
6.826—Principles of Computer Systems  2002 

Handout 10.  Performance 1 

10.  Performance 

Overview 

This is not a course about performance analysis or about writing efficient programs, although it 
often touches on these topics. Both are much too large to be covered, even superficially, in a 
single lecture devoted to performance. There are many books on performance analysis1 and a 
few on efficient programs2. 

Our goal in this handout is more modest: to explain how to take a system apart and understand its 
performance well enough for most practical purposes. The analysis is necessarily rather rough 
and ready, but nearly always a rough analysis is adequate, often it’s the best you can do, and 
certainly it’s much better than what you usually see, which is no analysis at all. Note that 
performance analysis is not the same as performance measurement, which is more common. 

What is performance? The critical measures are bandwidth and latency. We neglect other aspects 
that are sometimes important: availability (discussed later when we deal with replication), 
connectivity (discussed later when we deal with switched networks), and storage capacity 

When should you work on performance? When it’s needed. Time spent speeding up parts of a 
program that are fast enough is time wasted, at least from any practical point of view. Also, the 
march of technology, also known as Moore’s law, means that in 18 months from March 2002 a 
computer will cost the same but be twice as fast and have twice as much RAM and four times as 
much disk storage; in five years it will be ten times as fast and have 100 times as much disk 
storage. So it doesn’t help to make your system twice as fast if it takes two years to do it; it’s 
better to just wait. Of course it still might pay if you get the improvement on new machines as 
well, and if a 4 x speedup is needed. 

How can you get performance? There are techniques for making things faster: better algorithms, 
fast paths for common cases, and concurrency. And there is methodology for figuring out where 
the time is going: analyze and measure the system to find the bottlenecks and the critical 
parameters that determine its performance, and keep doing so both as you improve it and when 
it’s in service. As a rule, a rough back-of-the-envelope analysis is all you need. Putting in a lot of 
detail will be a lot of work, take a lot of time, and obscure the important points. 

What is performance: bandwidth and latency 

Bandwidth and latency are usually the important metrics. Bandwidth tells you how much work 
gets done per second (or per year), and latency tells you how long something takes from start to 
finish: to send a message, process a transaction, or referee a paper. In some contexts it’s 
customary to call these things by different names: throughput and response time, or capacity and 
delay. The ideas are exactly the same. 

                                                 
1 Try R. Jain, The Art of Computer Systems Performance Analysis, Wiley, 1991, 720 pp. 
2 The best one I know is J. Bentley, Writing Efficient Programs, Prentice-Hall, 1982, 170 pp. 
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Here are some examples of communication bandwidth and latency on a single link. 
 

Medium Link Bandwidth Latency Width 
Alpha EV7 
chip 

on-chip bus 10 GB/s .8 ns 64 

PC board PCI I/O bus 266 MB/s 250 ns 32 
Wires Fibrechannel 125 MB/s 200 ns 1 
 SCSI 40 MB/s 500 ns 32 
LAN Gigabit Ethernet 125 MB/s 100 + µs 1 
 Fast Ethernet 12.5  MB/s 100 + µs 1 
 Ethernet 1.25  MB/s 100 + µs 1 

Here are examples of communication bandwidth and latency through a switch that interconnects 
multiple links. 
 

Medium Switch Bandwidth Latency Links 
Alpha chip register file 60 GB/s .8 ns 6 
Wires Cray T3E 122 GB/s 1 µs 2K 
LAN ATM switch 10 GB/s 10 µs 52 
 Ethernet switch 40 MB/s 100–1200 µs 32 
Copper pair Central office 80 MB/s 125 µs 50K 

Finally, here are some examples of other kinds of work, different from simple communication. 
 

Medium Bandwidth Latency 
Disk 40 MB/s 10 ms 
RPC on Giganet with VIA 30 calls/ms 30 µs 
RPC 3 calls/ms 1 ms 
Airline reservation transactions 10000 trans/s 1 sec 
Published papers 20 papers/yr 2 years 

 

Specs for performance 

How can we put performance into our specs? In other words, how can we specify the amount of 
real time or other resources that an operation consumes? For resources like disk space that are 
controlled by the system, it’s quite easy. Add a variable spaceInUse that records the amount of 
disk space in use, and to specify that an operation consumes no more than max space, write 

<< VAR used: Space | used <= max => spaceInUse := spaceInUse + used >> 

This is usually what you want, rather than saying exactly how much space is consumed, which 
would restrict the code too much. 

Doing the same thing for real time is a bit trickier, since we don’t usually think of the advance of 
real time as being under the control of the system. The spec, however, has to put a limit on how 
much time can pass before an operation is complete. Suppose we have a procedure P. We can 
specify TimedP that takes no more than maxPLatency to complete as follows. The variable now 
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records the current time, and deadlines records a set of latest completion times for operations in 
progress. The thread Clock advances now, but not past a deadline. An operation like TimedP sets 
a deadline before it starts to run and clears it when it is done. 

VAR now      : Time 
deadlines: SET Time 

THREAD Clock() = DO now < deadlines.min => now + := 1 [] SKIP OD 

PROC TimedP() = VAR t : Time 
<< now < t /\ t < now + maxPLatency /\ ~ t IN deadlines =>  

deadlines := deadlines + {t} >>; 
P(); 
<< deadlines := deadlines - {t}; RET >> 

This may seem like an odd way of doing things, but it does allow exactly the sequences of 
transitions that we want. The alternative is to construct P so that it completes within 
maxPLatency, but there’s no straightforward way to do this. 

Often we would like to write a probabilistic performance spec; for example, service time is 
drawn from a normal distribution with given mean and variance. There’s no way to do this 
directly in Spec, because the underlying model of non-deterministic state machines has no notion 
of probability. What we can do is to keep track of actual service times and declare a failure if 
they get too far from the desired form. Then you can interpret the spec to say: either the observed 
performance is a reasonably likely consequence of the desired distribution, or the system is 
malfunctioning. 

How to get performance: Methodology 

First you have to choose the right scale for looking at the system. Then you have to model or 
analyze the system, breaking it down into a few parts that add up to the whole, and measure the 
performance of the parts.  

Choosing the scale 

The first step in understanding the performance of a system is to find the right scale on which to 
analyze it. The figure shows the scales from the processor clock to an Internet access; there is a 
range of at least 50 million in speed and 50 million in quantity. Usually there is a scale that is the 
right one for understanding what’s going on. For the performance of an inner loop it might be the 
system clock, for a simple transaction system the number of disk references, and for a Web 
browser the number of IP packets. 

In practice, systems are not deterministic. Even if there isn’t inherent non-determinism caused by 
unsynchronized clocks, the system is usually too complex to analyze in complete detail. The way 
to simplify it is to approximate. First find the right scale and the right primitives to count, 
ignoring all the fine detail. Then find the critical parameters that govern performance at that 
scale: number of RPC’s per transaction, cache miss rate, clock ticks per instruction, or whatever. 
In this way you should be able to find a simple formula that comes within 20% of the observed 
performance, and usually this is plenty good enough. 
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 Internet 

LAN 

Multiprocessor 

Processor chip 

64-bit register 

500 MB RAM 

100 ms 

1 ms 

75 ns 

1 ns 64 

1K 

500 (uniprocessors) 

5M 

1 

75 

1M 

100M 

1 / 500 MB 

500 / 250 GB 

2500 M / 1 XB 

How fast? How many? Slowdown Total 

 

Scales of interconnection. Relative speed and size are in italics. 

For example, in the 1994 election DEC ran a Web server that provided data on the California 
election. It got about 80k hits/hour, or 20/sec, and it ran on a 200 MIPS machine. The data was 
probably all in memory, so there were no disk references. A hit typically returns about 2 KB of 
data. So the cost was about 10M instructions/hit, or 5K instructions/byte returned. Clearly this 
was not an optimized system. 

By comparison, a simple debit-credit transaction (the TPC-A benchmark) when carefully coded 
does slightly more than two disk i/o’s per transaction (these are to read and write per-account 
data that won’t fit in memory). If carefully coded it takes about 100K instructions. So on a 1000 
MIPS machine it will consume 100 µs of compute time. Since two disk i/o’s is 20 ms, it takes 
200 disks to keep up with this CPU for this application.  

As a third example, consider sorting 10 million 64 bit numbers; the numbers start on disk and 
must end up there, but you have room for the whole 80 MB in memory. So there’s 160 MB of 
disk transfer plus the in-memory sort time, which is n log n comparisons and about half that 
many swaps. A single comparison and half swap might take 10 instructions with a good code for 
Quicksort, so this is a total of 10 * 10 M * 24 = 2.4 G instructions. Suppose the disk system can 
transfer 20 MB/sec and the processor runs at 500 MIPS. Then the total time is 8 sec for the disk 
plus 5 sec for the computing, or 13 sec, less any overlap you can get between the two phases. 
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With considerable care this performance can be achieved. On a parallel machine you can do 
perhaps 30 times better.3 

Here are some examples of parameters that might determine the performance of a system to first 
order: cache hit rate, fragmentation, block size, message overhead, message latency, peak 
message bandwidth, working set size, ratio of disk reference time to message time.  

Modeling 

Once you have chosen the right scale, you have to break down the work at that scale into its 
component parts. The reason this is useful is the following principle: 

If a task x has parts a and b, the cost of x is the cost of a plus the cost of b, plus a system 
effect (caused by contention for resources) which is usually small. 

Most people who have been to school in the last 20 years seem not to believe this. They think the 
system effect is so large that knowing the cost of a and b doesn’t help at all in understanding the 
cost of x. But they are wrong. Your goal should be to break down the work into a small number 
of parts, between two and ten. Adding up the cost of the parts should give a result within 10% of 
the measured cost for the whole.  

If it doesn’t then either you got the parts wrong (very likely), or there actually is an important 
system effect. This is not common, but it does happen. Such effects are always caused by 
contention for resources, but this takes two rather different forms: 

•  Thrashing in a cache, because the sum of the working sets of the parts exceeds the size of the 
cache. The important parameter is the cache miss rate. If this is large, then the cache miss 
time and the working set are the things to look at. For example, SQL server on Windows NT 
running on a DEC Alpha 21164 in 1997 executes .25 instructions/cycle, even though the 
processor chip is capable of 2 instructions/cycle. The reason turns out to be that the 
instruction working set is much larger than the instruction cache, so that essentially every 
block of 4 instructions (16 bytes or one cache line) causes a cache miss, and the miss takes 
64 ns, which is 16 4 ns cycles, or 4 cycles/instruction. 

•  Clashing or queuing for a resource that serves one customer at a time (unlike a cache, which 
can take away the resource before the customer is done). The important parameter is the 
queue length. It’s important to realize that a resource need not be a physical object like a 
CPU, a memory block, a disk drive, or a printer. Any lock in the system is a resource on 
which queuing can occur. Typically the physical resources are instrumented so that it’s fairly 
easy to find the contention, but this is often not true for locks. In the Alta Vista web search 
engine, for example, CPU and disk utilization were fairly low but the system was saturated. It 
turned out that queries were acquiring a lock and then page faulting; during the page fault 
time lots of other queries would pile up waiting for the lock and unable to make progress. 

In the section on techniques we discuss how to analyze both of these situations. 

                                                 
3 Andrea Arpaci-Dusseau et al., High-performance sorting on networks of workstations. SigMod 97, Tucson, 
Arizona, May, 1999, http://now.cs.berkeley.edu/NowSort/nowSort.ps . 
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Measuring 

The basic strategy for measuring is to count the number of times things happen and observe how 
long they take. This can be done by sampling (what most profiling tools do) or by logging 
significant events such as procedure entries and exits. Once you have collected the data, you can 
use statistics or graphs to present it, or you can formulate a model of how it should be (for 
example, time in this procedure is a linear function of the first parameter) and look for 
disagreements between the model and reality.4 The latter technique is especially valuable for 
continuous monitoring of a running system. Without it, when a system starts performing badly in 
service it’s very difficult to find out why. 

Measurement is usually not useful without a model, because you don’t know what to do with the 
data. Sometimes an appropriate model just jumps out at you when you look at raw profile data, 
but usually you have to think about it and try a few things. 

How to get performance: Techniques 

There are three main ways to make your program run faster: use a better algorithm, find a 
common case that can be made to run fast, or use concurrency to work on several things at once. 

Algorithms 

There are two interesting things about an algorithm: the ‘complexity’ and the ‘constant factor’. 
An algorithm that works on n inputs can take roughly k (constant) time, or k log n (logarithmic), 
or k n (linear), or k n2 (quadratic), or k 2n (exponential). The k is the constant factor, and the 
function of n is the complexity. Usually these are ‘asymptotic’ results, which means that their 
percentage error gets smaller as n gets bigger. Often a mathematical analysis gives a worst-case 
complexity; if what you care about is the average case, beware. Sometimes a ‘randomized’ 
algorithm that flips coins internally can make the average case overwhelmingly likely. 

For practical purposes the difference between k log n time and constant time is not too important, 
since the range over which n varies is likely to be 10 to 1M, so that log n varies only from 3 to 
20. This factor of 6 may be much less than the change in k when you change algorithms. 
Similarly, the difference between k n and k n log n is usually not important. But the differences 
between constant and linear, between linear and quadratic, and between quadratic and 
exponential are very important. To sort a million numbers, for example, a quadratic insertion sort 
takes a trillion operations, while the n log n Quicksort takes only 20 million in the average case 
(unfortunately the worst case for Quicksort is also quadratic). On the other hand, if n is only 100, 
then the difference among the various complexities (except exponential) may be less important 
than the values of k. 

Another striking example of the value of a better algorithm is ‘multi-grid’ methods for solving 
the n-body problem: lots of particles (atoms, molecules or asteroids) interacting according to 
some force law (electrostatics or gravity). By aggregating distant particles into a single virtual 
particle, these methods reduce the complexity from n2 to n log n, so that it is feasible to solve 

                                                 
4 See Perl and Weihl, Performance assertion checking. Proc. 14th ACM Symposium on Operating Systems 
Principles, Dec. 1993, pp 134-145. 
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systems with millions of particles. This makes it practical to compute the behavior of complex 
chemical reactions, of currents flowing in an integrated circuit package, or of the solar system. 

Fast path 

If you can find a common case, you can try to do it fast. Here are some examples. 

Caching is the most important: memory, disk (virtual memory, database buffer pool), web 
cache, memo functions (also called ‘dynamic programming’), ... 

Receiving a message that is an expected ack or the next message in sequence. 

Acquiring a lock when no one else holds it. 

Normal arithmetic vs. overflow. 

Inserting a node in a tree at a leaf, vs. splitting a node or rebalancing the tree. 

Here is the basic analysis for a fast path. 

1 = fast time, 1 << 1 + s = slow time, m = miss rate = probability of taking the slow path. 

t = time = 1 + m * s 

There are two ways to look at it: 

The slowdown from the fast case. If  m = 1/s then t = 2, a 2 x slowdown. 

The speedup from the slow case. If  m = 50% then t = s/2 + 1, nearly a 2 x speedup,  

You can see that it makes a big difference. For s = 100, a miss rate of 1% yields a 2 x slowdown, 
but a miss rate of 50% yields a 2 x speedup.  

The analysis of fast paths is most highly developed in the study of computer architecture.5 

Batching has the same structure: 

1 = unit cost, s = startup (per-batch) cost, b = batch size. 

t = time = (b + s) / b = 1 + s/b 

So b is like 1/m. Amdahl’s law for concurrency (discussed below) also has the same structure. 

Concurrency  

Usually concurrency is used to increase bandwidth. Hence it is most interesting when there are 
many ‘independent’ requests, such as web queries or airline reservation transactions. 

Using concurrency to reduce latency requires a parallel algorithm, and runs into Amdahl’s law, 
which is another kind of fast path analysis. In this case the fast path is the part of the program 
that can run in parallel, and the slow path is the part that runs serially. The conclusion is the 
same: if you have 100 processors, then your program can run 100 times faster if it all runs in 

                                                 
5 Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2nd ed., Morgan Kaufmann, 1995. The 
second edition has a great deal of new material. 
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parallel, but if 1% of it runs serially then it can only run 50 times faster, and if half runs serially 
then it can only run twice as fast. Usually we take the slowdown view, because the ideal is that 
we are paying for all the processors and so every one should be fully utilized. Then a 99% 
parallel / 1% serial program, which achieves a speedup of 50, is only half as fast as our ideal. 
You can see that it will be difficult to make efficient use of 100 processors on a single problem. 

Returning to concurrency for bandwidth, there can be multiple identical resources or several 
distinct resources. In the former case the main issue is load balancing (there is also the cost of 
switching a task to a particular resource). The most common example is multiple disks. If the 
load if perfectly balanced, the i/o rate from n disks is n times the rate from one disk. The debit-
credit example above showed how this can be important. Getting the load perfectly balanced is 
hard; in practice it usually requires measuring the system and moving work among the resources. 
It’s best to do this automatically, since the human cost of doing it manually is likely to dwarf the 
savings in hardware. 

When the resources are distinct, we have a ‘queuing network’ in which jobs ‘visit’ different 
resources in some sequence, or in various sequences with different probabilities. Things get 
complicated very quickly, but the most important case is quite simple. Suppose there is a single 
resource and tasks arrive independently of each other (‘Poisson arrivals’). If the resource can 
handle a single request in a service time s, and its utilization (the fraction of time it is busy) is u, 
then the average request gets handled in a response time  

r = s/(1 - u)  

The reason is that a new request needs to get s amount of service before it’s done, but the 
resource is only free for 1 - u of the time. For example, if u = .9, only 10% of the time is free, so 
it takes 10 seconds of real time to accumulate 1 second of free time. 

Look at the slowdowns for different utilizations. 

2 x at 50% 
10 x at 90%  
Infinite at 100% (‘saturation’) 

Note that this rule applies only for Poisson (memoryless or ‘random’ arrivals). At the opposite 
extreme, if you have periodic arrivals and the period is synchronized with the service time, then 
you can do pipelining, drop each request into a service slot that arrives soon after the request, 
and get r = s with u = 1. One name for this is “systolic computing”. 

A high u has two costs: increased r, as we saw above, and increased sensitivity to changing load. 
Doubling the load when u = .2 only slows things down by 30%; doubling from u = .8 is a 
catastrophe. High u is OK if you can tolerate increased r and you know the load. The latter could 
be because of predictability, for example, a perfectly scheduled pipeline. It could also be because 
of aggregation and statistics: there are enough random requests that the total load varies very 
little. Unfortunately, many loads are “bursty”, which means that requests are more likely to 
follow other requests; this makes aggregation less effective. 

When there are multiple requests, usually one is the bottleneck, the most heavily loaded 
component, and you only have to look at that one (of course, if you make it better then 
something else might become the bottleneck). 
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Servers with finite load 

Many papers on queuing theory analyze a different situation, in which there is a fixed number of 
customers that alternate between thinking (for time z) and waiting for service (for the response 
time z). Suppose the system in steady state (also called ‘equilibrium’ or ‘flow balance’), that is, 
the number of customers that demand service equals the number served, so that customers don’t 
pile up in the server or drain out of it. You can find out a lot about the system by just counting 
the number of customers that pass by various points in the system  

A customer is in the server if it has entered the server (requested service) and not yet come out 
(received all its service). If there are n customers in the server on the average and the throughput 
(customers served per second) is x, then the average time to serve a customer (the response time) 
must be r = n/x. This is “Little’s law”, usually written n = rx. It is obvious if the customers come 
out in the same order they come in, but true in any case. Here n is called the “queue length”, 
though it includes the time the server is actually working as well. 

If there are N customers altogether and each one is in a loop, thinking for z seconds before it 
enters the server, and the throughput is x as before, then we can use the same argument to 
compute the total time around the loop r + z = N/x. Solving for r we get r = N/x - z. This formula 
doesn’t say anything about the service time s or the utilization u, but we also know that the 
throughput x = u/s (1/s degraded by the utilization). Plugging this into the equation for r we get 
r = Ns/u - z, which is quite different from the equation r = s/(1 - u) that we had for the case of 
uniform arrivals. The reason for the difference is that the population is finite and hence the 
maximum number of customers that can be in the server is N. 

Summary 

Here are the most important points about performance. 

•  Moore’s law: The performance of computer systems at constant cost doubles every 18 
months, or increases by ten times every five years.  

•  To understand what a system is doing, first do a back-of-the-envelope calculation that takes 
account only of the most important one or two things, and then measure the system. The hard 
part is figuring out what the most important things are. 

•  If a task x has parts a and b, the cost of x is the cost of a plus the cost of b, plus a system 
effect (caused by contention for resources) which is usually small. 

•  The time for a task which has a fast path and a slow path is 1 + m * s, where the fast path 
takes time 1, the slow path takes time 1 + s, and the probability of taking the slow path is m 
(the miss rate). This formula works for batching as well, where the batch size is 1/m. 

•  If a shared resource has service time s to serve one request and utilization u, and requests 
arrive independently of each other, then the response time is s/(1 - u). It tends to infinity as u 
approaches 1. 
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11.  Paper: Performance of Firefly RPC 

 
 

 

Read the following paper: Michael Schroeder and Michael Burrows. "Performance of Firefly RPC," ACM Transactions on Computer Systems 8, 1, February 1990, pp 1-17.  
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