
6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 1 

12.  Naming 

Any problem in computing can be solved by another level of indirection.  
David Wheeler 

Introduction 

This handout is about orderly ways of naming complicated collections of objects in a computer 
system. A basic technique for understanding a big system is to describe it as a collection of 
simple parts. Being able to name these parts is a necessary aspect of such a description, and often 
the most important aspect.  

The basic idea can be expressed in two ways that are more or less equivalent: 

Identify values by variable length names called path names that are sequences of simple 
names that are strings. Think of all the names with the same prefix (for instance, 
/udir/lampson and /udir/lynch) as being grouped together. This grouping induces a tree 
structure on the names. Non-leaf nodes in the tree are directories. 

Make a tree of nodes with simple names on the arcs. The leaf nodes are values and the 
internal nodes are directories. A node is named by a path through the tree from the root; such 
a name is called a path name. 

Thus /udir/lampson/pocs/handouts/12 is a path name for a value (perhaps the text of this 
handout), and /udir/lampson/pocs/handouts is a path name for a directory (other words for 
directory are folder, context, closure, environment, binding, and dictionary). The collection of all 
the path names that make sense in some situation is called a name space. Viewing a name space 
as a tree gives us the standard terminology of parents, children, ancestors, and descendants. 

Using path names to name values (or objects, if you prefer) is often called ‘hierarchical naming’ 
or ‘tree-structured naming’. There are a lot of other names for it that are used in special 
situations: mounting, search paths, multiplexing, device addressing, network references. An 
important reason for studying naming in general is that you don’t have to start from scratch in 
understanding all those other things. 

Path names are good because: 

•  The name space can grow indefinitely, and the growth can be managed in a decentralized 
way. That is, the authority to create names in one part of the space can be delegated, and 
thereafter there is no need for synchronization. Names that start /udir/lampson are 
independent of names that start /udir/rinard. 

•  Many kinds of data can be encapsulated under this interface, with a common set of 
operations. Arbitrary operations can be encoded as reads and writes of suitably chosen 
names. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 2 

As we have seen, a path name is a sequence of simple names. We use the types N = String for 
a simple name and PN = SEQ N for a path name. It is often convenient to write a path name as a 
string. The syntax of these strings is not important; it is just a convention for encoding the path 
names. Here are some examples: 

/udir/lampson/pocs/handouts/12 Unix path name 
lampson@mediaone.net Internet mail address. The path name is 
 {"net", "mediaone", "lampson"} 
16.23.5.193 IP network address (fixed length) 

We will normally write path names as Unix file names, rather than as the sequence constructors 
that would be correct Spec. Thus a/b/c/1026 instead of PN{"a","b","c","1026"}. 

People often try to distinguish a name (what something is) from an address (where it is) or a 
route (how to find it). This is a matter of levels of abstraction and must not be taken as absolute. 
At a given level of abstraction we tend to identify objects at that level by names, the lower-level 
objects that code them by addresses, and paths at lower levels by routes. Examples: 

 
microsoft.com -> 207.46.130.149 -> SEQ [router output port, LAN address] 
a/b/c/1026 -> INode/1026 -> DA/2 -> [cylinder, head, sector, byte 2] 

Sometimes people talk about “descriptive names”, which are queries in a database. We will see 
that these are readily encompassed within the framework of path names. That is a formal 
relationship, however. There is an important practical difference between a designator for a 
single entity, such as lampson@mediaone.net, and a description or query such as “everyone at 
MIT’s LCS whose research involves parallel computing”. The difference is illuminated by the 
comparison between the name eecsfaculty@eecs.mit.edu and the query “the faculty members 
in MIT’s EECS department”. The former name is probably maintained with some care; it’s 
anyone’s guess how reliable the answer to the query is. When using a name, it is wise to consider 
whether it is a designator or a description. 

This is not to say that descriptions or queries are bad. On the contrary, they are very valuable, as 
any one knows who has ever used a web search engine. However, they usually work well only 
when a person examines the results with some care. 

In the remainder of this handout we examine the specs for the two ways of describing a name 
space that we introduced earlier: as a memory addressed by path names, and as a tree (or more 
generally a graph) of directories. The two ways are closely related, but they give rise to 
somewhat different specs. Then we study the recursive structure of name spaces and various 
ways of inducing a name space on a collection of values. This leads to a more abstract analysis 
of how the spec for a name space can vary, depending on the properties of the underlying values. 
We conclude our general treatment by examining how to name a name space. Finally, we give a 
large number of examples of name spaces; you might want to look at these first to get some more 
context. 

Name space as memory 

We can view a name space as an example of the memory abstraction we studied earlier. Recall 
that a memory is a partial map M = A -> V. Here we take A = PN and replace M with D (for 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 3 

directory). This kind of memory differs from the byte-addressable physical memory of a 
computer in several ways1:  

•  The map is partial. 

•  The domain is changing. 

•  The current value of the domain (that is, which names are defined) is interesting.  

•  PN’s with the same prefix are related (though not as much as in the second view of name 
spaces).  

Here are some examples of name spaces that can naturally be viewed as memories: 

The Simple Network Management Protocol (SNMP) is used to manage components of the 
Internet. It uses path names (rooted in IP addresses) to name values, and the basic 
operations are to read and write a single named value. 

Several file systems use a single large table to map the path name of a file to the extents 
that represent it. 

MODULE MemNames0[V] EXPORT Read, Write, Remove, Enum, Next, Rename = 

TYPE N = String % Name 
PN = SEQ N WITH {"<<=":=PNLE} % Path Name 
D = PN -> V % Directory 

VAR d := D{} % the state 

FUNC PNLE(pn1, pn2) -> Bool = pn1.LexLE(pn2, N."<=") % pn1 <<= pn2 

Here are the familiar Read and Write procedures; Read raises error if d is undefined at pn, for 
consistency with later specs. In this basic spec none of the other procedures raises error; this 
innocence will not persist when things get more complicated. It’s common to also have a Remove 
procedure for making a PN undefined; note that unlike a file system, this Remove does not erase 
the values of longer names that start with PN. This is because, unlike a file system, this spec does 
not ensure that every prefix of a defined PN is defined. 

FUNC Read(pn) -> V RAISES {error} = RET d(pn) [*] RAISE error 

APROC Write(pn, v) = << d := d{pn -> v} >> 

APROC Remove(pn)   = << d := d{pn ->  } >> 

The body of Write is usually written d(pn) := v.  

It’s important that the map is partial, and that the domain changes. This means that we need 
operations to find out what the domain is. Simply returning the entire domain is not practical, 
since it may be too big, and usually only part of it is of interest. There are two schools of thought 

                                                 
1  It differs much less from the virtual memory, in which the map may be partial and the domain may change as new 
virtual memory is assigned or files are mapped. Actually these things can happen to physical memory as well, 
especially in the part of it implemented by I/O devices. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 4 

about what form these operations should take, represented by the functions Enum and Next; only 
one of these is needed. 

Enum returns all the simple names that can lead to a value starting from pn; another way of 
saying this is that it returns all the names bound in the directory named pn. By recursively 
applying Enum to pn + n for each simple name n that Enum returns, you can explore the 
entire tree. 

On the other hand, if you keep feeding Next its own output, starting with {}, it walks the tree 
of defined names depth-first, returning in turn each PN that is bound to a V. It finishes with 
{}.  

Note that what Next does is not the same as returning the results of Enum one at a time, since 
Next explores the entire tree, not just one directory. Thus Enum takes the organization of the 
name space into directories more seriously than does Next. 

FUNC Enum(pn) -> SET N = RET {pn1 | d!(pn + pn1) | pn1.head} 

FUNC Next(pn) -> PN    = VAR later := {pn' | d!pn' /\ pn <= pn'} | 
RET later.fmin(PN."<<=") [*] RET {} % {} if later is empty 

A separate issue is arranging to get a reasonable number of results from one of these procedures. 
If the directory is large, Enum as defined here may return an inconveniently large set, and we may 
have to call Next inconveniently many times. In real life we would make either routine return a 
sequence of N’s or PN’s, usually called a ‘buffer’. This is a standard use of batching to reduce the 
overhead of invoking an operation, without allowing the batches to get too large. We won’t add 
this complication to our specs. 

Finally, there is a Rename procedure that takes directories quite seriously. It reflects the idea that 
all the names which start the same way are related, by changing all the names that start with 
from so that they start with to. Because directories are not very real in the representation, this 
procedure has to do a lot of work. It erases everything that starts with either argument, and then 
copies everything in the original d that starts with from to the corresponding path name that 
starts with to. Read x <= y as “x is a prefix of y”. 

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d | 
IF from <= to => RAISE error % can’t rename to a descendant 
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD; 
 DO VAR pn | d(to + pn ) # d0(from + pn) => d(to + pn) := d0(from + pn) OD 
FI >> 

END MemNames0 

Here is a different version of Rename that makes explicit the relation between the initial state d 
and the final state d'. Read x >= y as “x is a suffix of y”. 

APROC Rename(from: PN, to: PN) RAISES {error} = <<  
IF VAR d' | 
 (ALL x: PN, y: PN | (    x >= from                  => ~ d'!x  
                      [*] x = to + y /\ d!(from + y) => d'(x) = d(from + y)
                      [*] ~ x >= to /\ d!x           => d'(x) = d(x)  
                      [*] ~ d'!x )  



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 5 

    => d := d' 
[*] RAISE error FI >> 

There is often a rule that a name can be bound to a directory or to a value, but not both. For this 
we need a slightly different spec that marks a name as bound to a directory by giving it the 
special value isD, with a separate procedure for making an empty directory. To enforce the new 
rule every routine can now raise error, and Remove erases the whole sub-tree. As usual, boxes 
mark the changes from MemNames0. 

MODULE MemNames[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename = 

TYPE Dir = ENUM[isDir] 
D   = PN -> (V + Dir) SUCHTHAT (\d| d({}) IS Dir) % root a Dir 

VAR d  := D{{} -> isDir} 

% INVARIANT (ALL pn, pn' | d!pn' /\ pn' > pn => d(pn) = isDir 

FUNC Read(pn) -> V RAISES {error} = d(pn) IS V => RET d(pn) [*] RAISE error 

FUNC Enum(pn) -> SET N RAISES {error} =  
 d(pn) IS Dir => RET {pn1 | d!(pn + pn1) | pn1.head}   [*] RAISE error 

APROC Write(pn, v) RAISES {error}  = << Set(pn, v) >> 
APROC MakeDir(pn)  RAISES {error}  = << Set(pn, isDir) >> 

APROC Remove(pn) =  % Erase everything with pn prefix. 
<< DO VAR pn' :IN d.dom | (pn <= pn') => d := d{pn' -> } OD >> 

APROC Rename(from: PN, to: PN) RAISES {error} = << VAR d0 := d | 
IF from <= to => RAISE error   % can’t rename to a descendant 
[*] DO VAR pn :IN d.dom | (to <= pn \/ from <= pn) => d := d{pn -> } OD; 

DO VAR pn | d(to + pn ) # d0(from + pn) =>  
d(to + pn) := d0(from + pn) OD  

FI >> 

APROC Set(pn, y: (V + D) RAISES {error} =  
<< pn # {} /\ d(pn.reml) IS D => d(pn) := y [*] RAISE error >> 

END MemNames 

A file system usually forbids overwriting a file with a directory (for no obvious reason) or 
overwriting a non-empty directory with anything (because a directory is precious and should not 
be clobbered wantonly), but these rules are rather arbitrary, and we omit them here. 

Exercise: write a version of Rename that makes explicit the relation between the initial state d and 
the final state d', in the style of the second Rename of MemNames0. 

The MemNames spec is basically the same as the simple Memory spec. Complications arise because 
the domain can change, and because of the distinction between directories and values. The specs 
in the next section take this distinction much more seriously. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 6 

Name space as graph of directory objects 

These specs are reasonably simple, but they are clumsy for operations on directories such as 
Rename. More fundamentally, they don’t handle aliasing, where the same object has more than 
one name. The other (and more usual) way to look at a hierarchical name space is to think of 
each directory as a function that maps a simple name (not a path name) to a value or another 
directory, rather than thinking of the entire tree as a single PN -> V map. This tree (or general 
graph) structure maps a PN by mapping each N in turn, traversing a path through the graph of 
directories; hence the term ‘path name’. We continue to use the type D for a directory. 

Our eventual goal is a spec for a name space as graph that is ‘object-oriented’ in the sense that 
you can supply different code for each directory in the name space. We will begin, however, 
with a simpler spec that is equivalent to MemNames, evolve this to a more general spec that allows 
aliases, and finally add the object orientation. 

The obvious thing to do is to make a D be a function N -> Z, where Z = (D + V) as before, and 
have a state variable d which is the root of the tree. Unfortunately this completely functional 
structure doesn’t work smoothly, because there’s no way to change the value of a/b/c/d without 
changing the value of a/b/c so that it contains the new value of a/b/c/d, and similarly for a/b 
and a as well.2 

 

“…” 
“…” 
35 
... 

12 
42 
21 
93 
...

DD = N->Z

s: D->DD  

0 
12 
42 
93 
. . .
 

lampson 
lynch 
rinard 
jamieson 
. . . 

grades 
stuff 
files 
. . . 

 

We solve this problem in the usual way with another level of indirection, so that the value of a 
directory name is not a N -> Z but some kind of reference or pointer to a N -> Z, as shown in 
the figure. This reference is an ‘internal name’ for a directory. We use the name DD for the actual 

                                                 
2 The method of explicitly changing all the functions up to the root has some advantages. In particular, we can make 
several changes to different parts of the name space appear atomically by waiting to rewrite the root until all the 
changes are made. It is not very practical for a file system, though at least one has been built this way: H.E. Sturgis, 
A Post-Mortem for a Time-sharing System, PhD thesis, University of California, Berkeley, and Report CSL 74-1, 
Xerox Research Center, Palo Alto, Jan 1974. It has also been used in database systems to atomically change the 
entire database state; in this context it is called ‘shadowing’. See Gray and Reuter, pp 728-732. 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 7 

function N -> Z and introduce a state variable s that holds all the DD values; its type is D->DD. A 
D is just the internal name of a directory, that is, an index into s. We take D = Int for simplicity, 
but any type with enough values would do; in Unix D = INo. You may find it helpful to think of 
D as a pointer and s as a memory, or of D as an inode number and s as the inodes. Later sections 
explore the meaning of a D in more detail, and in particular the meaning of root.  

Once we have introduced this extra indirection the name space does not have to be a tree, since 
two PN’s can have the same D value and hence refer to the same directory. In a Unix file system, 
for example, every directory with the path name pn also has the path names pn/., pn/./., etc., 
and if pn/a is a subdirectory, then the parent also has the names pn/a/.., pn/a/../a/.., etc. 
Thus the name space is not a tree or even a DAG, but a graph with cycles, though the cycles are 
constrained to certain stylized forms involving ‘.’ and ‘..’. This means, of course, that there are 
defined PN’s of unbounded length; in real life there is usually an arbitrary upper bound on the 
length of a defined PN. 

The spec below does not expose D’s to the client, but deals entirely in PN’s. Real systems often 
do expose the D pointers, usually as some kind of capability (for instance in a file system that 
allows you to open a directory and obtain a file descriptor for it), but sometimes just as a naked 
pointer (for instance in many distributed name servers). The spec uses an internal function Get, 
defined near the end, that looks up a PN in a directory; GetD is a variation that raises error if it 
can’t return a D. 

MODULE ObjNames0[V] EXPORT Read, Write, MakeD, Remove, Enum, Rename = 

TYPE D = Int % just an internal name 
Z = (V + D) % the value of a name 
DD = N -> Z % a Directory 

VAR root : D := 0  
s := (D -> DD){}{root -> DD{}} % initially empty root 

FUNC Read(pn) -> V RAISES {error} = VAR z := Get(root, pn) | 
IF z IS V => RET z [*] RAISE error FI  

FUNC Enum(pn) -> SET PN RAISES {error} = RET s(GetD(root, pn)).dom 
% Raises error if pn isn’t a directory, like MemNames. 

A write operation on the name a/b/c has to change the d component of the directory a/b; it does 
this through the procedure SetPN, which gets its hands on that directory by invoking 
GetD(root, pn.reml). 

APROC Write(pn, v) RAISES {error} = << SetPN(pn, v) >> 
APROC MakeD(pn)  RAISES {error} = << VAR d := NewD() | SetPN(pn, d)  >> 

APROC Remove(pn)   RAISES {error} =  
<< VAR d := GetD(root, pn.reml) | >> 

APROC Rename(from: PN, to: PN) RAISES {error} = << 
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant 
[*] VAR fd := GetD(root, from.reml),  % know from, to # {} 
     td := GetD(root, to  .reml) | 

s(fd)!(from.last) =>  

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 8 

s(td) := s(td)(to  .last -> s(fd)(from.last));  
s(fd) := s(fd){from.last -> } 

[*] RAISE error 
FI >> 

The remaining routines are internal. The main one is Get(d, pn), which returns the result of 
starting at d and following the path pn. GetD raises error if it doesn’t get a directory. NewD 
creates a new, empty directory. 

FUNC Get(d, pn) -> Z RAISES {error} =  
% Return the value of pn looked up starting at z. 

IF pn = {} => RET d 
[*] VAR z :=s(d)(pn.head) | z IS D => RET Get(z, pn.tail) 
[*] RAISE error 
FI 

FUNC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) | 
IF z IS D => RET z [*] RAISE error FI 

APROC SetPN(pn, z) RAISES {error} =  
<< VAR d := GetD(root, pn.reml) | s(d)(pn.last) := z >> 

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := DD{}; RET d >> 

END ObjNames0 

As we did with the second version of MemNames0.Rename, we can give a definition of Get in 
terms of a predicate. It says that there’s a sequence p of directories starting at d and ending at the 
result of Get, such that the components of pn select the corresponding components of p; if 
there’s no such sequence, raise error. 

FUNC Child(z1, z2) -> Bool = z1 IS D /\ s!z1 /\ z2 IN s(z1).rng 

FUNC Get(d, pn) -> Z RAISES {error} = << 
IF VAR p :IN Child.paths |  

p.head = d /\ (ALL i :IN pn.dom | p(i+1) = s(p(i)(pn(i))) => RET p.last 
[*] RAISE error  
FI >> 

ObjNames0 is equivalent to MemNames. The abstraction function from ObjNames0 to MemNames is 

 MemNames.d = (\ pn | G(pn) IS V => G(pn) [*] G(pn) IS D => isD) 

where we define a function G which is like Get on root except that it is undefined where Get 
raises error: 

FUNC G(pn) -> Z = RET Get(root, pn) EXCEPT error => IF false => SKIP FI 

The EXCEPT turns the error exception from Get into an undefined result for G.  

Exercise: What is the abstraction function from MemNames to ObjNames0. 

Objects, aliases, and atomicity 

This spec makes clear the basic idea of interpreting a path name as a path through a graph of 
directories, but it is unrealistic in several ways: 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 9 

The operations for changing the value of the DD functions in s may be very different from the 
Write and MakeD operations of ObjNames0. This happens when we impose the naming 
abstraction on a data structure that changes according to its own rules. SNMP is a good 
example; the values of names changes because of the operation of the network. Later in this 
handout we will explore a number of these variations. 

There is often an ‘alias’ or ‘symbolic link’ mechanism which allows the value of a name n in 
context d to be a link (d', pn). The meaning is that d(n) is a synonym for Get(d', pn).   

The operations are specified as atomic, but this is often too strong. 

Our next spec, ObjNames, reflects all these considerations. It is rather complicated, but the 
complexity is the result of the many demands placed on it; ideas for simplifying it would be 
gratefully received. ObjNames is a fairly realistic spec for a naming system that allows for both 
symbolic links and extensible code for directories. 

A ObjNames.D has get and set methods to allow for different code, though for now we don’t 
take any advantage of this, but use the fixed code GetFromS and SetInS. In the section on 
object-oriented directories below, we will see how to plug in other versions of D with different 
get and set methods. The section on coherence below explains why get is a procedure rather 
than a function. These methods map undefined values to nil because it’s tricky to program with 
undefined in this general setting; this means that Z needs Null as an extra case.  

Link is another case of Z (the internal value of a name), and there is code in Get to follow links; 
the rules for doing this are somewhat arbitrary, but follow the Unix conventions. Because of the 
complications introduced by links, we usually use GetDN instead of Get to follow paths; this 
procedure converts a PN relative to root into a directory d and a name n in that directory. Then 
the external procedures read or write the value of that name.  

Because Get is no longer atomic, it’s no longer possible to define it in terms of a path through 
the directories that exists at a single instant. The section on atomicity below discusses this point 
in more detail. 

MODULE ObjNames[V] EXPORT ... = 

TYPE D = Int % Just an internal name 
   WITH {get:=GetFromS, set:=SetInS} % get returns nil if undefined 

Link = [d: (D + Null), pn] % d=nil for ‘relative’: the containing D 
Z = (V + D + Link + Null) % nil means undefined 
DD = N -> Z 

CONST root : D := 0  
VAR s := (D -> DD){}{root -> DD{}} % initially empty root 

APROC GetFromS(d, n) -> Z =  % d.get(n) 
<< RET s(d)(n) [*] RET nil >>  

APROC SetInS  (d, n, z)   =  % d.set(n, z) 
% If z = nil, SetInS leaves n undefined in s(d). 

<< IF z # nil => s(d)(n) := z [*] s(d) := s(d){n -> } FI >> 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 10 

PROC Read   (pn)     -> V     RAISES {error} = VAR z := Get(root, pn) | 
IF z IS V => RET z [*] RAISE error FI 

PROC Enum   (pn)     -> SET N RAISES {error} =  
% Can’t just write RET GetD(root, pn).get.dom as in ObjNames0, because get isn’t a function. 
% The lack of atomicity is on purpose. 

VAR d := GetD(root, pn), ns: SET N := {}, z | 
DO VAR n | << z := d.get(n); ~ n IN ns /\ z # nil => ns + := {n} >> OD; 
RET ns 

PROC Write  (pn, v)           RAISES {error} =                   SetPN(pn,v, true 

PROC MakeD(pn)                RAISES {error} = VAR d := NewD() | SetPN(pn,d, false

PROC Rename(from: PN, to: PN) RAISES {error} = VAR d, n, d', n' | 
IF (to = {}) \/ (from <= to) => RAISE error % can’t rename to a descendant  
[*] (d, n) := GetDN(from, false); (d', n') := GetDN(to, false); 

<< d.get!n => d'.set(n', d.get(n)); d.set(n, nil) >> 
[*] RAISE error 
FI  

This version of Rename imposes a different restriction on renaming to a descendant than real file 
systems, which usually have a notion of a distinguished parent for each directory and disallow 
ParentPN(d) <= ParentPN(d'). They also usually require d and d' to be in the same ‘file 
system’, a notion which we don’t have. Note that Rename does its two writes atomically, like 
many real file systems. 

The remaining routines are internal. Get follows every link it sees; a link can appear at any point, 
not just at the end of the path. GetDN would be just  

IF pn = {} => RAISE error [*] RET (GetD(root, pn.reml), pn.last) FI 

except for the question of what to do when the value of this (d, n) is a link. The 
followLastLink parameter says whether to follow such a link or not. Because this can happen 
more than once, the body of GetDN needs to be a loop. 

PROC Get(d, pn) -> Z RAISES {error} = VAR z := d | 
% Return the value of pn looked up starting at d. 

DO << pn # {} => VAR n := pn.head, z' |   
IF z IS D =>  % must have a value for n. 

z' := z.get(n);  
IF z' # nil =>  

% If there's a link, follow it. Otherwise just look up n. 
IF (z, pn') := FollowLink(z, n); pn := pn' + pn.tail  
[*] z        := z'              ; pn :=       pn.tail 
FI 

[*] RAISE error 
FI 

[*] RAISE error 
FI 

>> OD; RET z 

PROC GetD(d, pn) -> D RAISES {error} = VAR z := Get(d, pn) | 
IF z IS D => RET z AS D [*] RAISE error FI 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 11 

PROC GetDN(pn, followLastLink: Bool) -> (D, N) RAISES {error} = VAR d := root | 
% Convert pn into (d, n) such that d.get(n) is the item that pn refers to.  

DO IF  pn = {} => RAISE error 
[*] VAR n := pn.last, z | 

d := Get(d, pn.reml);  
% If there's a link, follow it and loop. Otherwise return. 
<< followLastLink => (d, pn) := FollowLink(d, n) [*] RET (d, n) >> 

FI 
OD 

APROC FollowLink(d, n) -> (D, PN) = <<  
% Fail if d.get(n) not Link.  Use d as the context if the link lacks one. 

VAR l := d.get(n) | l IS Link => RET ((l.d IS D => l.d [*] d), l.pn) >> 

PROC SetPN(pn, z, followLastLink: Bool) RAISES {error} =  
VAR d, n | (d, n) := GetDN(pn, followLastLink); d.set(n, z) 

APROC NewD() -> D = << VAR d | ~ s!d => s(d) := D{}; RET d >> 

END ObjNames 

Object-oriented directories 

Although D in ObjNames has get and set methods, they are the same for all D’s. To encompass 
the full range of applications of path names, we need to make a D into a full-fledged ‘object’, in 
which different instances can have different get and set operations (yet another level of 
indirection). This is the essential meaning of ‘object-oriented’: the type of an object is a record of 
routine types which defines a single interface to all objects of that type, but every object has its 
own values for the routines, and hence its own code. 

To do this, we change the type to: 

TYPE D  = [get: APROC (n) -> Z, set: PROC (n, z) RAISES {error}] 
DR = Int % what D used to be; R for reference 

keeping the other types from ObjNames unchanged: 
Z = (V + D + Link + Null) % nil means undefined 
DD = N -> Z 

We also need to change the state to: 

CONST root := NewD()  
s := (DR -> DD){root -> DD{}} % initially empty root 

and to provide a new version of the NewD procedure for creating a new standard directory. The 
routines that NewD assigns to get and set have the same bodies as the GetFromS and SetInS 
routines.  

A technical point: The reason for not writing get:=s(dr) in NewD is that this would capture the 
value of s(dr) at the time NewD is invoked; we want the value at the time get is invoked, and 
this is what we get because of the fact that Spec functions are functions on the global state, rather 
than pure functions. 

APROC NewD() -> D = << VAR dr | ~ s!dr => 
s(dr) := DD{};  
RET D{ get := (\ n | s(dr)(n)),  

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 12 

       set := (PROC (n, z) = IF  z # nil => s(dr)(n) := z  
                             [*] s(dr) := s(dr){n -> } FI) }  
 

PROC SetErr(n, z) RAISES {error} = RAISE error  
% For later use as a set proc if the directory is read-only 

We don’t need to change anything else in ObjNames. 

We will see many other examples of get and set routines. Note that it’s easy to define a D that 
disallows updates, by making set be SetErr. 

Views and recursive structure  

In this section we examine ways of constructing name spaces, and in particular ways of building 
up directories out of existing directories. We already have a basic recursive scheme that makes a 
set of existing directories the children of a parent directory. The generalization of this idea is to 
define a function on some state that returns a D, that is, a pair of get and set procedures. There 
are various terms for this:  

‘encapsulating’ the state, 

‘embedding’ the state in a name space, 

‘making the state compatible’ with a name space interface, 

defining a ‘view’ on the state. 

We will usually call it a view. The spec for a view defines how the result of get depends on the 
state and how set affects the state. 

All of these terms express the same idea: make the state behave like a D, that is, abstract it as a 
pair of get and set procedures. Once packaged in this way, it can be used wherever a D can be 
used. In particular, it can be an argument to one of the recursive views that make a D out of other 
D’s: a parent directory, a link, or the others discussed below. It can also be the argument of tools 
like the Unix commands that list, search, and manipulate directories.  

The read operations are much the same for all views, but updates vary a great deal. The two 
simplest cases are the one we have already seen, where you can set the value of a name just as 
you write into a memory location, and the even simpler one that disallows updates entirely; the 
latter is only interesting if get looks at global state that can change in other ways, as it does in 
the Union and Filter operations below. Each time we introduce a view, we will discuss the spec 
for updating it. 

In the rest of this section we describe views that are based on directories: links, mounting, 
unions, and filters. The final section of the handout gives many examples of views based on 
other kinds of data. 

Links and mounting 

The idea behind links (called ‘symbolic links’ in Unix, ‘shortcuts’ in Windows, and ‘aliases’ in 
the Macintosh) is that of an alias (another level of indirection): we can define the value of a name 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 13 

in a directory by saying that it is the same as the value of some other name in some other 
directory. If the value is a directory, another way of saying this is that we can represent a 
directory d by the link (d', pn'), with d(pn) = d'(pn')(pn), or more graphically d/pn = 
d'/pn'/pn. When put in this form it is usually called mounting the directory d'(pn') on pn0, if 
pn0 is the name of d. In this language, pn0 is called a ‘mount point’. Another name for it is 
‘junction’. 

We have already seen code in ObjNames to handle links. You might wonder why this code was 
needed. Why isn’t our wonderful object-oriented interface enough? The reason is that people 
expect more from aliases than this interface can deliver: there can be an alias for a value, not 
only for a directory, and there are complicated rules for when the alias should be followed 
silently and when it should be an object in its own right that can be enumerated or changed 

Links and mounting make it possible to give objects the names you want them to have, rather 
than the ones they got because of defects in the system or other people’s bad taste. A very down-
to-earth example is the problems caused by the restriction in standard Unix that a file system 
must fit on a single disk. This means that in an installation with 4 disks and 12 users, the name 
space contains /disk1/john and /disk2/mary rather than the /udir/john and /udir/mary that 
we want. By making /udir/john be a link to /disk1/john, and similarly for the other users, we 
can hide this annoyance. 

Since a link is not just a D, we need extra interface procedures to read the value of a link (without 
following it automatically, as Read does), and to install a link. We call the install procedure 
Mount to emphasize that a mount point and a symbolic link are essentially the same thing. The 
Mount procedure is just like Write except for the second argument’s type and the fact that it 
doesn’t follow a final link in pn. 

PROC ReadLink(pn) -> Link RAISES {error} = VAR d, n |  
(d, n) := GetDN(pn, false); 
VAR z | z := d.get(n); IF z IS Link => RET z [*] RAISE error FI 

PROC Mount(pn, link) -> DD = SetPN(pn, link, false) 

The section on roots below discusses where we might get the D in the link argument of Mount. 
In the common case of a link to someplace in the same name space, we have: 

PROC MakeLink(pn, pn', local: Bool) =  
Mount(pn, Link{d := (local => nil [*] root), pn := pn'}) 

Updating (with Write, for instance) makes sense when there are links, but there are two 
possibilities. If every link is followed then a link never gets updated, since GetDN never returns a 
reference to a link. If a final link is not followed then it can be replaced by something else.  

What is the relation between these links and what Unix calls ‘hard links’? A Unix hard link is an 
inode number, which you can think of as a direct pointer to a file; it corresponds to a D in 
ObjNames. Several directory entries can have the same inode number. Another way to look at 
this is that the inodes are just another kind of name of the form inodeRoot/2387754, so that a 
hard link is just a link that happens to be an inode number rather than an ordinary path name. 
There is no provision for making the value of an inode number be a link (or indeed anything 
except a file), so that’s the end of the line. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 14 

Unions 

Since a directory is a function N -> Z, it is natural to combine two directories with the "+" 
overlay operator on functions3. If we do this repeatedly, writing d1 + d2 + d3, we get the effect 
of a ‘search path’ that looks at d3 first, then d2, and finally d1 (in that order because "+" gives 
preference to its second argument, unlike a search path which gives preference to its first 
argument). The difference is that this rule is part of the name space, while a search path must be 
coded separately in each program that cares. It’s unclear whether an update of a union should 
change the first argument, change the second argument, do something more complicated, or raise 
an error. We take the last view for simplicity. 

FUNC Union(d1, d2) -> D = RET D{get := d1.get + d2.get, set := SetErr}4 

Another kind of union combines the name spaces at every level, not just at the top level, by 
merging directories recursively. This is the most general way to combine two trees that have 
evolved independently. 

FUNC DeepUnion(d1, d2) -> D = RET D{ 
get := (\ n |  
      (    d1.get(n) IS D /\ d2.get(n) IS D => DeepUnion(d1.get(n), d2.get(n))
       [*] (d1.get + d2.get)(n) )), 
set := SetErr} 

This is a spec, of course, not efficient code.  

 

a b 

g 

a b 

n m 

c 

h 

a b 

g n m 

c 

h 

a b 

g 

c 

h h 

x 

y 

Union(x, y) 

DeepUnion(x, y)

 

Filters and queries 

Given a directory d, we can make a smaller one by selecting some of d’s children. We can use 
any predicate for this purpose, so we get: 

FUNC Filter(d, p: (D, N) -> Bool) -> D = 
RET D{get := ( \ n | (p(d, n) => d.get(n)) [*] nil ), set := SetErr} 

                                                 
3 See section 9 of the Spec reference manual. 
4 This is a bit oversimplified, since get is an APROC and hence doesn’t have "+"defined. But the idea should be 
clear. Plan 9 (see the examples at the end) implements unions. 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 15 

Examples: 

Pattern match in a directory: a/b/*.ps. The predicate is true if n matches *.ps. 

Querying a table: payroll/salary>25000/name. The predicate is true if 
Get(d, n/salary) > 25000. See the example of viewing a table in the final section of 
examples. 

Full text indexing: bwl/papers/word:naming. The predicate is true if d.get(n) is a text file 
that contains the word naming. The code could just search all the text files, but a practical 
one will probably involve an auxiliary index structure that maps words to the files that 
contain them, and will probably not be perfectly coherent. 

See the ‘semantic file system’ example below for more details and a reference. 

Variations 

It is useful to summarize the ways in which a spec for a name space might vary. The variations 
almost all have to do with the exact semantics of updates: 

What operations are updates, that is, can change the results of Read?  

Are there aliases, so that an update to one object can affect the value of others? 

Are the updates atomic, or it is possible for reads to see intermediate states? Can an update be 
lost, or partly lost, if there is a crash? 

Viewed as a memory, is the name space coherent? That is, does every read that follows an 
update see the update, or is it possible for the old state to hang around for a while?  

How much can the set of defined PN’s change? In other words, is it useful to think about a 
schema for the name space that is separate from the current state? 

Updates 

If the directories are ‘real’, then there will be non-trivial Write, MakeD, and Rename operations. If 
they are not, these operations will always raise error, there will be operations to update the 
underlying data, and the view function will determine the effects of these updates on Read and 
Enum. In many systems, Read and Write cannot be modeled as operations on memory because 
Write(a, r) does not just change the value returned by Read(a). Instead they must be 
understood as methods of (or messages sent to) some object.  

The earliest example of this kind of system is the DEC Unibus, the prototype for modern I/O 
systems. Devices on such an I/O bus have ‘device registers’ that are named as locations in 
memory. You can read and write them with ordinary load and store instructions. Each device, 
however, is free to interpret these reads and writes as it sees fit. For example, a disk controller 
may have a set of registers into which you can write a command which is interpreted as “read n 
disk blocks starting at address da into memory starting at address a”. This might take three 
writes, for the parameters n, da, and a, and the third write has the side effect of starting execution 
of the command. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 16 

The most recent well-known incarnation of this idea is the World Wide Web, in which read and 
write actions (called Get and Post in the protocol) are treated as messages to servers that can 
search databases, accept orders for pizza, or whatever. 

Aliases  

We have already discussed this topic at some length. Links and unions both introduce aliases. 
There can also be ‘hard links’, which are several occurrences of the same D. In a Unix file 
system, for example, it is possible to have several directory entries that point to the same file. A 
hard link differs from a soft link because the connection it establishes between a name and a file 
cannot be broken by changing the binding of some other name. And of course a view can 
introduce arbitrarily complicated aliasing. For example, it’s fairly common for an I/O device that 
has internal memory to make that memory addressable with two control registers a and v, and 
the rule that a read or write of v refers to the internal memory location addressed by the current 
contents of a. 

Atomicity 

The MemNames and ObjNames0 specs made all the update operations atomic. For code to satisfy 
these specs, it must hold some kind of lock on every directory touched by GetDN, or at least on 
the name looked up in each such directory. This can involve a lot of directories, and since the 
name space is a graph it also introduces the danger of deadlock. It’s therefore common for 
systems to satisfy only the weaker atomicity spec of ObjNames, which says that looking up a 
simple name is atomic, but the entire lookup process is not. 

This means that Read(/a/x) can return 3 even though there was never any instant at which the 
path name /a/x had the value 3, or indeed was defined at all. To see how this can happen, 
suppose:  

initially /a is the directory d1 and /b is undefined; 

initially x is undefined in d1; 

concurrently with Read(/a/x) we do Rename(/a, /b); Write(/b/x, 3).  

The following sequence of actions yields Read(/a/x) = 3: 

In the Read , Get(root, a) = d1  

Rename(/a, /b) makes /a undefined and d1 the value of /b  

Write(/b/x, 3) makes 3 the value of x in d1  

In the Read, RET d1.get(x) returns 3. 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 17 

a

root

Rename
(/a, /b)

Get(root, a) = d1

b

root

d1
Write
(/b/x, 3)

b

root

x

Get(d1, a) = 3

3

d1 d1

 

Obviously, whether this possibility is important or not depends on how clients are using the 
name space. 

Coherence 

Other things being equal, everyone prefers a coherent or ‘sequentially consistent’ memory, in 
which there is a single order of all the concurrent operations with the property that the result of 
every read is the result that a simple memory would return after it has done all the preceding 
writes in order. Maintaining coherence has costs, however, in the amount of synchronization that 
is required if parts of the memory are cached, or in the amount of availability if the memory is 
replicated. We will discuss the first issue in detail at the end of the course. Here we consider the 
availability of a replicated memory. 

Recall the majority register from the beginning of the course. It writes a majority of the replicas 
and reads from a majority, thus ensuring that every read must see the most recent write. 
However, this means that you can’t do either a read or a write unless you can talk to a majority. 
There we used a general notion of majority in which the only requirement is that every two 
majorities have a non-empty intersection. Applying this idea, we can define separate read and 
write quorums, with the property that every read quorum intersects every write quorum. Then we 
can make reads more available by making every replica a read quorum, at the price of having the 
only write quorum be the set of all replicas, so that we have to do every write to all the replicas. 

An alternative approach is to weaken the spec so that it’s possible for a read to see old values. 
We have seen a version of this already in connection with crashes and write buffering, where it 
was possible for the system to revert to an old state after a crash. Now we propose to make the 
spec even more non-deterministic: you can read an old value at any time, and the only restriction 
is that you won’t read a value older than the most recent Sync. In return, we can now have much 
more availability in the code, since both a read and a write can be done to a single replica. This 
means that if you do Write(/a, 3) and immediately read a, you may not get 3 because the Read 
might use a different replica that hasn’t seen the Write yet. Only Sync requires communication 
among the replicas. 

We give the spec for this as a variation on ObjNames. We allow nil to be in dd(n), representing 
the fact that n has been undefined in dd. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 18 

TYPE DD = N -> SEQ Z % remember old values 

APROC GetFromS(d, n) -> Z = << % we write d.get(n) 
% The non-determinism wouldn’t be allowed if this were a function 

VAR z | z IN s(d)(n) => RET z [*] RET nil >> % return any old value 

PROC  SetToS(d, n, z) =  % we write d.set(n, z) 
s(d)(n) := ((s(d)!n => s(d)(n) [*] {}) + {z} % add z to the state  

PROC Sync(pn) RAISES {error} =  
VAR d, n, z |  

(d, n) := GetDN(pn, true); z := s(d)(n).last;  
IF z # nil => s(d)(n) := {z} [*] s(d) := s(d){n -> } FI 

This spec is common in the naming service for a distributed system, for instance in the Internet’s 
DNS or Microsoft’s Active Directory. The name space changes slowly, it isn’t critical to see the 
very latest value, and it is critical to have high availability. In particular, it’s critical to be able to 
look up names even when network partitions make some working replicas unreachable. 

Schemas 

In the database world, a schema is the definition of what names are defined (and usually also of 
the type of each name’s value).5 Network management calls this a ‘management information 
base’ or MIB. Depending on the application there are very different rules about how the schema 
is defined. 

In a file system, for example, there is usually no official schema written down. Nonetheless, each 
operating system has conventions that in practice have the force of law. A Unix system without 
/bin and /etc will not get very far. But other parts of the name space, especially in users’ 
private directories, are completely variable.  

By contrast, a database system takes the schema very seriously, and a management system takes 
at least some parts of it seriously. The choice has mainly to do with whether it is people or 
programs that are using the name space. Programs tend to be much less flexible; it’s a lot of 
work to make them adapt to missing data or pay attention to unexpected additional data 

Minor issues 

We mention in passing some other, less fundamental, ways in which the specs for name spaces 
differ. 

Rules about overwriting. Some systems allow any name to be overwritten, others treat 
directories, or non-empty directories, specially to reduce the consequences of careless 
errors. 

Access control. Many systems enforce rules about which users or programs are allowed to 
read or write various parts of the name space. 

                                                 
5 Gray and Reuter, Transaction Processing, Morgan Kaufmann, 1993, pp 768-786. 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 19 

Resource control. Writes often consume resources that are expensive or in fixed supply, 
such as disk blocks. This means that they can fail if the resources are exhausted, and there 
may also be a quota system that limits the resource consumption of users or programs. 

Roots 
It’s not turtles all the way down. 

Anonymous 

So far we have ducked the question of how the root is represented, or the D in a link that plays a 
similar role. In ObjNames0 we said D = Int, leaving its interpretation entirely to the s 
component of the state. In ObjNames we said D is a pair of procedures, begging the question of 
how the procedures are represented. The representation of a root depends entirely on the 
implementation. In a file system, for instance, a root names a disk, a disk partition, a volume, a 
file system exported from a server, or something like that. Thus there is another name space for 
the roots (another level of indirection). It works in a wide variety of ways. For example: 

In MS-DOS. you name a physically connected disk drive. If the drive has removable media 
and you insert the wrong one, too bad. 

On the Macintosh. you use the string name of a disk. If the system doesn’t know where to 
find this disk, it asks the user. If you give the same name to two removable disks, too bad. 

On Digital VMS. disks have unique identifiers that are used much like the string names on 
the Macintosh. 

For the NFS network file system, a root is named by a host name or IP address, plus a file 
system name or handle on that host. If that name or address gets assigned to another 
machine, too bad. 

In a network directory a root is named by a unique identifier. There is also a set of servers 
that might store replicas of that directory. 

In the secure file system, a root is named by the hash of a public encryption key. There’s 
also a network address to help you find the file system, but that’s only a hint.6 

In general it is a good idea to have absolute names (unique identifiers) for directories. This at 
least ensures that you won’t use the wrong directory if the information about where to find it 
turns out to be wrong. A UID doesn’t give much help in locating a directory, however. The 
possibilities are: 

Store a set of places to look along with the UID. The problem is keeping this set up to date. 

Keep another name space that maps UID’s to locations (yet another level of indirection). 
The problem is keeping this name space up to date, and making it sufficiently available. 
For the former, every location can register itself periodically. For the latter, replication is 
good. We will talk about replication in detail later in the course. 

Search some ad-hoc set of places in the hope of finding a copy. This search is often called a 
‘broadcast’. 

                                                 
6 Mazières, Kaminsky,  Kaashoek, and Witchel, Separating key management from file system security.  Proc. 17th 
ACM Symposium on Operating Systems Principles, Dec. 1999. www.pdos.lcs.mit.edu/papers/sfs:sosp99.pdf. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 20 

We defined the interface routines to start from a fixed root. Some systems, such as Unix, have 
provisions for changing the root; the chroot system call does this for a process. In addition, it is 
common to have a more local context (called a ‘working directory’ for a file system), and to have 
syntax to specify whether to start from the root or the working directory (presence or absence of 
an initial ‘/’ for a Unix file system). 

Examples 

These are to expand your mind and to help you recognize a name space when you come across it 
under some disguise. 

File system 
directory  

Example: /udir/lampson/pocs/handouts/12-naming 

Not a tree, because of . and .., hard links, and soft links. 
Devices, named pipes, and other things can appear as well as files. 
Links and mounting are important for assembling the name space you want. 
Files may have attributes, which are a little directory attached to the file.  
Sometimes resources, fonts, and other OS rigmarole are stored this way. 

inodes   There is a single inode directory, usually coded as a function rather than a table: 
you compute the location of the inode on the disk from the number. 
For system-wide inodes, prefix a system-wide file system or volume name. 

Plan 97 This operating system puts all its objects into a single name space: files, devices, 
pipes, processes, display servers, and search paths (as union directories). 

Semantic 
file system8 

Not restricted to relational databases.  

Free-text indexing: ~lampson/Mail/inbox/(word="compiler") 

Program cross-reference: /project/sources/(calls="DeleteFile") 

Table 
(relational 
data base) 

Example: ID no (key) Name Salary  Married? 
 1432 Smith 21,000 Yes 

 44563 Jones 35,000 No 

 8456 Brown 17,000 Yes 

We can view this as a naming tree in several ways: 
#44563/Name = Jones key’s value is a D that defines Name, Salary, etc. 
Name/#44563 = Jones key’s value is the Name field of its row  

The second way, cat Name/*  yields  
Smith Jones Brown 

                                                 
7 Pike et al., The use of name spaces in Plan 9, ACM Operating Systems Review 27, 2, Apr. 1993, pp 72-76. 
8 Gifford et al., Semantic file systems, Proc. 13th ACM Symposium on Operating System Principles, Oct. 1991, pp 
16-25 (handout 13). 



6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 21 

Network 
naming9 

Example: theory.lcs.mit.edu 

Distributed code. Can share responsibility for following the path between client 
and server in many ways. 
A directory handle is a machine address (interpreted by some communication 
network), plus some id for the directory on that machine. 
Attractive as top levels of complete naming hierarchy. 

E-mail 
addresses 

Example: rinard@lcs.mit.edu 

This syntax patches together the network name space and the user name space of a 
single host. Often there are links (called forwarding) and directories full of links 
(called distribution lists).  

SNMP10 Example: Router with circuits, packets in circuits, headers in packets, etc. 

Internet Simple Network Management Protocol 
Roughly, view the state of the managed entity as a table, treating it as a name 
space the way we did earlier. You can read or write table entries. 
The Next action allows a client to explore the name space, whose structure is 
read-only. Ad hoc Write actions are sometimes used to modify the structure, for 
instance by adding a row to a table. 

Page tables Divide up the virtual address, using the first chunk to index a first level page table, 
later chunks for lower level tables, and the last chunk for the byte in the page. 

I/O device 
addressing 

Example: Memory bus. 
  SCSI controller, by device register addresses. 
  SCSI device, by device number 0..7 on SCSI bus. 
  Disk sector, by disk address on unit. 
Usually there is a pure read/write interface to the part of the I/O system that is 
named by memory addresses (the device registers in the example), and a message 
interface to the rest (the disk in the example). 

Multiplexing 
a channel 

Examples: Node-node network channel →  n process-process channels. 
  Process-kernel channel → n inter-process channels. 
  ATM virtual path → n virtual circuits. 

Given a channel, you can multiplex it to get sub-channels. 
Sub-channels are identified by addresses in messages on the main channel. 
This idea can be applied recursively, as in all good name spaces. 

LAN 
addresses 

48-bit ethernet address. This is flat: the address is just a UID. 

                                                 
9 B. Lampson, Designing a global name service, Proc. 4th ACM Symposium on Principles of Distributed 
Computing, Minaki, Ontario, 1986, pp 1-10. RFC 1034/5 for DNS. 
10 M. Rose, The Simple Book, Prentice-Hall, 1990. 

6.826—Principles of Computer Systems  2002 

Handout 12.  Naming 22 

Hierarchical 
network 
addresses11 

Example: 16.24.116.42 (an IP address). 

An address in a big network is hierarchical. 
A router knows its parents and children, like a file directory, and also its siblings 
(because the parent might be missing) 
To route, traverse up the name space to least common ancestor of current place 
and destination, then down to destination. 

Network 
reference12 

Example: 6.24.116.42/11234/1223:44 9 Jan 1995/item 21 

Network address + port or process id + incarnation + more multiplexing + address 
or export index.  
Some applications are remote procedure binding, network pointer, network object 

Abbrevia-
tions 

A, talking to B, wants to pass a big value V, say a font or security credentials. 
A makes up a short name N for V (sometimes called a ‘cookie’, though it’s not the 
same as a Web cookie) and passes that. 
If B doesn’t know N’s value V, it calls back to A to get it, and caches the result. 
Sometimes A tells V to B when it chooses N, and B is expected to remember it. 
This is not as good because B might run out of space or fail and restart. 

World 
Wide Web 

Example: http://ds.internic.net/ds/rfc-index.html 

This is the URL (Uniform Resource Locator) for Internet RFCs. 
The Web has a read/write interface. 

Spec names  Example: ObjNames.Enum 

Telephone 
numbers 

Example: 1-617-253-6182 

Postal 
addresses 

Example: Prof. Butler Lampson 
 Room 43-535 
 MIT 
 Cambridge, MA 02139 

                                                 
11 R. Perlman, Connections, Prentice-Hall, 1993. 
12 Andrew Birrell et al., Network objects, Proc. 14th ACM Symposium on Operating Systems Principles, Asheville, 
NC, Dec. 1993 (handout 25). 



6.826— Principles of Computer Systems  2002 

Handout 13.  Paper: Semantic File Systems  

13.  Paper: Semantic File Systems 

David Gifford, et al. "Semantic file systems," Proc.13th ACM Symposium on Operating System Principles , 
October 1991, pp 16-25.
 

Read the paper as an adjunct to the lecture on naming. 

 




