get (n)

APRCC SetInS (d, n, 2) = %d. set(n, z)
%If z = nil, SetlnSleavesn undefinedins(d).
<< |F z #nil => s(d)(n) :=2z [*] s(d) :=s(d){n ->} FI >>

Handout 12. Naming 9

6.826—Principles of Computer Systems 2002

PRCC Read (pn) ->V RAI SES {error} = VAR z := Get(root, pn) |
IFz 1SV =>RET z [*] RAISE error FI

PROCC Enum  (pn) -> SET N RAISES {error} =

% Can't just write RET Get D(root, pn).get.domasinCbj NamesO, because get isn't afunction.

% The lack of atomicity is on purpose.

VAR d := GetD(root, pn), ns: SET N:={}, z |
DOVAR N | <<z :=d.get(n); ~nINns /\ z # nil =>ns + := {n} > OO
RET ns

PROC Wite (pn, V) RAI SES {error} =

Set PN(pn, v,
RAI SES {error} = VAR d := NewD() | SetPN(pn,d,
PROCC Renanme(from PN, to: PN) RAISES {error} = VAR d, n, d, n'||

IF (to ={}) \/ (from<=1to) => RAISE error % can’t rename to a descendant
[*T (d, n) := GetDN(from false); (d, n") := GetDN(to, false);
<< d.get!n => d'.set(n', d.get(n)); d.set(n, nil) >> |
[*] RAISE error
Fl

PROC MakeD( pn)

This version of Renane imposes a different restriction on renaming to a descendant than real file
systems, which usually have a notion of a distinguished parent for each directory and disallow
Parent PN(d) <= Parent PN(d' ). They also usually required and d' to bein the same ‘file
system’, a notion which we don’'t have. Note that Renane does its two writes atomically, like
many redl file systems.

The remaining routines areinternal. Get follows every link it sees; alink can appear at any point,
not just at the end of the path. Get DN would be just

IF pn = {} => RAISE error [*] RET (GetD(root, pn.rem), pn.last) FI
except for the question of what to do when the value of this(d, n) isalink. The
fol | owLast Li nk parameter says whether to follow such alink or not. Because this can happen
more than once, the body of Get DN needs to be aloop.

PROC Get(d, pn) -> Z RAISES {error} = VAR z :=d |
% Return the value of pn looked up starting at d.
DO << pn # {} => VAR n := pn. head, 7] |
IF z1SD=>
z' = z.get(n);
IF z' # nil =>
% If there'salink, follow it. Otherwise just look up n.

% must have avalue for n.

IF (z, pn') := FollowLink(z, n); pn := pn" + pn.tail
[*] z =z ;opn = pn.tail
FI
[*] RAISE error
FlI
[*] RAISE error

FI
>> OD; RET z

PROC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) |
IFz|1SD=>RET z ASD[*] RAISE error FI

Handout 12. Naming 10



6.826—Principles of Computer Systems 2002

PROC Get DN(pn, followLastLink: Bool) -> (D, N) RAISES {error} = VAR d := root |
% Convert pninto (d, n) suchthatd. get (n) istheitem that pn refersto.
DO IF pn = {} => RAISE error
[*] VAR n := pn.last, z |
d:= Get(d, pn.rem);
% If there'salink, follow it and loop. Otherwise return.
<< followLastLink => (d, pn) := Follow.ink(d, n) [*] RET (d, n) >>
Fl
oD

APRCC Fol | owLi nk(d, n) -> (D, PN = <<
% Fail i f d. get (n) notLink. Used asthe context if the link lacks one.
VAR | :=d.get(n) | | ISLink => RET ((l.dISD=>1.d[*] d), |.pn) >>

PROC Set PN(pn, z, followLastLink: Bool) RAISES {error} =
VAR d, n| (d, n) := GetDN(pn, followLastLink); d.set(n, z)

APROC NewD() -> D= << VAR d | ~ s!d => s(d) := D{}; RET d >>
END Obj Nanes

Object-oriented directories

Although Din Obj Nanes hasget and set methods, they are the same for al D's. To encompass
the full range of applications of path names, we need to make aDinto a full-fledged ‘ object’, in
which different instances can have different get and set operations (yet another level of
indirection). Thisisthe essential meaning of ‘ object-oriented’: the type of an object is arecord of
routine types which defines a single interface to all objects of that type, but every object hasits
own values for the routines, and hence its own code.

To do this, we change the type to:

TYPED = [get: APROC (n) -> Z, set: PROC (n, z) RAISES {error}]

DR = Int % what D used to be; R for reference
keeping the other types from bj Nanes unchanged:

z = (V+ D+ Link + Null) % ni | means undefined

DD = N->2Z

We also need to change the state to:

NewD( )
(DR -> DD){root -> DD{}}

CONST r oot
s :

% initially empty root

and to provide a new version of the NewD procedure for creating a new standard directory. The
routinesthat NewD assignsto get and set have the same bodies as the Get Fr ons and Set | nS
routines.

A technical point: The reason for not writing get : =s(dr) in NewD isthat this would capture the
value of s(dr) at thetime NewD isinvoked; we want the value at thetime get isinvoked, and
thisiswhat we get because of the fact that Spec functions are functions on the global state, rather
than pure functions.

APROC NewD() -> D = << VAR dr | ~ sldr =>

s(dr) := DD{};
RET D{ get := (\ n | s(dr)(n)),

Handout 12. Naming 11

6.826—Principles of Computer Systems 2002

set := (PROC (n, z) =IF z # nil =>s(dr)(n) := 2z

|
[*] s(dr) :=s(dr){n ->} FI) }

PROC SetErr(n, z) RAISES {error} = RAISE error
% For later useasaset procif the directory isread-only

We don't need to change anything else in Obj Nanes.

Wewill see many other examples of get and set routines. Note that it’s easy to define a D that
disallows updates, by making set beSet Err.

Views and recursive structure

In this section we examine ways of constructing name spaces, and in particular ways of building
up directories out of existing directories. We already have a basic recursive scheme that makes a
set of existing directories the children of a parent directory. The generalization of thisideaisto
define afunction on some state that returnsa b, that is, apair of get and set procedures. There
are various terms for this:

‘encapsulating’ the state,

‘embedding’ the state in a name space,

‘making the state compatible’ with a name space interface,
defining a‘view’ on the state.

Wewill usually cal it aview. The spec for a view defines how the result of get depends on the
state and how set affectsthe state.

All of these terms express the same idea: make the state behave likeaD, that is, abstract it asa
pair of get and set procedures. Once packaged in thisway, it can be used wherever aD can be
used. In particular, it can be an argument to one of the recursive views that make a D out of other
D's: aparent directory, alink, or the others discussed below. It can a so be the argument of tools
like the Unix commands that list, search, and manipulate directories.

The read operations are much the same for al views, but updates vary a great deal. The two
simplest cases are the one we have aready seen, where you can set the value of aname just as
you write into a memory location, and the even simpler one that disallows updates entirely; the
latter is only interesting if get looks at global state that can change in other ways, asit doesin
the Uni on and Fi | t er operations below. Each time we introduce a view, we will discuss the spec
for updating it.

In therest of this section we describe views that are based on directories: links, mounting,
unions, and filters. The final section of the handout gives many examples of views based on
other kinds of data.

Linksand mounting

The idea behind links (called ‘symbolic links' in Unix, ‘shortcuts’ in Windows, and ‘aiases’ in
the Macintosh) isthat of an alias (another level of indirection): we can define the value of a name

Handout 12. Naming 12



6.826—Principles of Computer Systems 2002

in adirectory by saying that it is the same as the value of some other name in some other
directory. If the value is a directory, another way of saying thisis that we can represent a
directory d by thelink (d', pn'), withd(pn) = d' (pn')(pn), or moregraphically d/ pn =

d' /pn' /pn. When put in thisform it is usually called mounting the directory d' (pn') on pno, if
pno isthe name of d. In thislanguage, pno is called a‘ mount point’. Another namefor itis
‘junction’.

We have already seen code in Ooj Narres to handle links. Y ou might wonder why this code was
needed. Why isn’t our wonderful object-oriented interface enough? The reason is that people
expect more from aliases than this interface can deliver: there can be an alias for a value, not
only for adirectory, and there are complicated rules for when the alias should be followed
silently and when it should be an object in its own right that can be enumerated or changed

Links and mounting make it possible to give objects the names you want them to have, rather
than the ones they got because of defects in the system or other people’ s bad taste. A very down-
to-earth exampleis the problems caused by the restriction in standard Unix that a file system
must fit on asingle disk. This means that in an installation with 4 disks and 12 users, the name
space contains/ di sk1/j ohn and/ di sk2/ mary rather than the/ udi r/j ohn and/ udi r/ mar y that
we want. By making / udi r/ j ohn bealink to/ di sk1/j ohn, and similarly for the other users, we
can hide this annoyance.

Sincealink isnot just a D, we need extra interface procedures to read the value of alink (without
following it automatically, as Read does), and to install alink. We call theinstall procedure
Mount to emphasize that a mount point and a symbolic link are essentially the same thing. The
Mount procedureisjust likew it e except for the second argument’ s type and the fact that it
doesn’t follow afinal link in pn.

PROC ReadLi nk(pn) -> Link RAISES {error} = VAR d, n |
(d, n) := GetDN(pn, false);
VAR z | z :=d.get(n); IFz ISLink =>RET z [*] RAISE error FI

PROC Mount (pn, link) -> DD = Set PN(pn, link, false)

The section on roots below discusses where we might get the Din thel i nk argument of Mount .
In the common case of alink to someplace in the same name space, we have:

PROC MakeLi nk(pn, pn', local: Bool) =
Mount (pn, Link{d := (local => nil [*] root), pn := pn'})

Updating (with w i t e, for instance) makes sense when there are links, but there are two
possibilities. If every link isfollowed then alink never gets updated, since Get DN never returns a
referenceto alink. If afina link is not followed then it can be replaced by something else.

What is the relation between these links and what Unix calls ‘hard links' ? A Unix hard link isan
inode number, which you can think of as adirect pointer to afile; it correspondstoabDin

Obj Nares. Several directory entries can have the same inode number. Another way to look at
thisisthat theinodes are just another kind of name of the formi nodeRoot / 2387754, so that a
hard link isjust alink that happens to be an inode number rather than an ordinary path name.
Thereisno provision for making the value of an inode number be alink (or indeed anything
except afile), so that’s the end of theline.

Handout 12. Naming 13

6.826—Principles of Computer Systems 2002

Unions

Sinceadirectory isafunctionN -> z, itisnatural to combine two directories with the " +"
overlay operator on functions3. If we do thisrepeatedly, writingd1 + d2 + d3, we get the effect
of a‘search path’ that looks at d3 first, then d2, and finally d1 (in that order because " +" gives
preference to its second argument, unlike a search path which gives preferenceto itsfirst
argument). The differenceisthat thisruleis part of the name space, while a search path must be
coded separately in each program that cares. It's unclear whether an update of a union should
change the first argument, change the second argument, do something more complicated, or raise
an error. Wetake the last view for simplicity.

FUNC Union(dl, d2) -> D = RET D{get := dl.get + d2.get, set := SetErr}4

Another kind of union combines the name spaces at every level, not just at the top level, by
merging directories recursively. Thisis the most general way to combine two trees that have
evolved independently.

FUNC DeepUni on(dl, d2) -> D = RET I
get :=(\ n |

( dl.get(n) ISD/\ d2.get(n) IS D => DeepUni on(dl.get(n), d2.get(n))

[*] (dl.get + d2.get)(n) )),
set := SetErr}

Thisisaspec, of course, not efficient code.

Uni on(x, vy)

DeepUni on(x, Y)

Filtersand queries
Given adirectory d, we can make a smaller one by selecting some of d’s children. We can use
any predicate for this purpose, so we get:

FUNC Filter(d, p: (D, N) -> Bool) -> D =
RET D{get := ( \ n| (p(d, n) =>d.get(n)) [*] nil ), set := SetErr}

3 See section 9 of the Spec reference manual.
4 Thisisabit oversimplified, since get isan APROC and hence doesn't have " +" defined. But the idea should be
clear. Plan 9 (see the examples at the end) implements unions.

Handout 12. Naming 14



6.826—Principles of Computer Systems 2002

Examples:
Pattern match in adirectory: a/ b/ *. ps. The predicateistrueif n matches*. ps.

Querying atable: payr ol | / sal ar y>25000/ nane. The predicateistrueif
Get(d, n/salary) > 25000. Seethe example of viewing atablein the final section of
examples.

Full text indexing: bwl / paper s/ wor d: nami ng. The predicateistrueif d. get (n) isatext file
that contains the word nani ng. The code could just search all the text files, but a practical
onewill probably involve an auxiliary index structure that maps words to the fil es that
contain them, and will probably not be perfectly coherent.

See the ‘semantic file system’ example below for more details and a reference.

Variations

It is useful to summarize the ways in which a spec for a name space might vary. The variations
amost all have to do with the exact semantics of updates:

What operations are updates, that is, can change the results of Read?
Aretherealiases, so that an update to one object can affect the value of others?

Arethe updates atomic, or it is possible for reads to see intermediate states? Can an update be
lost, or partly lost, if thereis a crash?

Viewed as a memory, is the name space coherent? That is, does every read that follows an
update see the update, or isit possible for the old state to hang around for awhile?

How much can the set of defined PN's change? In other words, isit useful to think about a
schema for the name space that is separate from the current state?

Updates

If the directories are ‘real’, then there will be non-trivial Wi t e, MakeD, and Renane operations. If
they are not, these operations will alwaysraiseerr or , there will be operations to update the
underlying data, and the view function will determine the effects of these updates on Read and
Enum In many systems, Read and W i t e cannot be modeled as operations on memory because
Wite(a, r) doesnotjust change the valuereturned by Read( a) . Instead they must be
understood as methods of (or messages sent to) some object.

The earliest example of this kind of system isthe DEC Unibus, the prototype for modern 1/0
systems. Devices on such an |/O bus have ‘device registers' that are named aslocationsin
memory. Y ou can read and write them with ordinary load and store instructions. Each device,
however, isfreeto interpret these reads and writes asit seesfit. For example, adisk controller
may have a set of registersinto which you can write acommand which is interpreted as “read n
disk blocks starting at address da into memory starting at addressa”. This might take three
writes, for the parametersn, da, and a, and the third write has the side effect of starting execution
of the command.

Handout 12. Naming 15

6.826—Principles of Computer Systems 2002

The most recent well-known incarnation of thisideaisthe World Wide Web, in which read and
write actions (called Get and Post in the protocol) are treated as messages to servers that can
search databases, accept orders for pizza, or whatever.

Aliases

We have aready discussed thistopic at some length. Links and unions both introduce aliases.
There can also be ‘hard links', which are severa occurrences of the sameD. In aUnix file
system, for example, it is possible to have several directory entries that point to the same file. A
hard link differs from a soft link because the connection it establishes between a name and afile
cannot be broken by changing the binding of some other name. And of course aview can
introduce arbitrarily complicated aliasing. For example, it's fairly common for an 1/0 device that
has internal memory to make that memory addressable with two control registersa and v, and
therule that aread or write of v refersto the internal memory location addressed by the current
contents of a.

Atomicity

The MermNaes and Obj Narmes0 specs made all the update operations atomic. For code to satisfy
these specs, it must hold some kind of lock on every directory touched by Get DN, or at least on
the name looked up in each such directory. This can involvealot of directories, and since the
name space isagraph it also introduces the danger of deadlock. It's therefore common for
systems to satisfy only the weaker atomicity spec of Obj Nanes, which says that looking up a
simple name is atomic, but the entire lookup processis not.

This means that Read(/ a/ x) can return 3 even though there was never any instant at which the
path name/ a/ x had the value 3, or indeed was defined at all. To see how this can happen,

SUpposE:
initially / a isthe directory d1 and / b is undefined;
initially x isundefined in d1;
concurrently with Read(/ a/ x) wedoRenane(/a, /b); Wite(/b/x, 3).

The following sequence of actionsyields Read(/ a/ x) = 3:
IntheRead , Get (root, a) = di
Rename(/a, /b) makes/a undefined and di the value of / b
Wite(/b/x, 3) makes3thevaueof x indi

IntheRead, RET d1.get (x) returns3.

Handout 12. Naming 16



6.826—Principles of Computer Systems 2002

a

Renane

@1 (/a, /b)

Get(root, a) = dil

Obviously, whether this possibility isimportant or not depends on how clients are using the
name space.

Coherence

Other things being equal, everyone prefers a coherent or ‘ sequentially consistent’ memory, in
which thereisasingle order of all the concurrent operations with the property that the result of
every read is the result that a simple memory would return after it has done al the preceding
writesin order. Maintaining coherence has costs, however, in the amount of synchronization that
isrequired if parts of the memory are cached, or in the amount of availability if the memory is
replicated. Wewill discuss thefirst issuein detail at the end of the course. Here we consider the
availability of areplicated memory.

Recall the majority register from the beginning of the course. It writes amajority of the replicas
and reads from a mgjority, thus ensuring that every read must see the most recent write.
However, this means that you can't do either aread or awrite unless you can talk to a majority.
There we used a general notion of majority in which the only requirement is that every two

maj orities have a non-empty intersection. Applying this idea, we can define separate read and
write quorums, with the property that every read quorum intersects every write quorum. Then we
can make reads more available by making every replicaaread quorum, at the price of having the
only write quorum be the set of al replicas, so that we have to do every writeto all the replicas.

An alternative approach is to weaken the spec so that it's possible for aread to see old values.
We have seen a version of thisalready in connection with crashes and write buffering, whereit
was possible for the system to revert to an old state after a crash. Now we propose to make the
spec even more non-deterministic: you can read an old value at any time, and the only restriction
isthat you won't read a value older than the most recent Sync. In return, we can now have much
more availability in the code, since both aread and awrite can be doneto asinglereplica. This
meansthat if youdowite(/a, 3) andimmediately read a, you may not get 3 because the Read
might use a different replicathat hasn’t seen thew i t e yet. Only Sync requires communication
among thereplicas.

We give the spec for this as a variation on Obj Nanes. We alow ni | to beindd(n), representing
thefact that n has been undefined in dd.

Handout 12. Naming 17

6.826—Principles of Computer Systems 2002

TYPE DD = N-> % remember old values

APRCC Cet Fron5(d, n) -> Z = <<

% The non-determinism wouldn’t be allowed if this were afunction
MAR Z | z INs(d)(n) =>]RET z [*] RET nil >>

% wewrited. get (n)

% return any old value

PROC SetToS(d, n, z) =
s(d)(n) :=[((s(d)!n => s(d)(n) [*] {}) + {7}

% wewrited. set (n, z)
% add z to the state

PRCC Sync(pn) RAISES {error} =
VAR d, n, z |
(d, n) := GetDN(pn, true); z := s(d)(n).last;
IFz #nil =>s(d)(n) :={z} [*] s(d) :=s(d){n ->1} FI

This spec is common in the naming service for a distributed system, for instance in the Internet’s
DNS or Microsoft’s Active Directory. The name space changes slowly, it isn’t critical to seethe
very latest value, and it is critical to have high availability. In particular, it’s critical to be ableto
look up names even when network partitions make some working replicas unreachable.

Schemas

In the database world, a schemais the definition of what names are defined (and usually also of
the type of each name’s value).5 Network management calls this a‘ management information
base’ or MIB. Depending on the application there are very different rules about how the schema
is defined.

In afile system, for example, thereis usualy no official schemawritten down. Nonetheless, each
operating system has conventions that in practice have the force of law. A Unix system without
/binand/etc will not get very far. But other parts of the name space, especialy in users
private directories, are completely variable.

By contrast, a database system takes the schema very seriously, and a management system takes
at least some parts of it seriously. The choice has mainly to do with whether it is people or
programs that are using the name space. Programs tend to be much lessflexible; it'salot of
work to make them adapt to missing data or pay attention to unexpected additional data

Minor issues

We mention in passing some other, less fundamental, ways in which the specs for name spaces
differ.

Rules about overwriting. Some systems allow any name to be overwritten, others treat
directories, or non-empty directories, specially to reduce the consequences of careless
erors.

Access control. Many systems enforce rules about which users or programs are allowed to
read or write various parts of the name space.

5 Gray and Reuter, Transaction Processing, Morgan Kaufmann, 1993, pp 768-786.

Handout 12. Naming 18



6.826—Principles of Computer Systems 2002

Resource control. Writes often consume resources that are expensive or in fixed supply,
such as disk blocks. This means that they can fail if the resources are exhausted, and there
may also be a quota system that limits the resource consumption of users or programs.

Roots

It's not turtles all the way down.
Anonymous

So far we have ducked the question of how ther oot is represented, or theDin alink that plays a
similar role. In oj Names0 we said D = I nt, leaving itsinterpretation entirely to the s
component of the state. In Cbj Names we said Disapair of procedures, begging the question of
how the procedures are represented. The representation of aroot depends entirely on the
implementation. In afile system, for instance, aroot names a disk, a disk partition, a volume, a
file system exported from a server, or something like that. Thus there is another name space for
theroots (another level of indirection). It worksin awide variety of ways. For example:

In MS-DOS. you name a physically connected disk drive. If the drive has removable media
and you insert the wrong one, too bad.

On the Macintosh. you use the string name of a disk. If the system doesn’t know whereto
find this disk, it asks the user. If you give the same name to two removabl e disks, too bad.

On Digital VMS. disks have unique identifiers that are used much like the string names on
the Macintosh.

For the NFS network file system, aroot is named by a host name or IP address, plus afile
system name or handle on that host. If that name or address gets assigned to another
machine, too bad.

In anetwork directory aroot is named by a unique identifier. Thereis also a set of servers
that might store replicas of that directory.

In the secure file system, aroot is named by the hash of a public encryption key. There's
also anetwork address to help you find thefile system, but that’s only a hint.6

In generdl it isagood idea to have absolute names (unique identifiers) for directories. This at
least ensures that you won't use the wrong directory if the information about whereto find it
turns out to be wrong. A UID doesn’t give much help in locating a directory, however. The
possibilities are;
Store a set of placesto look aong with the UID. The problem is keeping this set up to date.
Keep another name space that maps UID’ s to locations (yet another level of indirection).
The problem is keeping this name space up to date, and making it sufficiently available.
For the former, every location can register itself periodically. For the latter, replication is
good. We will talk about replication in detail later in the course.

Search some ad-hoc set of placesin the hope of finding a copy. This search is often called a
‘broadcast’.

6 Maziéres, Kaminsky, Kaashoek, and Witchel, Separating key management from file system security. Proc. 17th
ACM Symposium on Operating Systems Principles, Dec. 1999. www.pdos.|cs.mit.edu/papers/sfs:sosp99.pdf.

Handout 12. Naming 19

6.826—Principles of Computer Systems 2002

We defined the interface routines to start from afixed r oot . Some systems, such as Unix, have
provisions for changing the root; the chr oot system call does thisfor a process. In addition, itis
common to have amore local context (called a‘working directory’ for afile system), and to have
syntax to specify whether to start from the root or the working directory (presence or absence of
aninitial ‘7’ for aUnix file system).

Examples

These are to expand your mind and to help you recognize a name space when you come across it
under some disguise.

Filesystem Example: / udir/ I anpson/ pocs/ handout s/ 12- nami ng

director
y Not atree, becauseof . and. ., hard links, and soft links.

Devices, named pipes, and other things can appear as well asfiles.

Links and mounting are important for assembling the name space you want.
Files may have attributes, which are alittle directory attached to the file.
Sometimes resources, fonts, and other OS rigmarol e are stored this way.

inodes Thereisasingleinode directory, usually coded as a function rather than atable;
you compute the location of the inode on the disk from the number.
For system-wide inodes, prefix a system-wide file system or volume name.

Plan 97 This operating system puts all its objects into a single name space: files, devices,
pipes, processes, display servers, and search paths (as union directories).

Semantic Not restricted to relational databases.

file systems . .
Free-text indexing: ~I anpson/ Mai | / i nbox/ (wor d="conpi | er")
Program cross-reference: / pr oj ect / sour ces/ (cal | s="Del et eFi | e")
Table Example: ID no (key) Name Salary Married?
(relational 1432 Snith 21, 000 Yes
data base) 44563 Jones 35, 000 No

8456 Br own 17, 000 Yes

We can view this as anaming tree in several ways:
#44563/ Nane = Jones key'svalueisaD that defines Nanme, Sal ary, etc.
Nane/ #44563 = Jones key'svalue isthe Nane field of itsrow

The second way, cat Nane/* yields
Smith Jones Brown

7 Pike et al., The use of name spacesin Plan 9, ACM Operating Systems Review 27, 2, Apr. 1993, pp 72-76.
8 Gifford et al., Semantic file systems, Proc. 13th ACM Symposium on Operating System Principles, Oct. 1991, pp
16-25 (handout 13).

Handout 12. Naming 20



6.826—Principles of Computer Systems 2002

Network
naming®

E-mail
addresses

SNMPL

Page tables

1/0 device
addressing

Multiplexing
achannel

LAN
addresses

Example: theory.lcs. nit. edu

Distributed code. Can share responsibility for following the path between client
and server in many ways.

A directory handle is a machine address (interpreted by some communication
network), plus someid for the directory on that machine.

Attractive as top levels of complete naming hierarchy.

Example: rinard@cs. nit. edu

This syntax patches together the network name space and the user name space of a
single host. Often there are links (called forwarding) and directories full of links
(called distribution lists).

Example: Router with circuits, packets in circuits, headers in packets, etc.

Internet Simple Network Management Protocol

Roughly, view the state of the managed entity as atable, treating it as a name
space theway we did earlier. Y ou can read or write table entries.

The Next action alows a client to explore the name space, whose structureis
read-only. Ad hoc Wi t e actions are sometimes used to modify the structure, for
instance by adding arow to atable.

Divide up the virtual address, using the first chunk to index afirst level pagetable,
later chunks for lower level tables, and the last chunk for the byte in the page.

Example: Memory bus.

SCSI controller, by device register addresses.

SCSI device, by device number 0. . 7 on SCSI bus.

Disk sector, by disk address on unit.

Usually thereis a pure read/write interface to the part of the I/O system that is
named by memory addresses (the device registersin the example), and a message

interface to the rest (the disk in the example).

Examples: Node-node network channel — n process-process channels.
Process-kernel channel — n inter-process channels.

ATM virtua path — n virtua circuits.

Given achannel, you can multiplex it to get sub-channels.
Sub-channels are identified by addresses in messages on the main channel.
Thisidea can be applied recursively, asin all good name spaces.

48-hit ethernet address. Thisisflat: the addressisjust aUID.

9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed
Computing, Minaki, Ontario, 1986, pp 1-10. RFC 1034/5 for DNS.
10 M. Rose, The Simple Book, Prentice-Hall, 1990.

Handout 12. Naming 21

6.826—Principles of Computer Systems 2002
Hierarchical Example: 16. 24. 116. 42 (an |P address).
gdadwork ., Anaddressinabig network is hierarchical.
eSS A router knowsits parents and children, like afile directory, and also its siblings
(because the parent might be missing)
To route, traverse up the name space to least common ancestor of current place
and destination, then down to destination.
Network Example: 6. 24. 116. 42/ 11234/ 1223: 44 9 Jan 1995/item 21
2
referencet Network address + port or processid + incarnation + more multiplexing + address
or export index.
Some applications are remote procedure binding, network pointer, network object
Abbrevia= A, talking to B, wantsto pass abig value v, say afont or security credentials.
tions A makes up a short name N for v (sometimes called a ‘ cooki€', though it’s not the
same as a Web cooki€) and passes that.
If B doesn’t know N'svalue, it calls back to A to get it, and caches the result.
Sometimes A tells v to B when it chooses N, and B is expected to remember it.
Thisis not as good because B might run out of space or fail and restart.
World Example: http://ds.internic.net/ds/rfc-index. htm
Wide Web - )
Thisisthe URL (Uniform Resource Locator) for Internet RFCs.
The Web has a read/write interface.
Spec names Example; bj Nares. Enum
Telephone Example: 1-617- 253- 6182
numbers
Postal Example: Prof. Butler Lanpson
addresses Room 43-535
MT

Canbri dge, MA 02139

11 R, Perlman, Connections, Prentice-Hall, 1993.
12 Andrew Birrell et al., Network objects, Proc. 14th ACM Symposium on Operating Systems Principles, Asheville,
NC, Dec. 1993 (handout 25).

Handout 12. Naming 22



6.826—Principles of Computer Systems 2002

13. Paper: Semantic File Systems

David Gifford, et al. "Semantic file systems,” Proc.13th ACM Symposium on Operating System Principles,
October 1991, pp 16-25.

Read the paper as an adjunct to the lecture on naming.

Handout 13. Paper: Semantic File Systems





